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Abstract: Tuberculosis, caused by Mycobacterium tuberculosis (M. tuberculosis), remains a formidable
global health challenge, affecting a substantial portion of the world’s population. The current
tuberculosis vaccine, bacille Calmette–Guérin (BCG), offers limited protection against pulmonary
tuberculosis in adults, underscoring the critical need for innovative vaccination strategies. Cytokines
are pivotal in modulating immune responses and have been explored as potential adjuvants to
enhance vaccine efficacy. The strategic inclusion of cytokines as adjuvants in tuberculosis vaccines
holds significant promise for augmenting vaccine-induced immune responses and strengthening
protection against M. tuberculosis. This review delves into promising cytokines, such as Type I
interferons (IFNs), Type II IFN, interleukins such as IL-2, IL-7, IL-15, IL-12, and IL-21, alongside the
use of a granulocyte–macrophage colony-stimulating factor (GM-CSF) as an adjuvant, which has
shown effectiveness in boosting immune responses and enhancing vaccine efficacy in tuberculosis
models.
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1. Introduction

M. tuberculosis, a respiratory pathogen, is estimated to have infected nearly a quarter of
the global population, encompassing between two billion and three billion individuals who
are potentially at risk of developing tuberculosis [1,2]. While predominantly a pulmonary
pathogen, M. tuberculosis can cause disease systemically. Tuberculosis manifests along a
dynamic spectrum, ranging from asymptomatic infection to potentially fatal illness [3].
Tuberculosis ranks among the top ten leading causes of mortality worldwide and stands as
the primary cause of death attributed to infection by a single pathogen [4]. The countries
bearing the most tremendous burden of tuberculosis are India, Indonesia, China, Nige-
ria, Pakistan, and South Africa, collectively representing around 60% of the worldwide
tuberculosis incidence [5]. To achieve the End Tuberculosis Strategy, the World Health
Organization’s ambitious goal of eradicating the tuberculosis epidemic by 2035, the targets
are set at a 95% reduction in tuberculosis-related deaths and a 90% reduction in tuber-
culosis incidence [6]. While tuberculosis can be effectively cured with drug therapy, the
rising prevalence of drug-resistant strains diminishes the efficacy of this approach. There-
fore, achieving control over tuberculosis necessitates a comprehensive strategy involving
improved medications, diagnostics, and vaccines [7,8].

The only licensed vaccine for tuberculosis prevention is BCG, initially administered
in Paris in 1921, marking over a century of continuous utilization [9]. BCG offers durable
and potent protection against miliary and meningeal tuberculosis in children. However,
its efficacy in preventing pulmonary tuberculosis, notably in adults across various clinical
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trials, has been suboptimal, contributing to its ineffectiveness in stemming the global epi-
demic [9,10]. In a recent phase II trial conducted in a high-risk setting, BCG revaccination
demonstrated a 45.4% efficacy in reducing a sustained QuantiFERON-TB Gold In-tube
assay (QFT) conversion rate among adolescents who had received a neonatal BCG vacci-
nation. This outcome was used to evaluate the protective efficiency against reactivation
from a latent TB infection [11]. GSK’s subunit tuberculosis vaccine M72/AS01E has re-
cently concluded phase II clinical trials [12]. This M72/AS01E vaccine comprises the M72
recombinant fusion proteins derived from Mtb32A and Mtb39A, adjuvanted with AS01E,
composed of monophosphoryl lipid A (MPL) and the saponin QS-21. The primary analysis,
conducted two years after the second vaccination, revealed a 49.7% reduction in active TB
cases among individuals who received the M72/AS01E vaccine compared to those who
received the placebo [13]. These promising clinical findings from the BCG revaccination
and M72/AS01E trials kindle hopes for the development of highly effective tuberculosis
vaccines. Furthermore, they also underscore the potential for significant advancements in
tuberculosis vaccine efficacy in future investigations.

Identifying immune signatures as immunological correlates of protection (CoP) is
pivotal for streamlining vaccine development and comparison [14]. Considering the critical
role of IFN-γ in tuberculosis immunity, it was hypothesized that T-cell secretion of IFN-
γ might serve as a CoP. However, while IFN-γ is indeed indispensable for tuberculosis
immunity, its sole presence does not suffice to confer protection [14]. Antigen-specific
Th1/17-type responses have conferred protection across various non-human primate (NHP)
studies, including those induced by bronchoscope-delivered BCG [15,16]. Despite initial
underestimation, antibody responses have emerged as significant correlates of protection.
Recent clinical data have underscored a connection between antibody titers and reduced
susceptibility to infection post-BCG vaccination [17]. Additionally, trained innate immunity
has been acknowledged as a CoP against M. tuberculosis infection. BCG vaccination-induced
trained innate immunity potentially enhances the early clearance of M. tuberculosis [18,19].
T cells warrant particular attention as they play a crucial role in preventing a primary
disease upon initial M. tuberculosis infection, as well as in the development of post-primary
tuberculosis once a latent infection has been established [20]. The long-lived MTB-specific
memory T (TM) cells have the potency to mount a swift and potent immune response to
the pathogen re-exposure, thereby substantiating the efficacy of the vaccination [20]. These
TM cells encompass various subsets, including central memory (TCM), effector memory
(TEM), tissue-resident memory (TRM), and stem-cell-like memory (TSCM) T cells [21]. One
promising strategy for effectively controlling tuberculosis through vaccination involves
augmenting the generation of a larger pool of durable memory T cells.

Cytokines act as crucial immune system regulators, playing vital roles in maintaining
a physiological balance and influencing pathological conditions [22]. Various cytokines
have proven effective as immunological adjuvants in diverse model systems, enhancing
the protective efficacy of vaccines against viral, bacterial, and parasitic infections. The
strategic use of cytokines presents an opportunity to selectively boost specific immune
parameters, thereby enhancing protective outcomes and mitigating potential adverse
effects of vaccination [23]. Increasing evidence highlights the pivotal role of cytokines
in the differentiation of memory T cells and suggests their potential contribution to the
heightened basal turnover rate observed in these cells [24,25]. In this review, we discuss
recent investigations of various cytokines as adjuvants in tuberculosis vaccines, exploring
their impact on vaccine-triggered T-cell responses and their roles in conferring protection
against tuberculosis (Table 1).
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Table 1. Cytokine-adjuvanted M. tuberculosis vaccines under preclinical studies.

Cytokines Major Immunologic
Functions

Cytokine-
Adjuvanted

Vaccines
Model Mechanisms and Effects References

Type I IFNs

Stimulates the
maturation of APCs,
elevates costimulatory
signals, and augments
their capacity for
antigen presentation
or cross-presentation

BCG + IFN-β Cell culture
Enhancing Th1-type response and
promoting DC maturation and
IL-12-releasing

[26,27]

BCG + IFN-α Human

Boosting BCG-induced IFN-γ
production in bladder cancer
patients and enhancing
BCG-induced IL-12 and TNF-α
while reducing IL-10 levels

[28]

BCG + IFN-α Mouse
IFN-α in BCG-vaccine provided
protection against M.
lepraemurium infection in mice.

[29]

BCG + IFN-α Mouse

Enhancing specific Th1-type
cytokine production in vitro and
in vivo and leading to the
reduction in bacterial burden after
the M. tuberculosis challenge

[30]

Type II IFN

Stimulates APCs to
enhance the
expression of
costimulatory
molecules and
cytokines essential for
activating T cells

Six MTB antigens +
Ribi + IFN-γ Mouse

Elevating proliferation, IFN-γ
secretion, and NO production in
splenocytes, leading to a marked
reduction in CFU counts upon
exposure to M. tuberculosis

[31]

BCG + Ag85B +
ESAT-6 + IFN-γ Mouse

Eliciting heightened specific
antibody titers, bolstering cellular
immune responses, and
conferring comparable or
superior protection against M.
tuberculosis infection

[32]

BCG + IFN-γ Mouse

Improving bacterial clearance and
diminishing tissue pathological
changes at mycobacterial
infection sites

[33]

IL-2

Promotes the
proliferation and
differentiation of
effector T cells,
memory T cells, and
NK cells

BCG + ESAT-6 +
IL-2 Mouse

Inducing robust Th1-type
responses, marked by enhanced
lymphoproliferation, IFN-γ
secretion, and augmented
cytotoxic T-lymphocyte
functionality

[34]

Hsp65 + IL-2 Mouse

Inducing robust antigen-specific
immune responses, including
IFN-γ release, and activation of
CD4+ and CD8+ T cells,
exhibiting superior protective and
therapeutic effects

[35,36]

BCG + IL-2 Mouse

Eliciting a Th1-type immune
profile in both
immunocompromised and IL-4
transgenic mice

[37]
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Table 1. Cont.

Cytokines Major Immunologic
Functions

Cytokine-
Adjuvanted

Vaccines
Model Mechanisms and Effects References

IL-7 and
IL-15

IL-7 is required for
T-cell development
and for maintaining
and restoring
homeostasis of mature
T cells. IL-15 exhibits a
wide array of
functions in the
modulation of both
innate and adaptive
immune responses,
mirroring the activities
of IL-2.

Flt3L-Mtb32 +
IL-7-nFc Mouse

Augmenting Mtb32-specific T-cell
responses, decreasing M.
tuberculosis reactivation following
dexamethasone treatment,
ameliorating lung pathology, and
reducing pulmonary
inflammation

[38]

BCG + Ag85B +
IL-15 Mouse

Elevating the levels of
IFN-γ-producing CD8+ and CD4+

T cells, resulting in notable lung
protection upon challenge with M.
tuberculosis

[39]

MVA + 5 MTB
antigens + IL-15 Mouse

Exhibiting endure protective
immunity lasting at least 16
months post-initial vaccination
and demonstrating sustained
protection on par with BCG
immunization

[40]

BCG + IL-7 + IL-15 Mouse

Amplifing the memory response
of CD4+ and CD8+ T cells,
elevating production of Th1-type
cytokines, and significantly
diminishing the mycobacterial
load in the lungs

[41]

LT70 + MH +
IL-7-Linker-IL-15 Mouse

Augmenting the efficacy of
tuberculosis subunit vaccines by
strengthening central
memory-like T cells

[42]

IL-12

Governs T-cell and
natural-killer-cell
responses, stimulates
IFN-γ production,
promotes the
differentiation of
Th1-type cells, and
serves as a vital bridge
between innate
resistance and
adaptive immunity

BCG + IL-12 Mouse

Slightly improving protection in
the early stages and significantly
enhancing protection in later
stages

[43]

BCG + IL-12 Mouse

Significantly decrease M.
tuberculosis load via enhancing
IFN-γ production in the spleen
cells,

[44]

Ag85B + IL-12 Mouse

Enhancing the protective efficacy
against the M. tuberculosis
challenge by amplifying T-cell
responses

[45]

Six MTB antigens +
IL-12 Mouse

Reducing bacterial burdens in the
lungs and spleen upon challenge,
demonstrating heightened
antigen-specific immune
responses, characterized by
increased levels of IFN-γ,
enhanced CD4+ and CD8+ T-cell
responses, and a Th1-skewed
immune profile

[46]
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Table 1. Cont.

Cytokines Major Immunologic
Functions

Cytokine-
Adjuvanted

Vaccines
Model Mechanisms and Effects References

IL-21

Enhances T-cell
proliferation,
promotes memoryand
plasma B cell
differentiation, and
boosts the function of
natural-killer cells

Ag85A + IL-21 Mouse
Enhancing immune responses,
while performing same level
efficacy of BCG vaccination

[47]

Ag85A + ESAT-6 +
IL-21 Mouse

Increasing NK cell and splenocyte
cytotoxicity, elevating IFN-γ
levels in the splenocyte
supernatant, and raising sIgA
levels in bronchoalveolar lavage

[48,49]

GM-CSF

Regulates growth and
differentiation of
hematopoietic cells,
enhances the
maturation, migration
and
immunostimulatory
functions of
Langerhans cells,
dendritic cells, and NK
cells

Ag85A + GM-CSF Mouse
Moderately bolstering systemic
defense by enhancing IFN-γ
production from splenocytes

[50,51]

BCG + GM-CSF Mouse

Amplifiing the potency and
persistence of anti-mycobacterial
Th1-type immunity, augmenting
antigen-specific IFN-γ-releasing
CD4+ T cells, and enhancing
immune protection against
subsequent mycobacterial
challenges

[52]

BCG + GM-CSF Mouse

Enhancing defense against M.
tuberculosis infection by increasing
pulmonary DCs and
antigen-specific immune cells and
heightening secretion of IL-12
upon pulmonary administration

[53,54]

2. Type I IFNs

The Type I IFN family stands out as a multifaceted cytokine group encompassing
13 partially homologous IFNα subtypes in humans (14 in mice), alongside a singular IFNβ

and several ambiguously characterized single gene products, namely IFN-ε, IFN-τ, IFN-κ,
IFN-ω, IFN-δ, and IFN-ζ [55,56]. Type I IFNs exert a wide range of effects on both innate
and adaptive immune cells in response to viral, bacterial, parasitic, and fungal infections,
either directly or indirectly, by triggering the expression of other downstream functional
mediators [56]. Type I IFNs can stimulate the maturation of antigen-presenting cells (APCs),
elevate the expression of costimulatory signals, and augment their capacity for antigen
presentation or cross-presentation [57,58]. Studies conducted in murine models and human
subjects have elucidated the involvement of IFN-α/β in directly modulating the differen-
tiation of both CD4+ and CD8+ T cells upon an initial antigen encounter [59]. Moreover,
IFN-α/β, alongside other innate cytokines, is recognized as a pivotal ‘third signal’ in
determining the composition of the effector and memory T-cell reservoir [59]. Indeed, Type
I IFNs have been established as valuable natural adjuvants for human vaccine formula-
tions. Previous studies have reported a cytokine fusion protein-based COVID-19 vaccine
platform. It is an interferon-armed RBD fusion protein incorporating a Pan DR-binding
epitope (PADRE) T-helper epitope and Fc domain, named IPRF, suitable for intramuscular
injections and intranasal vaccinations without additional adjuvants [60–62]. Based on this
design, the human vaccine (V-01), developed by a subsidiary of Livzon Pharmaceutical
Group Inc. (Zhuhai, China), underwent three clinical trial phases, demonstrating high
neutralizing antibody responses and an excellent safety profile in both adult and elderly
groups following an intramuscular vaccination [63]. Consequently, V-01 has received
emergency use authorization in China as a booster vaccine.
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A comparative analysis revealed that BCG is less effective in inducing dendritic cell
(DC) maturation than M. tuberculosis, leading to the reduced expression of IFN-β and IL-12
in BCG-infected DCs compared to M. tuberculosis-stimulated cells. The supplementation
of BCG-infected DCs with exogenous IFN-β, known for its immunomodulatory effects,
enhanced the Th1-type response, promoting a mature phenotype and increased secretion of
IL-12 [26]. Similarly, IFN-β-pretreated BCG-infected DCs exhibited markedly increased IL-
12 secretion in comparison to both BCG-infected DCs and M. tuberculosis-infected cells [27].
In animal and clinical studies, combining intravesical BCG with IFN-α for superficial blad-
der cancer exhibits enhanced efficacy compared to either agent alone. IFN-α significantly
boosts BCG-induced IFN-γ production in bladder cancer patients, with most patients expe-
riencing a substantial increase. IFN-α also enhances BCG-induced IL-12 and TNF-α while
reducing IL-10 levels. IFN-α enhances BCG’s immune response by promoting Th1-type
cytokines and reducing Th2-type cytokines [28]. In another study, consecutive boosts
of IFN-α in BCG-vaccinated mice protected against M. lepraemurium infection [29]. Of
particular significance, intramuscular co-administration of IFN-α with the BCG vaccine
was demonstrated to enhance specific anti-mycobacterial Th1-type cytokine production in
both in vitro and in vivo settings, leading to a reduction in the bacterial burden after the M.
tuberculosis challenge. This reduction amounted to 0.3 logs in the lungs and a noteworthy
0.9 log decrease in bacterial load in the spleen compared to mice vaccinated solely with
BCG [30].

The precise roles of Type I IFNs in both the pathogenesis and control of mycobacterial
infections are still controversial and contingent upon the experimental conditions. One
clinical isolate of M. tuberculosis, HN878, was found to be exceptionally virulent, leading
to early death in immune-competent mice. HN878 infection elevated the levels of Type
I IFNs, further suppressing Th1-type immunity [64]. In vitro, monocytes demonstrated
effective control over the growth of M. bovis BCG. Uncontrolled mycobacterial growth was
observed when monocytes were exposed to Type I IFNs, suggesting that Type I IFNs may
develop a favorable intracellular environment to promote mycobacterial growth [65]. On
the contrary, administering aerosolized IFN-α to patients undergoing antimicrobial therapy
resulted in a swifter reduction in the bacilli counts detected in sputum and an amelioration
of pulmonary tuberculosis [66,67]. Recent studies have established the role of Type I IFNs
as innate immune enhancers for commercial vaccines against SARS-CoV-2 [60,62,63,68,69],
offering promise for the potential utilization of Type I IFNs as an adjuvant in combating
other pathogens. Type I IFNs improve dendritic cell functionality post-BCG infection,
potentially acting as a valuable adjuvant to boost BCG immunogenicity. Moreover, Type
I IFNs show promise in regulating the T-helper cell-mediated immune response, thereby
enhancing BCG-induced immunity against M. tuberculosis infections. In conclusion, owing
to their immunomodulatory properties and extensive clinical track record, Type I IFNs
stand out as promising candidates for adjuvant use in vaccination against pathogenic
mycobacterial infections.

3. Type II IFN

The Type II IFN family comprises a singular gene product, IFN-γ, primarily synthe-
sized by T cells and natural-killer (NK) cells. IFN-γ exhibits its biological effects on diverse
cell types expressing the IFN-γ receptor (IFNγR) [56,70]. Biologically, IFN-γ is a pleiotropic
cytokine with antiviral, antitumor, and immunomodulatory properties, thereby serving
a crucial function in orchestrating both innate and adaptive immune responses [71,72].
By acting on APCs, IFN-γ enhances the expression of costimulatory molecules and cy-
tokines essential for activating T cells [73]. Precise levels of IFN-γ appear to be essential
for the viability and functionality of effector memory CD4+ T cells [74]. IFN-γ facilitates
the proliferation of low-avidity T cells, enabling them to surpass the competitive edge of
high-avidity T cells while also enhancing the incorporation of high-avidity T cells into
the memory reservoir. This process ultimately lowers the average avidity of the initial
response and elevates that of the memory response [75]. The therapeutic potential of IFN-γ



Vaccines 2024, 12, 477 7 of 19

against tuberculosis and multidrug-resistant tuberculosis (MDR-TB) has been extensively
investigated since the end of the last century. Multiple clinical trials have underscored
the effectiveness of IFN-γ in treating tuberculosis [76]. While the clinical studies offer
valuable insights, they represent only a fraction of the comprehensive evaluation required
to ascertain the therapeutic capacity of IFN-γ in tuberculosis and related mycobacterial
infections. More clinical trials are needed to refine our understanding and delineate the
precise therapeutic potential of IFN-γ in this regard [77]. Alternatively, studies across
diverse animal models have reported the potential utility of various forms of IFN-γ as
adjuvants for vaccines [78].

A multivalent vaccine containing six recombinant antigens (Ag85B, Rv0934, ESAT-6,
CFP21, Mtb8.4, and Rv2031c) from M. tuberculosis was examined in mice, in conjunction
with a Ribi (monophosphoryl lipid A-trehalose dicorynomycolate) adjuvant [79] and IFN-
γ, leading to a marked reduction in colony-forming unit (CFU) counts upon exposure to
a virulent M. tuberculosis strain, mirroring the protective efficacy of the BCG vaccine [31].
Moreover, splenocyte proliferation, IFN-γ secretion, and nitric oxide (NO) production were
significantly elevated in splenocytes derived from mice immunized with Ribi + 6Ag + IFN-γ,
in contrast to those from mice immunized with Ribi + 6Ag [31]. Another approach evaluated
the protective effectiveness of a novel recombinant BCG strain (rBCG-AEI) expressing a fusion
protein comprising antigens Ag85B, ESAT-6, and IFN-γ against M. tuberculosis H37Rv in
murine models. The rBCG-AEI elicited heightened specific antibody titers and significantly
bolstered cellular immune responses when contrasted with BCG, rBCG-A (expressing Ag85B),
and rBCG-AE (expressing Ag85B-ESAT-6) [32]. Protective assays illustrated that rBCG-AEI
conferred comparable or superior protection against M. tuberculosis infection regarding organ
bacterial burdens, lung-histopathological changes, and weight loss, underscoring its potential
as a promising candidate warranting further exploration [32]. These results confirm the
establishment of a vigorous cellular immune response bolstered by IFN-γ in vaccinated mice,
correlating with heightened resilience against M. tuberculosis. An investigation evaluated the
effects of a recombinant BCG expressing IFN-γ (BCG-IFN) on inflammation and tissue fibrosis.
Notably, intravenous administration of BCG-IFN resulted in decreased organ weight and
bacterial load by day 21 in comparison to control BCG-plasmid administration. Furthermore,
a reduction in inducible nitric oxide synthase (iNOS) mRNA, iNOS+ cells, granulomas, and
liver hydroxyproline content with BCG-IFN suggested improved bacterial clearance and
diminished tissue pathology at mycobacterial infection sites [33]. These findings illustrate that
the localized expression of IFN gamma by the recombinant BCG enhances bacterial clearance,
leading to a concomitant reduction in tissue pathology. This effect mitigates the concern that
heightened immunoreactivity could exacerbate vaccination-related tissue damage.

The assessment of the IFN-γ response to M. tuberculosis infections has been utilized in
both research and clinical settings to establish and evaluate new strategies for preventing,
diagnosing, and treating such infections [80]. The production of IFN-γ serves as a functional
marker for murine T cells that impart adaptive immunity against M. tuberculosis [81].
Specifically, IFN-γ plays a pivotal role in developing protective immunity against M.
tuberculosis infections, serving as a crucial mediator in activating macrophages [82]. In
conjunction with adjuvants and IFN-γ, the multivalent vaccine exhibited a notable decrease
in bacterial counts and bolstered immune responses in murine subjects. Furthermore,
the recombinant BCG strain expressing distinct antigens and IFN-γ displayed heightened
efficacy in shielding against M. tuberculosis infections in murine models. Hence, IFN-γ is a
promising candidate for incorporation as an adjuvant in tuberculosis vaccine formulations.

4. IL-2

IL-2 is a member of the IL-2 superfamily containing six kinds of cytokines, namely
IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, all of which share a common γ chain [83]. The
principal function of IL-2 is to initiate immune responses by promoting the proliferation and
differentiation of effector T cells, memory T cells, and NK cells [84]. IL-2 serves as a regulator
of IL-7Rα expression, thereby influencing CD4+ memory T-cell homeostasis in vivo [85].
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Within CD8+ cells, IL-2 can promote cellular proliferation and drive differentiation towards
memory and terminally differentiated lymphocytes [86]. IL-2 signals are critical for the
formation of long-lived CD8+ T-cell memory [87]. Importantly, IL-2 has been reported as a
promising adjuvant for various vaccines against viruses, bacteria, and tumors [88–90].

A genetically modified BCG strain was constructed to encode human IL-2 and the ESAT-6
antigen from M. tuberculosis. This engineered BCG variant induced robust Th1-type responses,
marked by enhanced lymphoproliferation, IFN-γ secretion, and augmented cytotoxic T-
lymphocyte functionality [34]. In another approach, a DNA vaccine encoding a fusion protein
of M. tuberculosis heat shock protein 65 (Hsp65) with human IL-2-induced robust antigen-
specific immune responses, including antibody generation, IFN-γ release, and activation of
CD4+ and CD8+ T cells, following M. tuberculosis H37Rv infection. Mice vaccinated with
the DNA construct displayed significantly reduced bacterial burdens in organs compared to
the control cohort, albeit falling short of the efficacy observed with BCG. Histopathological
analysis revealed attenuated pulmonary pathology in DNA-vaccinated mice akin to those
in BCG-immunized counterparts, in stark contrast to the saline control group [35]. Likewise,
mice immunized with HSP65-IL-2-DNA displayed a significant decrease in M. tuberculosis
colony counts in the spleen and lungs following a challenge with virulent M. tuberculosis
H37Rv. The HSP65-IL-2-DNA vaccine exhibited superior protective and therapeutic effects
when contrasted with the HSP65-DNA vaccine, indicating that incorporating IL-2 in the DNA
vaccine enhances its immunogenicity and effectiveness against M. tuberculosis by bolstering
a Th1-type immune response [36]. Moreover, incorporating IL-2 into a recombinant BCG
(rBCG-IL-2) vaccine elicited a Th1-type immune profile in both immunocompromised and
IL-4 transgenic mice. Pre-vaccination administration of dexamethasone before rBCG-IL-2
or BCG inoculation resulted in distinct immune responses: rBCG vaccination triggered a
robust Th1-type response characterized by IFN-gamma predominance, while BCG induced a
Th2-type response with IgG1 dominance [37].

The stimulatory impact of IL-2 on effector T cells (Teff) and NK cells prompted in-
vestigations of high-dose IL-2 for cancer therapy, leading to the approval of recombinant
human IL-2 (Aldesleukin) as the inaugural immunotherapy endorsed by the US Food
and Drug Administration for managing metastatic renal cell carcinoma (RCC) in 1992
and metastatic melanoma in 1998 [91]. The considerable clinical experience with IL-2 has
markedly enhanced its potential for advancing tuberculosis therapeutic agents and vaccine
adjuvants. IL-2 has been substantiated as an efficacious therapeutic agent in managing
MDR-TB [92]. In addition, continuous exposure to M. tuberculosis antigens resulted in T-cell
dysfunction, which could be effectively reversed through supplementation with IL-2 [93].
Consequently, IL-2 emerges as a promising candidate for incorporation as an adjuvant in
tuberculosis vaccine formulations.

5. IL-7 and IL-15

IL-7 and IL-15 are members of the IL-2 superfamily [94]. IL-7 is required for T-
cell development and for maintaining and restoring homeostasis of mature T cells [95].
IL-15 exhibits a wide array of functions in the modulation of both adaptive and innate
immune responses, mirroring the activities of IL-2 [96]. IL-7 and IL-15 exhibit a range
of effects concerning T-cell survival, activation, clonal expansion, and the development
and sustenance of memory cells. Specifically, IL-7 supports the survival of both naive
and memory T cells, while IL-15 plays a crucial role in the homeostatic proliferation of
memory CD8+ T cells and the preservation of a constant level of CD8+ T-cell memory [24].
The diverse biological functions of IL-7 underscore its significance as a crucial molecular
adjuvant for enhancing vaccine efficacy [97]. The crucial role of IL-15 in fostering enduring
immune memory and sustaining immune responses explains the significantly improved
vaccine immunity when integrating IL-15 molecules into vaccine formulations [98,99].

In a murine model of M. tuberculosis infection, the simultaneous administration of non-
lytic Fc-fused IL-7 DNA (IL-7-nFc) and Flt3-ligand-fused Mtb32 (F-Mtb32) DNA, alongside
chemotherapy, significantly augmented Mtb32-specific T-cell responses, persisting for up to a
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year post the final immunization [38]. Concomitant delivery of IL-7-nFc and F-Mtb32 DNA
also decreased M. tuberculosis reactivation following dexamethasone treatment, ameliorated
lung pathology, and reduced pulmonary inflammation. The heightened protection observed
with this combined approach was associated with increased Mtb32-specific IFN-γ-secreting
CD4+ and CD8+ T-cell responses in the lungs and spleens, indicating the potential of IL-7-nFc
as a promising adjunct for tuberculosis DNA vaccines in clinical applications [38].

Immunization with rBCG-Ag85B-IL-15 (a recombinant BCG expressing a fusion pro-
tein Ag85B-IL-15) elevates the levels of IFN-γ-producing CD8+ and CD4+ T cells, exceeding
the response induced by a rBCG expressing Ag85B alone (rBCG-Ag85B), resulting in
notable lung protection upon challenge with M. tuberculosis. The vaccination with rBCG-
Ag85B-IL-15, known for its ability to trigger potent cell-mediated immunity, presents a
promising avenue for an effective tuberculosis vaccine [39]. In another study, a modi-
fied vaccinia Ankara (MVA) construct, expressing five M. tuberculosis antigens and IL-15
(MVA/IL-15/5Mtb), exhibited enduring protective immunity lasting at least 16 months
post-initial vaccination. Homologous prime/boost with MVA/IL-15/5Mtb demonstrated
sustained protection on par with BCG immunization, characterized by heightened levels of
crucial immune markers post-tuberculous challenge [40].

Co-administration of IL-7 and IL-15 with the BCG vaccine markedly amplifies the
memory response of CD4+ and CD8+ T cells, resulting in increased T-cell proliferation, elevated
production of Th1-type cytokines, and the expansion of multifunctional M. tuberculosis-specific
memory T cells, in contrast to mice vaccinated solely with BCG. This enhancement significantly
diminishes the mycobacterial load in the lungs, underscoring the promise of IL-7 and IL-15
supplementation in enhancing the effectiveness of the BCG vaccine [41]. Similarly, mice
receiving tuberculosis subunit vaccines (LT70 [100] and MH [101]) in combination with
recombinant adenovirus encoding fusion cytokines IL-7-Linker-IL-15 (rAd-IL-7-Linker-IL-15)
regimen exhibited enhanced long-term immune responses and increased protective efficacy
against the BCG challenge compared to the control cohorts. The potential of rAd-IL-7-Linker-
IL-15 to augment the efficacy of tuberculosis subunit vaccines relies on its ability to strengthen
central memory-like T cells, thereby providing enduring protection against M. tuberculosis [42].

IL-7 is crucial for providing the essential survival signal during the transition from ef-
fector to memory CD8+ T cells; however, the expression of the IL-7 receptor alone was not
adequate [102]. Studies have revealed that the combined signaling of IL-7 and IL-15 syner-
gistically fosters the development of memory T cells, highlighting the essential roles of both
cytokines in the initiation and sustenance of memory CD4+ and CD8+ T cells [103,104]. Con-
sequently, enhancing vaccines with IL-7 and IL-15 may offer a promising avenue to enhance
the enduring maintenance of memory T cells over the long term. Particularly, the exogenous
administration of IL-15 did not significantly affect the progression of M. tuberculosis infection, as
demonstrated by the absence of significant variations in the bacterial burden or T-cell numbers
between IL-15-treated mice and untreated controls [105]. In contrast, IL-15 secreted from the
IL-15-expressing rBCG represents a viable approach for fostering T-cell immunologic memory
triggered by BCG. Here, the sustained IL-15 release plays a crucial role in the maintenance of
memory T cells, as opposed to the rapid decline in cytokine efficacy observed when cytokines
are administered independently in the host [39]. In conclusion, the integration of IL-7 and
IL-15 with existing tuberculosis vaccines has shown significant promise in enhancing immune
responses and strengthening the defense against M. tuberculosis infections. It indicates a hopeful
direction for advancing more robust and long-lasting tuberculosis prevention strategies.

6. IL-12

IL-12, a member of the IL-12 family, encompasses four cytokines: IL-12, IL-23, IL-27,
and IL-35. IL-12 consists of two subunits, IL-12p35 and IL-12p40, necessitating their con-
current expression within a single cell to release the bioactive disulfide-linked IL-12p70
cytokine [106]. IL-12 is a pro-inflammatory cytokine that governs T-cell and natural-killer-
cell responses, stimulates IFN-γ production, promotes the differentiation of Th1-type cells,
and serves as a vital bridge between innate resistance and adaptive immunity [107]. In vivo
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studies have demonstrated that IL-12 enhances the expansion of CD8+ T cells and promotes
the generation of memory cells during an immune response [108]. Given its immunostimu-
latory attributes, consistent interest persists in leveraging IL-12 as a vaccine adjuvant. IL-12
has been widely researched as an adjuvant for promoting protective immune responses,
including antibody induction, cell-mediated immunity, and the enhancement of mucosal
immunity [109–111].

Although BCG initially provided robust protection against early M. tuberculosis infection,
its efficacy waned over time [43]. Researchers investigated the impact of IL-12 as an immune
adjuvant in enhancing the effectiveness of BCG vaccination. Mice vaccinated solely with BCG
displayed decreased bacterial loads when challenged with M. tuberculosis; however, more
significant reductions were observed in those vaccinated with BCG in combination with IL-12.
Enhanced IFN-γ production was detected in the spleen cells of mice that received BCG along
with IL-12 [44]. Similarly, co-administration of an IL-12 containing DNA construct with BCG
markedly elevated IFN-γ levels compared to BCG alone. The combined administration of IL-
12 DNA vaccine constructs with BCG offered slightly improved protection in the early stages
and significantly enhanced protection in later stages compared to BCG alone. This synergistic
strategy elicited a more potent immune response and demonstrated superior effectiveness
in combating progressive M. tuberculosis infection [43]. In another investigation, a plasmid
encoding IL-12 markedly enhanced the protective efficacy of the DNA vaccine expressing
Ag85B against the M. tuberculosis challenge by amplifying T-cell responses. IL-12 has emerged
as a pivotal cytokine adjuvant for enhancing immune defenses against tuberculosis facilitated
by DNA vaccines [45]. Moreover, the efficacy of a composite DNA vaccine containing six genes
encoding key antigens from M. tuberculosis and Brucella abortus was evaluated, employing the
DNA-IL-12 adjuvant system. Mice immunized with the DNA vaccine along with DNA-IL-12
exhibited significantly decreased bacterial burdens in the lungs and spleen upon challenge
compared to those receiving the DNA vaccine alone [46]. The combined group demonstrated
heightened antigen-specific immune responses, characterized by increased levels of IFN-γ,
enhanced CD4+ and CD8+ T-cell responses, elevated IgG titers, and a Th1-skewed immune
profile. These findings highlight the potential of IL-12 as an adjuvant in enhancing protective
immunity against both M. tuberculosis and B. abortus [46].

In response to M. tuberculosis infection, the upregulation of IL-12, a pivotal factor in
fostering Th1-type responses, drives the development of IFN-γ-producing T cells [112].
Utilizing IL-12 as an adjuvant in DNA vaccines targeting multiple pathogens demonstrated
promising outcomes. While BCG can initiate Th1-type immune responses, the strength of
this response has waned over time [43]. Integrating IL-12 as an immune adjuvant with
BCG vaccination has significantly enhanced its protective efficacy against M. tuberculosis
infection. IL-12 holds promise in enhancing the efficacy of BCG vaccination by bolstering
the intensity of the Th1-type response prior to facing infectious challenges.

7. IL-21

IL-21, belonging to the IL-2 superfamily [113], binds to receptors on the surface of
various immune cells such as T cells, B cells, NK cells, DCs, and keratinocytes, indicating a
broad spectrum of biological effects [114]. IL-21 exhibits pleiotropic effects, ranging from
enhancing T-cell proliferation and promoting the differentiation of B cells into memory
cells and terminally differentiated plasma cells to boosting the function of natural-killer
cells [113,114]. Intrinsic IL-21 signaling in CD4+ T cells is crucial for generating memory
CD4+ T cells in vivo [115]. IL-21 has been demonstrated to synergistically interact with IL-
10 in facilitating the development of memory CD8+ T cells [116]. The delineated biological
effects of IL-21 on NK cells, CD8+ T cells, and B cells, in conjunction with its robust
antiviral efficacy demonstrated in murine models, position it as a promising candidate for
incorporation as a vaccine adjuvant [117].

Vaccination with a DNA vaccine pRSC-IL21-Ag85A (a plasmid co-expressing IL-21 and
Ag85A) in mice demonstrated enhanced immune responses compared to those vaccinated
with pRSC-Ag85A alone, performing the same level of efficacy of the BCG vaccination. This
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heightened response was comparable to the efficacy of BCG, indicating that IL-21 serves as
a promising adjuvant to enhance the immunogenicity of tuberculosis DNA vaccines [47].
Furthermore, the same group developed another DNA vaccine containing a fusion protein
of Ag85A, ESAT-6, and IL-21 (Ag85A-ESAT-6-IL-21) to assess its protective efficacy against
M. tuberculosis in mice. Following intranasal DNA vaccine priming and BCG boosting, this
strategy significantly increased NK cell and splenocyte cytotoxicity, elevated IFN-γ levels in
the splenocyte supernatant, and enhanced sIgA levels in bronchoalveolar lavage compared
to a DNA vaccine or BCG immunization alone. The heterologous prime-boost approach
notably reduced bacterial loads in mouse lungs, highlighting a promising mucosal-targeted
vaccination strategy against tuberculosis [48]. In addition, the cationic nanoparticle-based
DNA vaccine Ag85A-ESAT-6-IL-21 exhibited a statistically significant enhancement in
protective efficacy against M. tuberculosis infection compared to the DNA vaccine Ag85A-
ESAT-6-IL-21 administered alone [49].

IL-21 can be generated by Th1-type and Th2-type cells and follicular CD4+ T cells,
whose production is partially modulated by the specific microenvironment. The physiologi-
cal effects of IL-21 are extensive, encompassing established impacts on B cells, CD8+ T cells,
NK cells, and DCs [114]. The incorporation of IL-21 as an adjuvant in DNA vaccines has
demonstrated substantial promise in augmenting immune responses against M. tuberculosis,
underscoring the potential of IL-21 in enhancing the immunogenicity of tuberculosis DNA
vaccines. Importantly, IL-21 exhibits a synergistic impact on the clonal expansion of CD8+ T
cells when co-administered with either IL-7 or IL-15 [118]. Therefore, the selective combina-
tion of members within the IL-2 superfamily is promising for enhancing the investigation
of tuberculosis vaccine adjuvants.

8. GM-CSF

The CSF family predominantly comprises three canonical members: macrophage (M)-
CSF (or CSF-1), granulocyte (G)-CSF (or CSF-3), and GM-CSF (or CSF-2) [119]. GM-CSF
exhibits various biological effects, with its key impacts in vaccination being the enhance-
ment of maturation, migration, and immunostimulatory functions of Langerhans cells,
dendritic cells, and NK cells [120–122]. Additionally, GM-CSF boosts MHC class II expres-
sion on APCs, which is crucial for the antigen presentation to CD4+ T-helper cells. GM-CSF
increases the expression of CD80, a costimulatory molecule essential for T-lymphocyte
activation, on Langerhans giant cells in vitro [123,124]. Furthermore, GM-CSF triggers a
local inflammation at the injection site, leading to the recruitment of APCs [125]. GM-CSF
has been employed as an adjuvant in vaccines to enhance immune responses against HIV
and COVID-19 infections and in cancer vaccine formulations [126].

Researchers aimed to boost the immunogenicity of a plasmid DNA vaccine for tuber-
culosis by incorporating Ag85A and GM-CSF genes and employing electroporation as a
delivery technique. The investigation revealed that electroporation facilitated comparable
efficacy between a single intramuscular DNA injection and repeated injections in activating
specific T cells. Concurrent expression of GM-CSF amplified T-cell activation and cytotoxic T-
lymphocyte (CTL) activities. While electroporation alone conferred robust immune protection,
GM-CSF expression moderately bolstered the systemic defense [50]. Additionally, in a murine
model utilizing BCG priming and DNA vaccine boosting, the DNA vaccine expressing Ag85A
and GM-CSF demonstrated a notable enhancement in cytotoxic T-lymphocyte activity, IFN-γ
levels, and antibody titers compared to mice receiving BCG or standalone DNA vaccines. The
BCG priming, sequentially followed by DNA vaccine boosting, provided adequate immune
protection against the M. tuberculosis challenge [51]. The BCG, including AdGM-CSF (an aden-
oviral GM-CSF transgene-based adjuvant formulation), significantly amplified the potency
and persistence of anti-mycobacterial Th1-type immunity compared to BCG alone or with
a control vector. This improved vaccine formulation elicited a significant augmentation in
mycobacterial antigen-specific IFN-γ releasing CD4+ T cells, enhancing immune protection
against subsequent mycobacterial challenges [52]. Furthermore, researchers explored how the
BCG vaccine strain that delivered GM-CSF (BCG:GM-CSF) influenced immunity against M.
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tuberculosis. BCG:GM-CSF boosted the production and activity of APCs derived from murine
bone marrow, resulting in elevated levels of specialized immune cells and enhanced defense
against M. tuberculosis infection [53]. Subsequently, the same group delivered BCG:GM-CSF to
the lungs and noted an increase in pulmonary DC numbers and heightened secretion of IL-12,
surpassing the effects of standard BCG immunization. This targeted strategy facilitated the
rapid priming of antigen-specific CD4+ T cells in lymph nodes and promoted the migration of
activated CD4+ T cells to the lungs [54].

The significant role of GM-CSF in modulating immune responses through its im-
pact on the antigen presentation process has been well-documented in disease models
encompassing both Th1-type and Th2-type immunities. Crucially, these investigations
illustrate that GM-CSF does not alter the fundamental nature of immune responses from
Th1-type to Th2-type or vice versa; instead, it enhances the immune response of either
phenotype [127–129]. GM-CSF plays a vital role in recruiting lymphocytes, fostering a
Th1-type response within the lungs, aiding in the formation of characteristic mononuclear
granulomas, and notably contributing to the control of M. tuberculosis bacterial growth [130].
Supplementation of AdGM-CSF to BCG enhanced Th1-type immunity, bolstering defense
against mycobacterial challenges. Furthermore, BCG:GM-CSF upregulated APCs produc-
tion and activity, fortifying protection against M. tuberculosis. Localized administration
of BCG:GM-CSF to the lungs augmented immune cell populations and IL-12 secretion,
facilitating an effective immune response against M. tuberculosis. In conclusion, integrating
GM-CSF with DNA vaccines targeting M. tuberculosis, particularly in conjunction with BCG
priming, has shown significant promise in enhancing immune responses and protective
efficacy, suggesting a strategic avenue for tuberculosis management.

In summary, Type I and Type II IFNs, interleukins such as IL-2, IL-7, IL-15, IL-12, and
IL-21, along with GM-CSF used as an adjuvant, have the potential to significantly enhance
the efficacy of tuberculosis vaccines by modulating various stages of the immune response,
thereby augmenting their protective effects against tuberculosis (Figure 1).
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vaccines. (A) Following vaccination, M. tuberculosis (MTB) vaccine molecules containing cytokines
are taken up by macrophages or dendritic cells (DCs). Antigen-loaded DCs are the primary antigen-
presenting cells (APCs). APCs, together with free vaccine molecules and cytokines, migrate through
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the lymphatics to the draining lymph nodes (DLNs), initiating an anti-TB immune response;
(B) Within the DLNs, mature APCs present MTB-antigen peptides on MHC class I and II molecules
to naive CD8+ and CD4+ T cells, respectively. APC-provided costimulatory signals facilitate the
induction of TB antigen-specific T-cell responses, such as those mediated by interactions between
CD80/CD86–CD28, CD70–CD27, and CD40–CD40L. These co-stimulations can be augmented by
potential adjuvants IFN-α/β, IFN-γ, and GM-CSF, respectively; (C) Presentation of antigens to CD8+

T cells by APCs leads to the differentiation of cytotoxic T-lymphocytes (CTLs), a process further
bolstered by IL2 and IL-12, acting as an adjuvant; (D) Antigen presentation to CD4+ T cells by APCs
results in the differentiation of various inflammatory T-cell subsets, including Th1 (facilitated by
IFN-γ and IL-12), Th17 (promoted by IL-6, IL-21, IL-23, and TGF-β), and T follicular helper (Tfh) cells
(assisted by IL-6 and IL-21). IL-15 and IL-7 play critical roles in preventing T cells from apoptosis
during the T-cell activation stage, enabling the generation of memory T cells. IL-21 synergizes with
IL-7 or IL-15 to promote the proliferation and survival of memory T cells; (E) B cells, activated either
directly by TB vaccine antigens or with the assistance of Tfh cells (facilitated by IL-21), differenti-
ate into plasma cells and secret IgG and IgA; (F) CTLs and Th1 cells migrate to the infection site,
where they eliminate M. tuberculosis-infected macrophages through cytotoxicity and the secretion
of effector cytokines like IFN-γ and TNF-α. Additionally, they secrete IL-2 to facilitate extensive
self-amplification of T cells; (G) Th17 cells also migrate to the infection site, producing IL-17 and
IL-22, which stimulate the production of neutrophil-attracting chemokines by respiratory epithelial
cells (not illustrated); (H) Neutrophils engage in phagocytosis to eradicate the extracellular free M.
tuberculosis. The cytokines highlighted in red are the focus of discussion in this review. This figure
was created with BioRender.com.

9. Conclusions and Perspectives

The future of tuberculosis vaccinations may require strategically incorporating cy-
tokines as adjuvants to optimize immune responses and bolster protection against M.
tuberculosis. Cytokines, such as Type I IFNs, Type II IFN, IL-2, IL-7, IL-15, IL-12, IL-21, and
GM-CSF, play crucial roles in regulating immune responses and have been investigated
as potential adjuvants in tuberculosis vaccines. These cytokines have shown promise in
enhancing immune responses, bolstering protective efficacy, and contributing to the devel-
opment of enduring immunity against M. tuberculosis. Notably, their integration into vac-
cine formulations has demonstrated significant potential in augmenting vaccine-induced
immune responses and protection against tuberculosis. Further research and clinical tri-
als are warranted to elucidate the optimal dosages, formulations, and delivery methods
of cytokine-adjuvanted vaccines. Additionally, exploring combinatorial approaches that
harness the synergistic effects of multiple cytokines may further enhance vaccine-induced
immunity. Recent advancements in vaccinology have introduced innovative technologies
poised to transform vaccine development. mRNA vaccine technology has emerged as
a powerful platform with the potential to revolutionize vaccine development due to its
unique advantages. Incorporating cytokines into RNA vaccine formulations holds promise
for directing the immune system to induce enhanced, enduring, and T/B-cell-balanced
vaccine immunity. Defining the cytokine profile of RNA vaccines could enable customized
immune responses tailored to the pathogen’s characteristics. Strategic cytokine utilization
may also reduce the effective RNA dose for protective immunity, thereby mitigating as-
sociated adverse effects from higher doses. While leveraging cytokines as adjuvants in
RNA vaccine prototypes presents substantial potential for refining vaccine efficacy and
precision, it necessitates a comprehensive evaluation of biological effects, safety profiles,
and regulatory compliance. Integrating mRNA vaccine technology with cytokine adju-
vants in tuberculosis vaccine development offers a promising strategy to enhance immune
responses, improve vaccine efficacy, and address the complex challenges associated with
tuberculosis control. By leveraging the synergistic effects of mRNA vaccines and cytokine
adjuvants, researchers can potentially develop more effective tuberculosis vaccines with
long-lasting memory immunity that contribute to the global efforts to combat tuberculosis
as a major public health concern. Lipid nanoparticles (LNPs) are indispensable delivery
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vehicles for mRNA vaccines. Nanoparticle vaccines, composed of natural or synthetic com-
ponents, are capable of delivering multivalent antigens simultaneously while safeguarding
stimulatory elements like cytokines at the periphery. This design allows for controlled
release at target sites, alleviating adjuvant toxicity and ensuring vaccine efficacy. Overall,
the exploration of appropriate cytokines as innovative adjuvants for the development of
secure and powerful M. tuberculosis vaccines, combined with the utilization of novel anti-
genic candidates and advanced technologies, opens a promising avenue for tuberculosis
prevention and treatment.
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