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Abstract: This study explored the glucosinolate (GSL) content in Brassica plants and utilized in silico
analysis approach to assess their antioxidant capabilities. GSLs, present abundantly in Brassica vegeta-
bles, offer potential health advantages, including antioxidant effects. Employing Ultra-Performance
Liquid Chromatography (UPLC) coupled with tandem mass spectrometry (MS/MS), major GSLs
were identified in 89 accessions from diverse species and subspecies. Statistical analysis and prin-
cipal component analysis unveiled significant GSL variation and potential correlations among the
Brassica germplasms. This study unveils the dominance of aliphatic GSLs over aromatic and indolyl
compounds in all the accessions. Notably, Gluconapin (GNA) (33,049.23 µmol·kg−1 DW), Glucobras-
sicanapin (GBN) (9803.82 µmol·kg−1 DW), Progoitrin (PRO) (12,780.48 µmol·kg−1 DW) and Sinigrin
(SIN) (14,872.93 µmol·kg−1 DW) were the most abundant compounds across the analyzed accessions.
Moreover, in silico docking studies predicted promising antioxidant activity by evaluating the in-
teractions of each GSL with antioxidant enzymes. Specifically, Sinigrin and Gluconapin exhibited a
notably weaker influence on antioxidant enzymes. This provides key insights into the antioxidant
potential of Brassica germplasm and highlights the importance of in silico analysis for evaluating
bioactive properties. In general, the results of this study could be utilized in breeding programs to
maximize GSL levels and antioxidant properties in Brassica crops and for developing functional foods
with enhanced health benefits.

Keywords: Brassica; glucosinolates; in silico analysis; molecular docking analysis

1. Introduction

The Brassicaceae family, characterized by its monophyletic nature and predominantly
hermaphroditic species, encompasses approximately 346 genera and 4202 species globally,
primarily found in temperate regions such as the Irano-Turanian Region, the Mediter-
ranean, and North Western America [1]. Notable members of this family include various
vegetables and flavoring plants with significant economic importance, such as Brassica
oleracea cultivars (e.g., broccoli, cabbage, and cauliflower), Armoracia rusticana (horseradish),
B. nigra (mustard), B. napus (canola), B. rapa (turnip), Eutrema japonicum (wasabi), and
Raphanus sativus (radish), among others. Additionally, several ornamental species and
model organisms used for molecular research, like Arabidopsis thaliana, contribute to the
diverse representation within the Brassicaceae family. Taxonomic studies on Brassica species
date back to the 18th century, with notable contributions from outstanding researchers
such as Tournefort [2], Linnaeus [3], De Candolle [4], Bentham and Hooker [5], Baillon [6],
Prantl [7], Schulz [8], Beilstein et al. [9], and Branca and Cartea [10]. The genetic boundaries
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of Brassica crops’ gene pools, categorized into primary, secondary, and tertiary gene pools,
regulate the genetic resources utilized in breeding programs [11]. Particularly, Brassica
vegetables are agriculturally significant due to their rich glucosinolate (GSL) content, which
contributes to their nutritional value [12].

GSLs, major bioactive compounds found in Brassicaceae members, are amino acid
derivatives known for their antioxidant and cancer-protective activities [13,14]. GSLs serve
as a defense mechanism against tissue disruption and herbivory, with their hydrolyzed
products acting as inactive biological responses [15]. Recent studies have highlighted the
regulatory functions of GSLs in inflammation, phase I metabolism, stress response, and an-
tioxidant and antimicrobial properties, further emphasizing their therapeutic potential [16].
Structurally, GSLs are classified based on their precursor amino acids and the types of
degradation products they yield, including isothiocyanates (ITC), oxazolidine-2-thione, and
non-volatile/volatile compounds [17]. The major GSL groups include aliphatic, aromatic,
and indole, derived from specific amino acids such as alanine, phenylalanine, tyrosine, and
tryptophan, respectively [17].

Brassica wild relatives serve as a rich genetic resource harboring desirable alleles gov-
erning quantitative traits of economic significance, including those related to nutrition,
therapeutic applications, and biocidal properties [18]. The primary gene pool, centered
around B. oleracea, has been extensively studied, and investigations into various gene pools
and their potential utility have been conducted [10]. Brassica species and their relatives
exhibit diverse morphological characteristics crucial for their growth and development.
With approximately 42 species and 47 subspecies recognized taxonomically [1], it is note-
worthy that B. macrocarpa (Guss.) is critically endangered, while B. hilarionis Post and
B. villosa subsp. drepanensis (Caruel) are endangered. On the other hand, B. repanda subsp.
glabrescens (Poldini) is considered a vulnerable species, while B. rupestris (Raf.) and B. villosa
(Biv.) are near-threatened. B. balearica Pers., B. barrelieri (L.) Jank, B. cretica Lam., B. elon-
gata Ehrh., B. montana Pourr., and B. nivalis Boiss. & Heldr. were categorized as being of
least concern, while species for which data are insufficient include B. cadmea Heldr. ex
O.E.Schulz, B. incana Ten., and B. oleracea L. (Wild). Overall, these 15 species are categorized
as threatened according to the IUCN red list [19]. Conservation efforts encompass both
in situ and ex situ activities aimed at preserving the wide genetic diversity within the
Brassica genus [19]. Germplasm resource data for Brassica, retrieved from GENESYS [20],
GRIN Global [21], European Co-operative Programme for Plant Genetic Resources [22], and
FAOSTAT [23], further contribute to the comprehensive understanding and conservation
of Brassica genetic resources.

Computational analysis plays a crucial role in biochemistry by providing insights
into the structure and functions of biomolecules. This study offers a pioneering in silico
exploration of three-dimensional structure, active site machinery, and enzyme–substrate
interactions, marking a significant advancement in the field of biochemistry [24–28]. It
also underscores the analytical and predictive capabilities of computational analysis, par-
ticularly in elucidating the intricate relationship between the structure and functions of
biomolecules through enzyme–substrate docking studies. Recent developments in com-
putational strategies, particularly through in silico techniques, have markedly improved
the drug discovery landscape. These approaches are notably efficient in analyzing the
intricate poly-pharmacological profiles of the phytochemicals found, providing a solid
framework for pinpointing potential therapeutic agents [24,26–28]. The interaction between
proteins and ligands is often described using the lock-and-key paradigm, where the protein
serves as the lock and the ligand acts as the key. This analogy underscores the specificity
required for a ligand to bind effectively to its target. Through the process of molecular
docking, a vast array of phytochemicals can be virtually screened against a biological target.
This involves calculating the likelihood of a ligand binding to a target using sophisticated
scoring algorithms, thereby facilitating the identification of promising lead compounds [29].
Utilizing in silico molecular docking and computational molecular modeling, researchers
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can explore the potential anti-inflammatory, antioxidant, and antidiabetic properties of
bioactive compounds, paving the way for the development of new therapeutic agents [30].

The analysis of GSLs’ content and their biological effects is crucial due to the variation
patterns observed in their distribution and impact on biological systems. Recent studies
have emphasized the importance of understanding these patterns for both agricultural and
health-related applications. For instance, the varying profile patterns in GSL content can
significantly influence the nutritional quality and pest resistance of crops [31]. Furthermore,
the biological effects of GSLs, including their roles as antioxidant, anti-inflammatory, and
cancer prevention agents, are highly dependent on their specific content and composition,
which exhibit variations among different plant species and even within different parts
of the same plant [32]. Moreover, the relationship between GSL content and bioactivity
underscores the complexity of their mechanisms of action. GSLs may exhibit increased
bioactivity only beyond specific thresholds, which can vary depending on the environmen-
tal conditions and genetic factors influencing a plant’s metabolism [33]. The non-linear
patterns in GSL content and biological effects highlight the necessity for advanced ana-
lytical techniques and interdisciplinary approaches to fully understand and harness the
potential of GSLs. Such studies pave the way for developing targeted strategies for crop
improvement and for the formulation of GSL-based health supplements with optimized
efficacy [31,32]. Thus, this study aims to analyze GSL profiles and characterize the varia-
tions in their content in diverse Brassica germplasms. We examined the correlation between
GSL diversity and the prediction of GSLs’ influence on antioxidant enzymes through in
silico screening utilizing a computational method. In silico screening of potent antioxidant
metabolites is crucial for drug development and enhancing crop improvement by using
high GSL content for potential health benefits.

2. Materials and Methods
2.1. Chemical Reagents

All the chemicals used in this study were of analytical grade and obtained from Sigma-
Aldrich (St. Louis, MO, USA) and ThermoFisher Scientific Korea (Seoul, Republic of Korea).
Six of the seventeen glucosinolate standards, namely, Progoitrin (PRO), Epiprogoitrin (EPI),
Glucobrassicanapin (GBN), Glucoiberin (GIB), Glucoraphenin (GRE), and Sinalbin (SNB), were
sourced from Phytolab (Martin Bauer, KG, Vestenbergsgreuth, Germany), while the remaining
eleven GSLs were purchased from Phytoplan (Neuenheimer, Heidelberg, Germany).

2.2. Collection and Cultivation of Plant Materials

In this study, 89 Brassica germplasms preserved at the National Agrobiodiversity
Center (RDA-Genebank) in the Republic of Korea were used as the studied plant materi-
als. The selected genetic materials were distributed across different Brassica subspecies,
including B. oleracea var. medullosa Thell., B. rapa subsp. campestris (L.) A.R.Clapham, B. rapa
subsp. narinosa (L.H.Bailey) Hanelt, B. rapa subsp. nipposinica (L.H.Bailey) Kitam., B. rapa
subsp. pekinensis (Lour.) Kitam., B. rapa subsp. rapa L., and unidentified Brassica sp., with
cultivars, landraces, and wild relatives. The list of germplasms used in these experiments is
provided in Table S1. Brassica is an outcrossing crop, and measures were taken to minimize
cross-fertilization. A mesh material smaller than the size of the pollen holes was employed
during the second generation (2021–2022) in the greenhouse from February to June to re-
duce pollen scattering. Furthermore, the multiplied seeds were cultivated in the field from
September to November, and heterogeneous germplasms were systematically separated
and continuously removed based on phenotype to ensure purity maintenance.

2.3. Sample Preparation: Pre-Treatment and Extraction

Leaves were randomly harvested from each plant accession and immediately placed
into polyvinyl bags. Subsequently, the leaves underwent lyophilization using an LP500
vacuum freeze drier from Ilshinbiobase Co. (Dongducheon, Republic of Korea) for 2 days
(48 h). Following lyophilization, the dried leaves were ground into a fine powder. The
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powdered leaves were then returned to −80 ◦C storage until further processing. The
extraction of GSLs from the powdered leaves followed a method previously established
by Kim et al. [34]. Specifically, 0.1 g of harvested leaves was combined with 5 mL of 80%
methanol and incubated at 25 ◦C for 30 min. The mixture was then continuously shaken at
120 rpm for an additional 30 min at 25 ◦C. Subsequently, the mixture was centrifuged at
14,000 rpm for 10 min at 4 ◦C, and the resulting supernatants were carefully transferred
into clean vials for further analysis.

2.4. Identification of GSLs Using UPLC-MS/MS

The analysis of GSLs was conducted, using three replicates, via the Acquity Ultra-
Performance Liquid Chromatography system (Waters, Milford, CT, USA), coupled with
the Xevo™ TQ-S system developed by MS Technologies (UK), according to the method
described by Kim et al. [34]. Specifically, 5 µL of sample extract was injected and separated
using BEH C18 column (1.7 µm, 2.1 × 100 mm) (Waters, MS Technologies, Wilmslow,
UK) set at a temperature of 35 ◦C for elution. Here, 0.1% trifluoroacetic acid in water
served as eluent A, while eluent B consisted of 0.1% trifluoroacetic acid in methanol.
The elution was performed at a flow rate of 0.5 mL/min. The elution conditions were
programmed as follows: 100% of A from 0.0 to 1.0 min and maintenance at 100% of A
from 1.0 to 7.0 min, followed by a gradient of 100–80% of A from 7.0 to 10 min, 80–0%
of A from 10 to 11 min, and 0–100% of A from 11 to 15 min, and finally maintenance at
100% of A 10 for 11 min. Multiple-reaction monitoring (MRM) in negative electrospray
ionization mode was used for the detection and quantification of the GSLs [35]. The
MS/MS parameters included capillary and cone voltages set at 3 kV and 54 V, respectively,
for ionization. Identification of GSLs was accomplished by comparing their retention
times and MS/MS fragmentation spectra with those of commercially available standards.
Method validation included assessing precision and accuracy through linear, intra-day,
and inter-day precision measurements. Calibration curves were constructed using stock
solutions (1 mg mL−1) prepared by dissolving 10 mg of individual GSLs in methanol.
GSL concentrations were determined based on these calibration curves and expressed as
µmol GSLs kg−1 sample dry weight (DW). Fresh batches of test solutions were consistently
prepared before sample analysis.

2.5. Multivariate Analysis

This study utilized Microsoft Excel 2021 MSO (Ver. 2401) for numerical data sampling,
Origin Pro v2024 for Principal Component Analysis, SPSS 16.0 for Pearson coefficient
analysis, and the SR Plots online web server [36] for heat dendrogram and hierarchical
cluster analysis. Employing hierarchical clustering, PCA, and Pearson’s correlation analysis
enabled an exploration of variable relationships in the diversity analysis of 10 GSL profile
values from 89 Brassica accessions. This approach provided nuanced insights, facilitating
informed decision making based on complex datasets.

2.6. In Silico Screening and Molecular Docking Analysis

This methodology involves identifying potential drug candidates with favorable
pharmacokinetic properties and screening for antioxidant potential compounds through
computational modeling techniques. Firstly, ligands’ SMILES were retrieved from Pub-
Chem [37] using the CIDs Glucobrassicanapin (5485207), Gluconapin (9548620), Gluconas-
turtiin (656555), Glucotropaeolin (9548605), and Sinigrin (6911854) as SDF 3D conformer
files. The pharmacokinetic parameters of the ligands, including molecular weight (MW),
molar refractivity (MR), solubility (S), and bioavailability, were predicted using the Swis-
sADME online tool [38]. This tool also provided information on absorption in the human
gastrointestinal tract (HIA) and brain penetration properties. Furthermore, the selected
GSLs were used to predict biologically potent activity using the Way2Drug predictive web
server [39] in order to understand the relevant biochemical interactions. The protein targets
for evaluation of antioxidant activity were scrutinized based on the active pathways in-
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volved and previous work. Catalase (CAT), Glutathione peroxidase (GPX), and Superoxide
dismutase (SOD) were selected through the simulation of activity, wherein the protagonists
increase the activity of CAT, GPX, and SOD and may overcome the ROS induction related to
stress and bioactive compounds that act as agonists [40]. CAT, GPX, and SOD were selected
as targets for the antioxidant activity of phytochemicals. From the protein data bank (PDB),
we retrieved the targeted 3D protein FASTA sequences, with PDB IDs of 7VD9 (CAT), 2P31
(GPX), and 7KKU (SOD) [41], and homology model targets were structured and assessed
using the SWISS-MODEL online workspace [42–44]. The remodelled structures of targets
were used to predict the ligand binding sites using the PrankWeb [45]. Molecular docking
analysis was conducted using the Webina ideal library web tool [46] that runs the AutoDock
Vina process and calculates affinity and root mean square deviation (RMSD) score. The
results were visualized using the Pymol 2.5 visualization tool, and the interactions between
the bioactive compounds and protein targets were analyzed.

3. Results and Discussion

In this study, a total of 89 Brassica germplasm collections encompassing various species
and subspecies were analyzed for their major GSL compositions. The subspecies and va-
rieties are synonymous with B. rapa L. and B. oleracea L., respectively [1]. We identified
and quantified ten GSLs, including Glucobrassicanapin (GBN), Glucoberteroin (GBE), Glu-
coerucin (GER), Gluconapin (GNA), Progoitrin (PRO), and Sinigrin (SIN) from the aliphatic
group and Glucobarbarin (GBB), Glucotropaeolin (GTL), Gluconasturtiin (GNS), and Glu-
cobrassicin (GBS) from the aromatic and indolyl groups. Our analysis revealed substantial
variability in GSL composition among the 89 Brassica collections. The content of GBB, GBE,
GBN, GBS, GER, GNA, GNS, GTL, PRO, and SIN in the entire population ranged from 0
to 150.694, 0 to 3217.82, 0.035 to 9803.82, 28.07 to 2098.26, 0.15 to 2903.38, 0.21 to 33,049.23,
3.47 to 1494.47, 0.30 to 40.77, 1.86 to 12,780.48, and 0.04 to 14,872.93 µmol·kg−1 DW, re-
spectively. We observed a predominance of aliphatic GSLs over aromatic and indolyl
compounds. Notably, Gluconapin (GNA) (33,049.23 µmol·kg−1 DW), Glucobrassicanapin
(GBN) (9803.82 µmol·kg−1 DW), Progoitrin (PRO) (12,780.48 µmol·kg−1 DW), and Sinigrin
(SIN) (14,872.93 µmol·kg−1 DW) emerged as abundant compounds across the analyzed
accessions, a result consistent with the established standards presented in Tables S2 and S3.

Brassica vegetables GSL profiles have high variation in both parts and plants [47]. The
composition of GSLs in various Brassica species is significantly influenced by environmental
factors such as climate and farming practices, including soil quality, fertilization methods,
harvest timing, and plant part utilization [48].

In particular, in this study, aliphatic metabolites such as GBE and GBB were either de-
tected at minimal levels or not detected at all. Similarly, GBN, GNA, and SIN also exhibited
very low concentrations overall. This analysis highlighted significant variation in glucosino-
late composition among Brassica species. This variation in environmental conditions results
in distribution differences among taxa, from families to varieties, with an emphasis on
possessing one to three principal compounds [49]. The present findings align with previous
work on Brassica rapa varieties revealing GSL variation in the leaves of broccoli, Chinese
cabbage, Pak choi, rapeseed, Sarson, and turnip [50,51]. Lee et al. [52] observed wide
variability in glucosinolate content in B. rapa L. ssp. pekinensis varieties, with significant
concentrations of various aliphatic and indolyl GSLs. Moreover, Maldonade et al. [53]
unveiled the impact of soil mineral fertilization on Brazilian collard varieties, resulting in
significant variations in GSL content. These findings underscore high-throughput analysis’s
efficacy in identifying and quantifying GSLs with varying ranges of concentration.

3.1. Brassica Accessions: GSL Variation According to Origin

This analysis elucidates the diverse distribution of GSL compounds in Brassica ac-
cessions, revealing distinct abundance patterns across various genetic backgrounds. It
provides crucial insights into the variability and distribution of GSLs in Brassica species.
GNA occurs as a prominent and abundant compound. Notably, B. rapa subsp. nipposinica
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Taiwan Landraces (100406) exhibited the highest levels of GNA (33,049.23 µmol·kg−1 DW)
across all the studied samples, while the Spain landrace of Brassica sp. (K018856) showed
the lowest GNA concentration, namely, 0.21 µmol·kg−1 DW. GBN was identified as a
prevalent GSL compound across all samples. Particularly, B. rapa subsp. peikensis Taiwan
Landrace (100353) accessions exhibited the highest levels of GBN (9803.82 µmol·kg−1 DW).
Conversely, the lowest GBN concentrations were recorded in the landraces of Brassica sp.
(K018853) (0.19 µmol·kg−1 DW). PRO emerged as the third-most-abundant GSL present in
the analyzed accessions. Remarkably, the Peru cultivar of Brassica sp. (K229558) exhibited
the highest PRO concentrations (12,780.48 µmol·kg−1 DW). The lowest concentration of
PRO (1.86 µmol·kg−1 DW) was recorded in Spain landraces of Brassica sp. (K018856). SIN
was notably abundant in the Costa Rica landrace of B. rapa subsp. peikensis (K043728)
(14,872.93 µmol·kg−1 DW). Conversely, its presence was minimal in the South Korean
landrace of B. rapa subsp. rapa (K255223) (0.047 µmol·kg−1 DW). The presence of GTL
in the studied accessions was notably lower compared to that in other GSLs. The Tai-
wan landrace of B. rapa subsp. peikensis (100356) exhibited the highest recorded content,
namely, 40.77 µmol·kg−1 DW, while it was the least detected in Spain landraces of Bras-
sica sp. (K018856). GER exhibited high levels in the Georgia landrace of B. rapa subsp. rapa
(K257600) (2903.38 µmol·kg−1 DW). The lowest GER content (0.15 µmol·kg−1 DW) was
exhibited in the cultivar of Brassica sp. (216480). GNS content was found to be abundant
in B. rapa subsp. peikensis cultivar from China (K037469), with 1494.47 µmol·kg−1 DW,
and minimal in the Spain landrace of Brassica sp. (K018856), with 3.47 µmol·kg−1 DW.
GBE exhibited significant levels in the B. rapa subsp. narinosa landrace (228170) from
Taiwan (3217.82 µmol·kg−1 DW), while it was undetectable in the Brassica sp. cultivars
and landrace accessions (216480, K004273, K018853, and K018856). On the other hand,
Glucobarbarin (GBB) was identified as the least-recorded glucosinolate in all the studied
Brassica accessions. While it was detected in relatively high amounts in the B. rapa subsp.
peikensis landrace (100354) from Taiwan (150.69 µmol·kg−1 DW), it was absent in the Ugan-
dan cultivars of B. oleracea var. medullosa (339591) and in B. rapa subsp. peikensis (K022386,
K193859) from China and South Korea. Similarly, among B. rapa subsp. campestris of the
Italian wild relative (K000507), B. rapa subsp. rapa of Mongolia landrace (K002855) from
China and South Korea, and B. rapa subsp. rapa of the Mongolia landrace. GBS content
was found to be the highest observed in the B. rapa subsp. narinosa landrace (306666) from
Japan (2098.26 µmol·kg−1 DW), whereas its presence was minimal in the B. rapa subsp.
rapa landrace (907305) from Russia (28.07 µmol·kg−1 DW) (Table S2).

The clustering analysis revealed distinct patterns in the distribution of GSL content
among various Brassica species and accessions. Notably, GNA, GBN, and PRO clustered
together, suggesting their high abundance and potential interrelatedness. Conversely, SIN,
GBS, GNS, GER, GBE, GBB, and GTL formed a separate cluster, with SIN exhibiting a no-
table relativeness with high abundance, particularly in association with the very-low-value
spots attributed to B. rapa subsp. rapa. Despite the separation observed in the heatmap,
both Brassica species and GSLs clustered together, indicating similarities in GSL content
among Brassica species despite differences in their overall profiles. This finding suggests
the potential utility of GSL content as a marker for classifying unidentified species based
on known accession species. Moreover, the clustering analysis grouped Brassica species
into two distinct groups, with one group predominantly consisting of B. rapa L., encom-
passing multiple subspecies and unidentified species. This observation underscores the
dominance and prevalence of B. rapa L. within the studied Brassica accessions, highlighting
its significance in GSL content variation (Figure 1).
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Figure 1. Cluster heat map of GSL profiles in Brassica germplasms. Shown horizontally and high-
lighted in green are clusters comprising B. oleracea var. medullosa along with diverse cultivars and
landraces of Brassica species. The black-highlighted clusters represent various subspecies of B. rapa
with Brassica species landraces and cultivars from different regions. Shown vertically and highlighted
in red are Glucobrassicanapin, Gluconapin, and Progoitrin, while highlighted in red are Sinigrin,
Glucobrassicin, Gluconasturtiin, Glucoberteroin, Glucoerucin, Glucobarbarin, and Glucotropaeolin.

Previous studies showed that the distribution of GSLs varies across different plant
parts in terms of concentration and profile, with 3–4 predominant GSLs typically being
observed, although up to 15 varying GSLs can be detected in a single plant [50,54]. Notably,
reproductive parts such as seeds and siliques tend to possess higher concentrations of GSLs
compared to young greens and old leaves, and most sprouts exhibit a richer GSL profile
compared to mature plants [55]. Similarly, Brassica juncea showcases a variety of bioactive
GSL metabolites, including GBS, GNA, GTL, PRO, and SIN, distributed throughout the
plant [56]. Recent studies have also consistently emphasized that the Korean rapeseed
and canola cultivars have significant PRO content, which aligns with the findings of Park
et al. [57] and Kim et al. [58]. Argentieri et al. [59] mentioned that GBS was a predominant
GSL in the B. oleracea mugnolo variety, and white cabbage root cultivars were found to have
GNS in substantial concentrations, underscoring its potency as a robust GSL [60]. Likewise,
GER, prominent in Raphanus sativus cultivars along with glucoraphanin, plays a significant
role in health and providing dietary benefits [61]. Kwon et al. [62] reported SIN variations
in B. juncea cultivars. Brassica vegetables, including Indian cold arid leafy selections like
Lepidium latifolium L., were noted to be SIN-rich sources according to Kaur et al. [63].
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Zaman et al. [64] explored the genetic diversity in SIN content in Nasturtium officinale L.
Furthermore, Torras-Claveria et al. [65] utilized K-means clustering to differentiate Narcissus
ornamental varieties based on their alkaloid profiles, leading to the segregation of varieties
into distinct clusters, and Essoh et al. [66] identified distinct clusters of Brassica species
separate from Diplotaxis and Erucastrum species, emphasizing specific compositions of
Brassica species with aliphatic compounds through a comparative analysis of GSL profiles.

3.2. Principal Component Analysis (PCA)

In this study, PCA was utilized to analyze the chemical composition of various GSLs,
yielding insightful results regarding their structural diversity and contribution to overall
variance. The coefficients of the principal components (PCs) and corresponding eigenval-
ues provide valuable information about the underlying patterns within the GSLs. The
PCA provided four principal components (PC1-PC4) derived from (PCA) GSL profiles.
These coefficients offer valuable insights into the contribution of individual GSLs to the
overall chemical diversity captured by each principal component. In PC1, GSLs such as
GBB, GBN, GBS, and GNS exhibited positive coefficients, indicating a positive correlation
with this principal component. Conversely, GSLs like GER and SIN displayed negative
coefficients, suggesting a negative correlation with PC1. This suggests that PC1 likely
represents broad variation among the GSLs, with some contributing positively and others
contributing negatively. In PC2, GSLs such as GBE, GER, and GNA show higher positive
coefficients, indicating a stronger positive correlation with PC2. Conversely, GBB and SIN
have negative coefficients, suggesting a negative correlation with PC2. PC2 likely captures
a different aspect of chemical diversity compared to PC1. In PC3 and PC4, there were
similar patterns of positive and negative coefficients, albeit with different sets of GSLs. This
indicates that PC3 and PC4 likely capture additional nuances in the chemical profiles of
the GSLs, contributing to the overall variance explained by the PCA. The magnitude of
eigenvalues reflects the amount of variance explained by each principal component. Higher
eigenvalues indicate principal components that capture more significant proportions of
the total variance in a dataset. For instance, SIN accounts for 25.73% of the total variance,
indicating its substantial contribution to the overall variability in the dataset. The four
principal components (SIN, GBE, GER, and GTL) together explain 70.14% of the total
variance. PCA quantifies the significance of principal components in capturing variance
within a GSL (Figure 2, and Table 1).
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Table 1. Coefficients and Eigenvalues of glucosinolate principal components.

Coefficients of
PC1

Coefficients of
PC2

Coefficients of
PC3

Coefficients of
PC4

Glucobarbarin 0.39326 −0.03543 0.36776 −0.00975
Glucoberteroin 0.02899 0.67632 0.16737 0.03900

Glucobrassicanapin 0.49485 −0.11434 −0.14273 0.04016
Glucobrassicin 0.37983 0.00232 0.20934 0.20512

Glucoerucin −0.09370 0.67273 0.08169 0.04366
Gluconapin 0.27930 0.04975 −0.40898 0.35562

Gluconasturtiin 0.44987 0.20539 −0.24152 0.18864
Glucotropaeolin 0.23415 −0.13393 0.60240 0.06097

Progoitrin 0.23710 0.07679 −0.40500 −0.48498
Sinigrin −0.23486 −0.08482 −0.11558 0.74284

Eigenvalue 2.57277 1.84864 1.58271 1.00980
Variance % 25.73% 18.49% 15.83% 10.10%

Cumulative % 25.73% 44.21% 60.04% 70.14%

The coefficients extracted from the Principal Component Analysis (PCA) offer valuable
insights into the individual contributions of GSL compounds to the observed variance in
content across Brassica species germplasms [67]. These coefficients provide an understand-
ing of the relative significance and directions of influence of each GSL on the identified
principal components of metabolic diversity within Brassica species. The presence of
aliphatic compounds in the PCA results is highlighted by the coefficients, with numerous
aliphatic GSLs making notable contributions to the principal components [68]. These
findings underscore the diverse GSL profiles among Brassica species and the potential for
targeted breeding efforts to enhance specific GSLs for improved agronomic and nutritional
traits [34,67,69].

3.3. Pearson Correlation Analysis

The Pearson correlation analysis of GSLs in Brassica species has revealed significant as-
sociations between various GSLs, indicating complex interactions within these compounds
(Table 2). Specifically, the strong positive correlation between GER and GBE (r = 0.760)
suggests a closely linked biosynthetic or regulatory pathway between these two GSLs.
Similarly, the positive correlations observed between GBN and GNS (r = 0.518), GBB
(r = 0.303), and GBS (r = 0.329) indicate that the presence or concentration of one GSL may
influence the presence or concentration of others, possibly due to shared precursors or
co-regulation of their biosynthetic genes [66,70]. Furthermore, the positive correlations
between GNA and GBN (r = 0.428) and GNS (r = 0.339), as well as between PRO and GNS
(r = 0.397), suggest that these GSLs may participate in similar plant defense mechanisms
or metabolic pathways. The positive correlations between GTL and GBB (r = 0.489) and
GBS (r = 0.329), and between GNS and GBB (r = 0.347) and GBS (r = 0.322), further support
the idea of interconnected GSL metabolism within Brassica species [66,71]. The observed
positive correlation between GBB and GBS (r = 0.308) reinforces the notion of a coordinated
regulation or shared biosynthetic pathways among different GSLs. However, the negative
correlations, such as those between GBN and SIN (r = −0.284) and between GER and
GBN (r = −0.213), introduce a layer of complexity, suggesting that the increase in the
levels of certain GSLs may be associated with the suppression of others, possibly due to
competitive biosynthetic routes or differential regulation under various environmental or
developmental conditions [66,72]. These findings underscore the intricate network of GSL
metabolism in Brassica species, highlighting the potential to develop breeding and genetic
engineering strategies aimed at enhancing desirable GSLs for improved plant defense and
nutritional value [69]. Further research is needed to elucidate the underlying mechanisms
of these correlations, which could lead to novel approaches to crop improvement [71,73].
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Table 2. Pearson co-efficient values of Brassica germplasm.

SIN GNA GBN PRO GTL GER GNS GBE GBB
GNA −0.042
GBN −0.284 ** 0.428 **
PRO −0.177 0.140 0.209 *
GTL −0.134 −0.130 0.210 * −0.179
GER −0.059 0.009 −0.213 * −0.057 −0.103
GNS −0.027 0.339 ** 0.518 ** 0.397 ** −0.013 0.067
GBE −0.100 −0.024 −0.124 0.004 0.011 0.760 ** 0.220 *
GBB −0.182 0.020 0.303 ** 0.084 0.489 ** −0.115 0.347 ** 0.078
GBS −0.165 0.148 0.329 ** 0.036 0.304 ** −0.074 0.322 ** 0.075 0.308 **

Note: **, correlation is significant at the 0.01 level (2-tailed); *, correlation is significant at the 0.05 level (2-tailed).

3.4. GSLs In Silico Antioxidant Analysis

In silico docking analysis is a simulation technique used to identify the strong binding
pose of a ligand with its target in the active site. This process entails selecting a 3D-
coordinate space within the target’s binding site based on the binding affinity of the
molecule, facilitating the formation of a complex. The GSLs present in Brassica species
exhibit significant variability in occurrence among the analyzed accessions. To assess
their pharmacological potential, we scrutinized them in terms of absorption, distribution,
metabolism, and excretion using SwissADME [38]. This evaluation involved categorizing
the compounds based on various physicochemical properties, including lipophilicity, water
solubility, pharmacokinetics, drug likeness, and medicinal chemistry criteria. The GSL
compounds listed are composed of 10–11 atoms and have TPSA values ranging from 199.79
(GBN, GNA, GNS, GTL and SIN) to 215.58 (GBS), 220.02 (PRO), 222.85 (GBB), 225.09 (GER)
and 227.92 (GBE). The analyzed compounds also differed in terms of miLogP values, which
affected their oral/intestinal absorption. The MW and MR of these compounds were less
variable, reaching values ranging from 359.37 to 477.55 and from 76.23 to 103.43, respectively.
This shows that GSLs have variable molecular properties. Among the compounds tested,
the properties of GBN, GNA, GNS, GTL and SIN are more similar and non-inhibitory. GBN,
GNA, GNS, GTL and SIN satisfied the rule of Lipinski with respect to being active drugs
according to specific criteria such as a molecular weight (MW) of less than 500, a LogP
value greater than 5, more than 10 hydrogen bond acceptors, and more than 5 hydrogen
bond donors [74]. Furthermore, they satisfied Veber’s rules [75] and Ghose’s rules [76] by
having 10 total hydrogen bonds, no more than 10 rotatable bonds, and a topological polar
surface area (TPSA) of 199.79. In the drug-likeness analysis, we illustrated and tabulated
all the compounds (Table S4, Figure S1) and predicted the biological activity using the
Way2drug web server, which indicated high chemoprotective, anticancerous, and apoptosis
activity (Table S5).

The selected targets of CAT, GPX and SOD, using PDB IDs 7VD9, 2I3Y and 7KKU, respec-
tively, were re-modelled and assessed using the SWISS-MODEL Expasy workspace [42–44]
(Figure S2, Table S6), and the model structures were visualized with a Ramachandran plot
(Figure S3). The targets were subjected to a prediction of the binding sites of ligands for
better interaction, revealing a high probability that there were more sites in CAT, while
the numbers of sites in GPX and SOD were similar according to the results obtained using
PrankWeb [45] (Figure 3, Table S7). The results show varying scores across parameters for
the targets CAT, GPX, and SOD. Notably, CAT exhibited favorable Ramachandran values
(96.27%), while GPX demonstrated the lowest Clash Score (0.33). However, SOD displayed
the highest Ramachandran favored percentage (94.64%) and the most significant number
of Rotamer outliers (8.33%). These findings highlight structural differences and quality
variations among the proteins, offering insights into their potential biological functions.
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Molecular docking analysis was performed using Webina [46], based on AutoDock
Vina, which was run in online mode. The ligands GBN, GNA, GNS, GTL and SIN have
varying affinities for the antioxidant enzymes CAT, GPX and SOD. The affinity values
in kcal/mol indicate the strength of the interaction between the ligands and the enzymes
and the RMSD values of the distance from the lower bound and best mode’s upper
bound (Table 3). The CAT target, the ligand GNS, exhibited the highest affinity score
of −8.580 kcal/mol, with a distance from the RMSD lower bound of 4.204 Å and a best-
mode RMSD upper bound of 6.856 Å. Conversely, for the GPX target, the ligand GTL
displayed the most favorable interaction, with an affinity score of 35.75 kcal/mol, along
with a distance from the RMSD lower bound of 2.691 Å and a best-mode RMSD upper
bound of 4.680 Å. Additionally, the ligand SIN demonstrated the strongest binding to the
SOD target, with an affinity score of 20.040 kcal/mol, a distance from the RMSD lower
bound of 2.320 Å, and a best-mode RMSD upper bound of 5.489 Å. These results warrant
further analysis of drug activity via in vitro and in vivo studies. The AutoDock Vina-based
Webina web tool provided complex affinity energy in both negative and positive values,
indicating strong binding interactions between the targets and ligands. The interactions
were visualized using the Webina tool [46], with the ligand binding the complex shown in
the surface view, ligand hydrogen bonding shown in the dots view, and the ligands bound
in the targets shown in the mesh view in Figure 4.
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Table 3. Molecular docking of targets with selected glucosinolates (ligands) showing the scores of
binding affinity and RMSD values.

Targets CAT GPX SOD
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GBN −7.090 2.749 5.965 −5.469 3.335 6.226 23.56 2.842 3.589
GNA −6.814 2.769 4.162 −4.436 2.572 6.125 16.260 1.540 2.065
GNS −8.580 4.204 6.856 31.42 0.886 1.55 38.210 2.468 5.772
GTL −6.564 1.948 2.839 35.75 2.691 4.680 33.69 2.938 3.946
SIN −6.902 2.756 5.709 16.73 2.651 3.516 20.040 2.320 5.489

Note: kcal/mol (Energy) is the predicted binding affinity. The calculation of RMSD values was based on the
best mode, and only heavy atoms that can move were used. There are two types of RMSD (root mean square
deviation) metrics, rmsd/lb and rmsd/ub, which differ in terms of how the distance is calculated between the
atoms. (Dist.)—distance, (l.b.)—lower bound, and (u.b.)—upper bound.

Brassica crops are recognized as superfoods containing phytochemicals with strong an-
tioxidant properties with significant fungal inoculation effects that can increase GSL content,
particularly in cabbage, kale and turnip greens [77]. Broccoli cultivars have glucobrassicin
and glucoraphanin as principal components, with high levels of flavonoids and phenols
contributing to their antioxidant activity [78]. Barillari et al. [79] identified glucoraphanin
as a principal constituent of Eruca sativa, constituting approximately 95% of the total GSL
content with an indirect antioxidant property. The ligands GBN, GNA, GNS, GTL and SIN
interact with the antioxidant enzymes CAT, GPX and SOD with varying affinities, which
are crucial for understanding their potential influence on oxidative-stress-related condi-
tions. Oxidative stress is characterized by an imbalance between oxidants and antioxidants,
leading to cellular damage [80]. Antioxidant enzymes like CAT, GPX and SOD play signif-
icant roles in mitigating oxidative stress by detoxifying harmful reactive oxygen species
(ROS) [81]. The interaction of ligands with these enzymes can influence their activity, thus
potentially modulating oxidative stress and providing therapeutic benefits in conditions
such as cardiovascular diseases, neurodegenerative diseases, and cancer [82]. GNS, with
the highest affinity for GPX, appears to possess a strong potential to influence this enzyme’s
activity, which is involved in reducing lipid hydroperoxides and hydrogen peroxide [83].
Conversely, SIN’s lower affinity for CAT indicates a weaker potential to influence this
enzyme’s role in hydrogen peroxide detoxification [84]. Specific affinities and interactions
can guide the development of antioxidant remedies, which has been challenging due to the
complexity of oxidative stress mechanisms and the limitations of antioxidant therapy [85].
These affinities are important for understanding the potential influence of these ligands
on modulating the activity of antioxidant enzymes and managing oxidative-stress-related
conditions [86]. CAT plays a role in hydrogen peroxide detoxification, GPX is involved
in reducing lipid hydroperoxides and hydrogen peroxide and SOD is responsible for the
dismutation of superoxide radicals [87–91]. The molecular interactions between ligands
and antioxidant enzymes such as CAT, GPX, and SOD are crucial for understanding their
potential therapeutic efficacy in combating oxidative-stress-related diseases. The affinity
values, expressed in kcal/mol, indicate the strength of these interactions, with lower values
suggesting stronger binding interactions. GBN exhibits the lowest affinity towards CAT at
−7.09 kcal/mol, suggesting a weaker binding interaction with this enzyme compared to
other ligands [92]. This could imply that GBN has less influence on antioxidative processes
involving CAT. Conversely, GTL (35.75 kcal/mol) and GNS (38.21 kcal/mol) show high
affinities towards GPX and SOD, indicating strong binding interactions. These interactions
suggest a potential influence on the activity of scavenging reactive oxygen species (ROS)
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and oxidative stress and their therapeutic potential [93]. GNA displays the lowest affinity
towards GPX among the ligands, with an affinity of −4.436 kcal/mol, showing weaker
binding interactions and less influence on antioxidative processes involving GPX [94]. SIN
(−6.90, 16.73 and 20.04 kcal/mol), with moderate affinities to all three targets, has moderate
binding interactions and a weaker potential influence on antioxidative activity [95]. The
interaction of ligands with antioxidant enzymes is a key factor in assessing their potential
therapeutic efficacy. Ligands with higher affinity values towards these enzymes are likely to
have stronger binding interactions, which could influence their effectiveness in scavenging
ROS and mitigating oxidative stress [96].

Selective breeding represents a pivotal strategy in shaping the glucosinolate content
of Brassica crops, aiming to enhance their nutritional and health-promoting properties.
This approach involves manipulating the genetic makeup of Brassica crops to increase the
concentration of specific GSLs, thereby maximizing their health-promoting effects. Among
the Brassica accessions investigated, those of B. rapa subsp. pekinensis from the Taiwan
landrace (TL), particularly with accessions 100352, 100353, and 100354, along with the
Chinese cultivar (K037469), demonstrated the highest GSL content. Close behind were
accessions of B. rapa subsp. nipposinica (TL-100394, 100406) and B. rapa subsp. narinosa
from Chinese landrace (293390), Japan landrace (306666), and Taiwan landrace (100410).
Conversely, B. rapa subsp. rapa from the Japan landrace (K037254) exhibited lower GSL
levels. Interestingly, the Italian wild relative of B. rapa subsp. campestris displayed a
high content of GNA and GBN but exhibited the lowest amount of GBB. This suggests a
promising potential for use in breeding programs involving the Italian wild relatives and
landraces of B. rapa subspecies to develop cultivars with elevated specific GSL content,
thereby enhancing the health benefits for the human diet.

This breeding process entails the careful selection of parental lines based on their
GSL profiles, followed by subsequent breeding to combine desirable traits [69]. Advanced
molecular techniques, such as marker-assisted selection, can expedite the breeding process
by enabling the selection of specific GSL traits [97]. Additionally, genomic approaches like
quantitative trait loci (QTL) mapping can identify genetic loci associated with GNA and
GBN content in Brassica crops [98]. This information can then be utilized to develop molec-
ular markers for use in selective breeding programs aimed at enhancing the concentrations
of these beneficial GSLs. Selective crop breeding holds significant promise for enhancing
the GNA and GBN content of Brassica crops, thereby maximizing their nutritional and
health-promoting properties.

4. Conclusions

This investigation underscores the remarkable potential of Brassica vegetables in
elevating human health and combating diseases. With their abundant glucosinolates, these
vegetables stand as potent sources of antioxidants. The diverse glucosinolate profiles
across different Brassica species offer fertile ground for targeted breeding efforts aimed at
optimizing antioxidant properties. The main contributors to the four principal components
explaining 70.14% of the total variance were Sinigrin, Glucoberteroin, Glucoerucin and
Glucotropaeolin content, revealing the significance of principal components in capturing
variance within the glucosinolates. These results provide key insights for the selection and
enhancement of Brassica varieties with superior glucosinolate profiles, poised to deliver
valuable health benefits. Furthermore, our in silico molecular docking studies shed light
on the intricate interactions between specific glucosinolates and antioxidant enzymes. By
revealing the varying affinities of glucosinolates like Sinigrin and Gluconapin for enzymes
such as catalase, glutathione peroxidase, and superoxide dismutase, we gained invaluable
information for refining breeding strategies to maximize antioxidant potential. Our in silico
study showed that glucobrassicanapin has a low affinity towards catalase at −7.09 kcal/mol,
implying a weaker binding interaction with this enzyme and less influence in antioxidative
processes involving catalase. On the other hand, glucotropaelin (35.75 kcal/mol) and
gluconasturtiin (38.21 kcal/mol) showed high affinities towards glutathione peroxidase
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and superoxide dismutase, suggesting their strong binding interactions and, consequently,
a potential influence on the activity of scavenging ROS and oxidative stress, as well as
their therapeutic potential. Further studies are necessary to validate the significance of
these ligand–target interactions observed through molecular docking simulations and to
elucidate their biological effects accurately. Understanding these molecular interactions
is crucial for the development of effective therapeutic agents targeting oxidative-stress-
related diseases. The data suggest that ligands with lower affinities towards antioxidant
enzymes may have a weaker influence on the target efficacy in scavenging ROS and
mitigating oxidative stress, underscoring the importance of selecting ligands with optimal
binding affinities for antioxidant targets in drug development. Our study contributes to
the broader understanding of Brassica GSLs. By elucidating the mechanisms underlying
their antioxidant effects, we advance the scientific foundation supporting the consumption
of Brassica vegetables for attaining optimal health outcomes. This interdisciplinary synergy
not only enriches our knowledge of Brassica metabolism but also offers tangible pathways
for developing crops with enhanced nutritional and therapeutic value.
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