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Abstract: In the current COVID-19 landscape dominated by Omicron subvariants, understanding the
timing and efficacy of vaccination against emergent lineages is crucial for planning future vaccination
campaigns, yet detailed studies stratified by subvariant, vaccination timing, and age groups are
scarce. This retrospective study analyzed COVID-19 cases from December 2021 to January 2023 in
Catalonia, Spain, focusing on vulnerable populations affected by variants BA.1, BA.2, BA.5, and
BQ.1 and including two national booster campaigns. Our database includes detailed information
such as dates of diagnosis, hospitalization and death, last vaccination, and cause of death, among
others. We evaluated the impact of vaccination on disease severity by age, variant, and vaccination
status, finding that recent vaccination significantly mitigated severity across all Omicron subvariants,
although efficacy waned six months post-vaccination, except for BQ.1, which showed more stable
levels. Unvaccinated individuals had higher hospitalization and mortality rates. Our results highlight
the importance of periodic vaccination to reduce severe outcomes, which are influenced by variant
and vaccination timing. Although the seasonality of COVID-19 is uncertain, our analysis suggests
the potential benefit of annual vaccination in populations >60 years old, probably in early fall, if
COVID-19 eventually exhibits a major peak similar to other respiratory viruses.

Keywords: SARS-CoV-2 variants; Omicron; COVID-19; epidemiology; COVID-19 vaccines; vaccine
effectiveness; vaccination strategy

1. Introduction

The SARS-CoV-2 virus has undergone numerous mutations, allowing the disease to
continually evolve and adapt. Among various lineages, the Omicron variant, characterized
by high transmissibility, emerged in Europe in late 2021. Several Omicron lineages —BA.1,
BA.2, BA.5, and BQ.1—dominated in Europe throughout 2022 [1,2]. More recently, in 2023,
new subvariants such as XBB.1.5, BA.2.86, EG.5.1, and JN.1 have emerged, reflecting the
continuous adaptation of the virus in an ongoing global challenge [3–5].

On the other hand, at the end of 2020, following numerous experimental studies,
several types of vaccines against coronavirus disease 2019 (COVID-19) became available
and established themselves as an important and effective preventive measure [6–8]. The
continuous evolution of the virus underscores the importance of adapting vaccination
strategies to keep pace with viral changes and highlights the critical role of booster doses
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in enhancing immunity against emerging variants [9,10]. Real-life observational studies
have demonstrated the protective effect of these vaccines in different global populations.
In fact, although the high efficacy of COVID-19 vaccination in preventing hospitalizations
and deaths due to COVID-19 was reported in the Alpha and Delta era (usually >80% for
individuals fully vaccinated) [11–13], booster doses became necessary in the Omicron era
to achieve similar levels of protection against severe disease [14–16]. Fortunately, despite
its ability to partially evade vaccine-induced immunity, Omicron has been associated with
reduced disease severity and lower hospital mortality compared to earlier variants [17,18].
In addition, efficacy in preventing SARS-CoV-2 infection was significantly lower and
decreased over time, and evaluation of vaccine effectiveness beyond 6 months has been
suggested as critical for updating vaccine policy [19]. Therefore, since the Omicron era,
most studies have focused on the importance of timely vaccination regarding the risk of
hospitalization and/or death, and thus its importance in terms of the public health impact
of this infection [14,17,18].

In Spain, the COVID-19 vaccination campaign began on 27 December 2020, targeting
the population from older to younger age groups. Catalonia, an autonomous community
in northeastern Spain with a population of 7.7 million people, has observed trends similar
to other European countries [20]. Throughout 2022, four waves of different variants have
caused a significant increase in cases, hospitalizations, and deaths. In addition, during the
study period, Spain, including Catalonia, implemented booster campaigns that included
third and fourth doses. This provides a unique opportunity to study the impact of the
vaccines on different variants and within diverse age groups.

The aim of this study is to evaluate the impact that booster doses of COVID-19 vaccine
have had in reducing or avoiding hospitalizations and deaths due to different Omicron
lineages in confirmed cases among the most vulnerable people. In addition, we try to
establish a correlation between the emergence or dominance period of these variants and
their severity in different age groups over 60 with varying vaccination status.

2. Materials and Methods

The Public Health Agency of Catalonia (ASPCAT) serves as the local health authority
responsible for monitoring and responding to the pandemic. In Catalonia, the health
system is public, universal, and free, ensuring equal access to health care for all residents.
It updates public data on a weekly basis through the Infection Surveillance Information
System in Catalonia (SIVIC) [20]. This system provides key metrics, including daily COVID-
19 case numbers, current hospital bed occupancy, intensive care unit (ICU) admissions,
and the distribution of virus variants. Daily case numbers are derived from an individual
database of COVID-19 positive diagnostics, which are reported by both public and private
health centers, including primary care and hospitals, to ASPCAT. This report follows the
official Protocol for the Epidemiological Surveillance of COVID-19 (PESC) [21]. The data
set includes detailed information such as dates of diagnosis, hospitalization, and death, the
date of the last vaccination (whether an individual was fully vaccinated or had received
a booster dose), and the cause of death. Due to laboratory saturation and the challenges
in monitoring all cases during the Omicron peak in January 2022, the PESC criteria for
diagnosis and notification were revised on 28 March 2022. The revised criteria prioritize
cases in people over 60 years of age and other categories of vulnerable patients [22].

2.1. Review of the Epidemiological Data and Estimation of Variant Prevalence

We used the SIVIC public database [20] to track the prevalence of different SARS-CoV-2
variants in Catalonia from December 2021 to January 2023. During this period, Delta,
BA.1, BA.2, BA.5, BQ.1, and XBB.1 variants predominated at different times, although
other variants were also circulating residually. In Catalonia, COVID-19 variant surveillance
is conducted through a mix of random and targeted sampling methods [23]. Detailed
descriptions of the sampling proportions, methods, and criteria for targeted sampling are
provided in Supplementary Materials Text S1.
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Figure 1 provides a comprehensive overview of variant prevalence over the course of
the COVID-19 pandemic and the epidemiological situation in Catalonia during the study
period, as presented in three distinct subplots. The top subplot shows the weekly variant
counts, as sequenced by SIVIC, and described in Supplementary Materials Table S1. The
middle subplot combines the weekly observed variant proportions from SIVIC with our
mathematical model [24] to estimate the daily percentages of each variant. The bottom
subplot uses these percentages calculated from the daily case data to display the estimated
weekly case counts per variant and, in addition, to calculate the effective reproduction
number, Rt, employing the methods established in a previous study [25].
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Figure 1. Dynamics of COVID-19 in Catalonia. (Top) Weekly counts of analyzed variants, (middle)
observed and modelled variant proportions, and (bottom) estimated weekly cases by variant and
calculated effective reproduction numbers (Rt) based on daily case counts.

The output of the model allows us to identify days when a variant exceeds certain
prevalence thresholds, allowing a thorough comparison of the number of cases, hospital-
izations, and deaths attributable to each variant. Detailed information can be found in
Supplementary Materials Table S2.

2.2. Epidemiological Trends: Hospitalizations and Deaths

The ASPCAT database complements the SIVIC database by providing individual
patient follow-up, either by telephone or through the study of clinical records, and expands
the information on hospitalization and mortality. Between 5 December 2021, and 26 January
2023, the ASPCAT database recorded 1,817,428 COVID-19 cases. Of these, 415,629 cases,
classified as vulnerable, underwent thorough follow-up via epidemiological surveys. This
process, which continued until either recovery or death, involved periodic phone calls to
assess the status of the patient. For deceased patients, the database specifically categorizes
the cause of death as due to COVID-19, with COVID-19, or unrelated to COVID-19, thereby
providing valuable insights into the mortality trends and patterns associated with the virus.
The age distribution of these closely monitored cases was as follows: 227,686 (<60 years),
66,104 (60–69 years old), 68,241 (70–79 years old), and 53,598 (>80 years old). Supplementary
Materials Text S2 provides a time-based overview of age and vaccination status (Figure S1)
and metrics on cases, hospitalizations, and deaths by age group (Figure S2). All numbers
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used in this study are available in Supplementary Materials Tables S3–S5 for age groups
60–69, 70–79, and >80 years, respectively.

We excluded individuals under the age of 60 from our analysis for three main reasons.
First, and most importantly, as noted above, since the protocol revision of 28 March 2022,
active surveillance with epidemiological surveys has focused primarily on individuals
over 60 years of age, a group that is easily identified as vulnerable. So, testing protocols
in this group should not have significantly changed during the study period. Second,
although younger individuals account for a significant number of cases, their impact on
hospitalizations (14.3%) and deaths (2.8%) in the ASPCAT database is small. Nevertheless,
it is important to recognize that these percentages are actually higher than what would
typically be expected, even including the first wave of COVID-19 [26]. This discrepancy
arises because the database, in line with the PESC criteria update, preferentially records
data on more vulnerable groups, skewing the perception towards higher hospitalization
and death rates among those under 60 years of age. These metrics, derived from 227,686
cases, indicate an accentuated representation of risk within this younger cohort compared
to the general younger population. Third, the age group over 60 years, for which vacci-
nation is fundamentally recommended, is of particular interest for assessing the impact
of vaccination. In addition, the free and public nature of the Catalan health care system
significantly reduces inequalities in access to health care among the study population.
This minimizes the potential confounding effects of variations in access to health care on
our results. As a result, our data set robustly reflects an older population that has been
consistently, actively, and closely followed.

In addition, as we have the dates of diagnosis, hospitalization, and death, we excluded
some inputs when comparing different metrics: when there were more than 14 days
between diagnosis and hospitalization or more than 21 days between diagnosis and death.
We based these exclusions on the assumption that longer intervals suggest a reduced direct
association with SARS-CoV-2 infection, as confirmed in different studies in the literature,
e.g., [27,28]. Table 1 summarizes the distribution of COVID-19 cases, hospitalizations, and
deaths by sex, age group, variant, and vaccination status for those over 60 years of age,
after the application of exclusion criteria.

Table 1. Distribution of COVID-19 cases, hospitalizations, and deaths classified as due to COVID-19
segregated by sex, age group, SARS-CoV-2 variant, and vaccination status.

Cases Hospitalizations Deaths Due to COVID-19

n % n % n %

By sex
Male 80,138 42.7 5079 55.7 434 52.6
Female 107,584 57.3 4045 44.3 391 47.4

By age group
60–69 66,002 35.2 1415 15.5 61 7.4
70–79 68,135 36.3 2800 30.7 151 18.3
80+ 53,585 28.5 4909 53.8 613 74.3

By variant
BA.1 39,980 21.3 1511 16.6 269 32.6
BA.2 47,829 25.5 1589 17.4 158 19.2
BA.5 75,636 40.3 3635 39.8 355 43.0
BQ.1 24,277 12.9 2389 26.2 43 5.2

By vaccination status
<90 days 39,461 21.0 1351 14.8 131 15.9
90–179 days 49,643 26.4 1608 17.6 154 18.7
180–269 days 58,184 31.0 2853 31.3 283 34.3
>270 days 30,869 16.4 2419 26.5 136 16.5
Not vaccinated 9565 5.1 893 9.8 121 14.7
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2.3. Definition of Emergence and Dominance Periods

To assess the impact of the variants, we define two distinct time periods for each
variant: (i) emergence, which begins when the prevalence of a variant exceeds 10% and
continues until it surpasses 90%, and (ii) dominance, characterized by a variant maintaining
a prevalence above 90% and then falling below 90% as another variant starts emerging.

2.4. Severity Metrics by Vaccination Status and Reduction in Severity Calculation

To study the impact of the vaccine on severe outcomes in confirmed test-positive
cases, we stratified the data by age group and the time elapsed since the last vaccination
dose, focusing on hospitalizations vs. cases, deaths vs. cases, and in-hospital deaths
vs. hospitalizations. Monthly cohorts were aggregated to enhance statistical robustness,
increasing sample sizes within each category. For an in-depth explanation, Supplementary
Materials Text S4 provides a detailed example using the cohort aged over 80 as a case study,
detailing procedures and presenting individual statistical outcomes.

To examine these percentages, the data are categorized into four different contingency
tables, each representing cases, hospitalizations, deaths, and in-hospital deaths. Pearson’s
χ2 tests are then performed on each category to assess their statistical independence.
Due to the retrospective nature of this study, there is considerable variation in the data
between metrics, age cohort, variants, and vaccination status. For this reason, we have
considered statistical analysis methods to indicate those points that could not provide
valuable information for clinical interpretation.

First, we calculated a rate ratio (RR), defined as the fraction of the proportion of
severe outcomes (hospitalization, death, or in-hospital death) to the COVID-19 reference
inputs (cases, cases, and hospitalizations, respectively) for the vaccinated group compared
with that for the unvaccinated group [29]. To quantify the uncertainty, 95% confidence
intervals were derived using the Clopper–Pearson exact method appropriate for the bino-
mial distribution model. Fisher’s exact test was then used for each outcome to assess the
association between vaccination status and disease severity, yielding p-values indicating
non-random associations such as the confidence interval. Finally, we calculate what we call
the reduction in severity as 1 − RR [29], analogous to some methods of estimating vaccine
effectiveness using confirmed COVID-19 cases [30–32]. However, it is important to note
that these methods are not equivalent to an analysis of vaccine effectiveness that includes a
control group, since the denominators are different; therefore, our results will generally
show lower values. We also use standard error propagation to obtain 1 − RR errors.

3. Results
3.1. Severity during Emergence and Dominance Periods of Variants

We analyzed data on individuals aged over 60 years, focusing on the daily number of
cases, hospitalizations, and deaths attributed as due to COVID-19 during the emergence of
Omicron subvariants BA.1, BA.2, BA.5, and BQ.1. To correctly assign severity measures
within the appropriate variant period, hospitalization and death are assigned to the day of
COVID-19 diagnosis rather than the day of hospitalization or death. A visual overview of
the evolution of severity and the introduction of the different subvariants can be found in
Supplementary Materials Text S2, Figure S3. The analysis shows the correlation between
the increase in variants BA.1 and BA.5 and the increase in daily cases, hospitalizations,
and deaths.

Table 2 presents the results averaged over the two previously defined time periods:
emergence and dominance, with the emergence period color-coded in green and red to
denote whether the values are higher or lower, respectively, compared to the dominance
period for the same variant. An extended version of this table is provided in Supplementary
Materials Table S6. Furthermore, to examine the daily fluctuations of the same metrics
presented in Table 2 or Table S6, Supplementary Materials Text S3 provides an analysis of
the daily changes in these severity metrics, confirming that all results consistently point in
the same direction.
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Table 2. Average daily cases, new hospitalizations, and deaths for two different time periods per
variant: (i) emergence and (ii) dominance.

Average Cases/Day Average Hospitalizations/Day Average Deaths/Day (Due to COVID-19)

60–69 70–79 >80 60–69 70–79 >80 60–69 70–79 >80

BA.1 emergence 192.1 117.4 70.8 4.5 4.3 5.9 0.15 0.33 1.37
BA.1 dominance 287.3 282.0 198.4 4.1 8.2 16.0 0.14 0.77 2.97

BA.2 emergence 203.4 171.2 107.5 2.7 5.3 9.5 0.12 0.26 0.84
BA.2 dominance 201.8 217.6 143.5 2.6 5.2 9.2 0.00 0.20 0.77

BA.5 emergence 277.4 321.2 276.6 5.1 12.0 22.4 0.12 0.28 2.00
BA.5 dominance 46.1 53.7 56.4 1.7 3.1 5.9 0.04 0.09 0.53

BQ.1 emergence 77.4 92.6 79.9 3.3 6.7 9.9 0.03 0.08 0.28
BQ.1 dominance 31.9 37.7 45.5 3.2 5.9 9.6 0.00 0.00 0.00

3.2. Cases, Hospitalizations, and Deaths Stratified by Vaccination Status

The preceding analyses provide a broad overview of the severity associated with dif-
ferent Omicron variants in Catalonia. Notably, the timelines for these analyses correspond
to two booster dose campaigns conducted in Spain in late 2021 and fall 2022. Building
on this, we now consider the impact of vaccination on severe cases. Again, in terms of
mortality, we will only consider deaths due to COVID-19.

Performing Pearson’s χ2 tests on cases, hospitalizations, deaths, and in-hospital deaths
yields substantially high χ2 values and, consequently, low p-values. This suggests that the
timing of vaccination and the circulating Omicron subvariants are correlated.

Figure 2 shows all the results for the percentage of hospitalizations versus cases. It
also shows deaths vs. cases and in-hospital deaths vs. hospitalizations for individuals aged
over 80, who constitute the highest number of exitus events. Data points are differentiated
by symbols representing vaccination status: 1–3 months (#), 4–6 months (□), 7–9 months
(∆), more than 10 months (∇), and never vaccinated (♢). The 95% confidence intervals
shown clearly delineate the associations between outcomes across variants and age groups,
similar to the p-value from Fisher’s exact test. Detailed quantitative data can be found in
Supplementary Materials Tables S3–S5. Moreover, empty symbols indicate that data for
a particular outcome, such as cases or hospitalizations, are derived from a small number
of counts/events. This assessment is based on the minimum sample size that would be
required for a prospective study to include all cases, hospitalizations, and deaths in each
age group. Given the retrospective nature of our data collection, we know the number of
each outcome in advance, which influences the calculated probabilities; therefore, these
points are not discarded but indicated. As a result, although Figure 2 shows all outcomes,
caution should be exercised in interpreting these white-dashed points due to the high
potential for statistical error (see Supplementary Materials Tables S3–S5 for details).

Supplementary Materials Text S5 provides a more detailed explanation of Figure 2
and adds figures for the results for deaths and in-hospital deaths for age groups 60–69
and 70–79. In addition, extended analyses support the trends observed in Figure 2. These
supplementary figures consolidate and confirm the patterns across all age groups by
combining data from all variants studied.
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Figure 2. Five plots show the percentage metrics of hospitalizations relative to total cases for three
age cohorts, deaths relative to total cases, and in-hospital deaths relative to new hospitalizations
for individuals aged 80 years and older. The four different Omicron subvariants (BA.1, BA.2, BA.5,
and BQ.1) are shown in different colors. Symbols represent different post-vaccination periods and
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symbols indicate a small number of events, suggesting the need for caution in making premature
conclusions from these data points.

3.3. Reduction in Severity

From previous findings presented in Figure 2, we further examined the impact on
vaccination as the reduction in severity, 1 − RR, against various subvariants and among
specific age cohorts.

Figure 3 shows the trend for the reduction in severity in preventing hospitalizations
and deaths due to COVID-19, segmented by three age cohorts, and evaluated according to
the time elapsed since the last vaccine dose. Omicron subvariants and vaccination timing
follow the same color and symbol scheme as in Figure 2. Each point represents a measure
of the effectiveness of the vaccine in infected cases as a function of the rate ratio, 1 − RR,
referenced to cases or hospitalized individuals with a positive SARS-CoV-2 test within a
specific post-vaccination interval. Solid symbols represent statistically significant results
compared to the unvaccinated group, as indicated by the corresponding p-values, while
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open symbols indicate results that are not statistically significant. For better visualization,
results with error bars greater than 100% are not plotted. Error bars represent the 95%
confidence intervals for each measure. Results for deaths are shown only for the 80+ cohort
due to insufficient statistical significance for other age groups.
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Figure 3. Reduction in severity for hospitalizations against four Omicron subvariants—BA.1 (pink),
BA.2 (green), BA.5 (blue), and BQ.1(purple)—across three age groups over different post-vaccination
intervals (top three plots). Reduction in severity for deaths and in-hospital deaths (fourth and fifth
plots) is shown only for the cohort over 80 years of age across different post-vaccination intervals.
Solid symbols represent statistically significant values, while open symbols indicate non-significant
results compared to the unvaccinated group.

In Supplementary Materials Text S6, Figure S9 extends the analysis of Figure 3 to
include more results for the youngest groups, adding the evaluated significance that
follows the pattern of the previous figure. Similarly, Figure S10 confirms the observed trend
of vaccine efficacy over time in these age groups by aggregating all data across variants;
these are consistent with the main findings.
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4. Discussion

This retrospective study conducts a thorough analysis of the epidemiological dynamics
of multiple SARS-CoV-2 Omicron subvariants in Catalonia. A major strength lies in our
methodology, which distinguishes between the emergence and dominance periods of the
variants, revealing that the emergence period typically exhibits higher hospitalization and
mortality rates. Another strength of our work is the use of a highly reliable population-wide
database with individual records of COVID-19 events, vaccinations, and well-documented
causes of hospitalization and death. This database covers all of Catalonia over a period that
includes the evolution of the Omicron subvariants BA.1, BA.2, BA.5, and BQ.1 and spans
two national vaccination campaigns. Using this data set, we were able to rigorously assess
the severity of different variants in confirmed positive cases of SARS-CoV-2 according to
the time since the last vaccination across different age groups.

Our findings highlight the increased severity observed during the emergence periods
of BA.2, BA.5, and BQ.1 compared to their periods of dominance. The data indicate that
the average daily number of cases and deaths for variants BA.5 and BQ.1 are consistently
higher during their emergence periods than during their dominance periods. The same
pattern holds for hospitalizations due to variant BA.5. These increases vary depending on
age and the metric studied. For variant BA.2, both hospitalizations and deaths are also
higher during the emergence period, although the difference is minimal. However, this
trend does not hold for cases in individuals over the age of 70. This variation may be
due to the evolution of SARS-CoV-2, the intrinsic characteristics of BA.2, or both. BA.2
emerged as daily cases declined from the peak of BA.1. Moreover, the slow emergence
of BA.5 may have led to early cases, hospitalizations and deaths being misattributed to
the later dominance of BA.2 by our data analysis methods. This discrepancy could also
be attributed to the potential protective effects of prior BA.1 infection [33], which could
reduce the occurrence of more severe cases. For BA.1, unlike other variants, the emergence
period saw higher hospitalizations and deaths than the dominance period only in the 60–69
age group. The first Omicron variant, BA.1, which emerged in December 2021, reported
the highest case numbers of the entire pandemic and had a transmissibility significantly
higher than Delta [24,29]. This led to an incredibly rapid emergence period for this variant,
approximately only three weeks, and during the subsequent dominance month, numbers
hovered around the peak numbers. This explains why the dominance period outnumbers
the emergence period. Finally, if we examine the average differences in hospitalization
rates between the BA.* variants, we find trends similar to those in [34]. For individuals over
60 years of age, BA.2 and BA.5 were associated with a 12% lower and a 21% higher risk of
hospitalization, respectively, compared with BA.1. In contrast, [34] reported a 15% lower
and 18% higher risk of hospitalization. Despite comparing different time periods, in which
daily numbers of cases detected may change due to different tracking of asymptomatic
or mildly symptomatic cases and may be potentially misleading, universal access to the
health system and the homogeneity of testing protocols in patients older than 60 should
minimize any such possible bias. Qualitatively, our percentages are expected to be higher
because our data include only at-risk individuals confirmed by COVID-19 testing, resulting
in a naturally higher hospitalization-to-case ratio.

The results show a consistent pattern across all age groups and variants for the severity
of confirmed positive cases: recent vaccination significantly reduced the likelihood of the
disease worsening. This trend is consistent across the three age groups studied, although
the magnitude of the effect varies by variant and age group. This same observation has been
supported by several studies, e.g., [35–37], but such stratification by subvariant and/or
age group was not found in these studies. The hospitalization results present a robust
set, despite small samples and large confidence intervals in some of their vaccination
status results, supporting the majority of analyses with statistically significant findings.
In particular, for hospitalizations related to the BA.1 and BA.2 variants, the differences
in outcomes between 1–3 months and 4–6 months post-vaccination are only marginally
distinct. However, in cases where these differences are statistically significant (BA.1 in
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the 60–69 and 70–79 age groups and BA.2 in the 60–69 age group), the more recently
vaccinated individuals have better outcomes. This pattern remains consistent for BA.1,
BA.2, and BA.5 variants when comparing results between those vaccinated 7–9 months
ago and those vaccinated more than 10 months ago. Importantly, the results for vaccinated
people are always better than those for unvaccinated people for all four variants. Finally,
there are fewer statistically significant results for mortality, with BA.1, BA.2, and BA.5
showing clear differences only for the over-80 age group. Although only BA.1 shows
a clear difference between those vaccinated at different times, all the results show how
vaccination quantitatively protects older individuals against fatal outcomes compared to
those unvaccinated.

Our results on preventing hospitalizations for the BA.1, BA.2, and BA.5 variants and
across all age groups show that the more recent the vaccination, the higher the effectiveness
in infected cases. However, there was no evidence of reduced effectivity against hospitaliza-
tion for BA.5 compared to BA.2 or BA.1; this is similar to the findings in [38]. We found that
vaccine impact against severe disease decreased significantly by 3 to 4 months, which was
consistent with [39,40]. Although the trend is the same in all studies, we cannot directly
compare the magnitudes because our severity reduction study was conducted with con-
firmed COVID-19 cases, whereas the previous studies were conducted with a test-negative
case-control group. In the case of BQ.1, unlike the previous variants, very few real-world
studies have focused exclusively on this variant and the efficacy of vaccines. We know that
the BQ.1 variant has enhanced immune evasion capabilities compared to previous omicron
variants [41] but, nevertheless, booster doses have a positive effect against hospitalizations
caused by this variant [42]. Studies in England show that this protection, which reaches a
maximum within the first month, declines slightly after 10 or more weeks, but remains at
a plateau after 6 months for monovalent vaccines [42,43]. Interestingly, in our study we
cannot distinguish what happens during the first 12 weeks, but we found that the efficacy
of the vaccine for the BQ.1 variant seems to remain relatively constant regardless of the
time elapsed since the last dose, in line with the plateau mentioned in [43].

Considering all the factors discussed and the results obtained, and assuming that
COVID-19 could develop a stable, annual seasonal pattern similar to that of other res-
piratory diseases, the vaccination schedule for vulnerable groups could be optimized.
However, the exact seasonal trend of COVID-19 has not been conclusively determined; it
is uncertain whether we will see a single annual peak, multiple peaks within a year, or
some other pattern. Current data from the 2021–2022 and 2022–2023 seasons in Europe,
corresponding to periods of dominance of different Omicron subvariants, show several
peaks, two of which are more significant: one in late fall or winter and another in late spring
or summer, depending on the conditions of each region. The first peak, corresponding
to colder temperatures, had a significantly greater effect [44–46]. Given this uncertainty
about the temporal symmetry and relative magnitude of future peaks, it is not feasible to
propose a precise vaccination strategy now. Nevertheless, if COVID-19 eventually follows
a winter-dominated seasonality similar to influenza, our results suggest that the optimal
timing for vaccination campaigns in Catalonia would be early fall (with the highest peak
of infections around December–January [47]), following the same vaccination pattern as
for influenza, although different regions could require different timetables according to
the stationary seasonality. However, if COVID-19 adopts a biannual peak pattern, the
vaccination strategy should be discussed based on the relative severity of each peak and
focused on the most vulnerable individuals. This approach will certainly require new
studies with updated data.

It is important to acknowledge the limitations of our retrospective study. First, due
to the surveillance nature of the database, we were only able to work with COVID-19
positive cases; the results for hospitalizations and deaths should therefore be understood
exclusively for this population subgroup and should not be directly compared with, e.g.,
vaccine effectiveness results from other studies. Similarly, because this is a retrospective
study and we did not calculate the minimum sample size beforehand, all results are shown
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with their p-values for the comparable results. For example, we only discussed the deaths
in the over-80 age group because they were more numerous. In any case, all figures and
numbers can be found in Supplementary Materials Text S5 and S6 and Tables S3–S5. In
addition, changes in the surveillance protocol (March 2022) may have led to unequal
detection between the BA.1/BA.2 and BA.5/BQ.1 variants. However, these limitations
are unlikely to have a significant impact on our findings because our study focused on
individuals aged 60 years and older, who were subject to more rigorous and consistent
follow-up and diagnostic protocols. Another important limitation is the lack of detailed
information on comorbidities and previous infections in the available data set, due to
the nature of the surveillance design. This absence of data on comorbidities, which are
known to affect the severity of COVID-19 outcomes, and on previous infections, which
may influence immunity levels, represents a gap that prevents a thorough analysis of the
vaccine impact on vulnerable populations based on real-world data. In addition, the lack
of available data on reinfections and the resulting adjustments in vaccination schedules
hinders a comprehensive assessment of their impact on vaccine effectiveness and protection
levels. Recognition of these limitations underscores the importance of interpreting our
findings within the context of the available data.

5. Conclusions

Our study sheds light on the complex epidemiology of the SARS-CoV-2 Omicron
subvariants in Catalonia. Through temporal segmentation, we observed that the emergence
period is generally more severe, characterized by a higher number of hospitalizations and
deaths. A key observation underscored the increased efficacy of vaccinations received
within the last six months in reducing the number of severe outcomes. Moreover, there is a
notable difference between the results in the 1–3 month and 4–6 month intervals for the
60–69 and 70–79 age groups. Furthermore, while the BA.1, BA.2, and BA.5 variants suggest
that the effect of the vaccine is higher in more recently vaccinated individuals, the constant
effect pattern observed for the BQ.1 variant, regardless of the time elapsed since the last
dose, is noteworthy and requires further investigation.

Finally, it is important to highlight the practical implications and interpretative value
of our study for public health strategies and future vaccination policies. Our results suggest
that periodic vaccination remains an important tool to reduce hospitalizations and deaths,
especially in individuals over 60 years of age. Consistent with the window of effective
protection observed in the first three months after vaccination, we propose that, in the event
that COVID-19 ultimately shows a seasonality pattern similar to that of other respiratory
viruses, with a major peak in the coldest months, the booster vaccine would be administered
once a year in early fall. In this way, we would optimize protective measures before the
expected seasonal wave, providing greater protection against the most severe cases. If this
is not the final scenario, and COVID-19 shows a different seasonality pattern, new studies
will be needed to address its dynamics and its implications.
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