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Abstract: Perceptions of the complete eradication of vaccine-preventable diseases such as measles,
mumps, and rubella (MMR) may foster complacency and compromise vaccination efforts. Decreased
measles vaccination rates during the COVID-19 pandemic have heightened the risk of outbreaks,
even in adequately vaccinated populations. To address this, we have aligned with ECDC recommen-
dations, leveraging previous cross-border sero-epidemiological assessments between Pécs, Hungary,
and Osijek, Croatia, to identify latent risk groups and uncover potential parallels between our
nations. Testing 2680 Hungarian and 1764 Croatian serum samples for anti-MMR IgG via ELISAs re-
vealed anti-measles seropositivity ratios below expectations in Croatian cohorts aged ~20–30 (75.7%),
~30–40 (77.5%) and ~40–50 years (73.3%). Similarly, Hungarian samples also showed suboptimal
seropositivity ratios in the ~30–40 (80.9%) and ~40–50 (87.3%) age groups. Considering mumps- and
rubella-associated seropositivity trends, in both examined populations, individuals aged ~30–50 years
exhibited the highest vulnerability. Additionally, we noted congruent seropositivity trends across
both countries, despite distinct immunization and epidemiological contexts. Therefore, we propose
expanding research to encompass the intricate dynamics of vaccination, including waning long-term
immunity. This understanding could facilitate targeted interventions and bolster public awareness.
Our findings underscore persistent challenges in attaining robust immunity against measles despite
vaccination endeavors.

Keywords: vaccine; measles; mumps; rubella; MMR; sero-epidemiology; age-stratified; risk group;
disruption; vaccination effort; suboptimal; seropositivity; pandemic

1. Introduction

Despite the perception of vaccine-preventable diseases being eradicated in modern
society, it is crucial to recognize the persistent importance of maintaining high vaccine
coverage rates, ensuring vaccine quality and potency, monitoring population immunity
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levels and implementing supplementary vaccination measures as warranted. This entails a
proactive stance, as relying solely on past successes may foster complacency and undermine
efforts to sustain immunity against measles and other vaccine-preventable diseases.

Addressing the challenges associated with the shortcomings in measles vaccine ef-
ficacy and inadequate seroconversion demands a comprehensive socio-epidemiological
approach, necessitating an understanding of the multifaceted influences of political, eco-
nomic, cultural and social factors on immune-serological protection outcomes [1–9].

The COVID-19 pandemic has underscored significant socioeconomic disparities in
health outcomes and access to healthcare. Additionally, it has precipitated a notable and
protracted reduction in childhood vaccination rates, which is estimated to be the most
substantial decline observed in approximately three decades. This alarming trend has
led to an estimated shortfall of vaccinations for approximately 25 million children glob-
ally [10–13]. Socioeconomic inequalities (SESs) constitute pivotal determinants influencing
vaccine uptake [12,14], with indicators encompassing income, occupation, education and,
occasionally, place of residence [12,15]. Notably, socioeconomic differentials in vaccination
uptake exhibit spatial and temporal variability, spanning between-group and within-group
distinctions such as ethnicity or gender, evolving alongside changes in healthcare systems
and policies over time and fluctuating across different administrative contexts and coun-
tries. Moreover, the influence of socioeconomic factors on vaccination patterns extends
across various vaccines, including MMR, contributing to nuanced dynamics in vaccine
acceptance and utilization [12,16–20].

Additionally, human migration carries substantial implications for national economies,
healthcare systems and social cohesion [1–9]. Factors such as regional conflicts, economic
crises and global warming contribute to large-scale migrations. A key concern is the
potential for increased risk of vaccine-preventable disease outbreaks, such as measles,
stemming from the mass movement of individuals, often from regions with compromised
healthcare systems, exacerbated by the impacts of the COVID-19 pandemic [3,7].

Furthermore, a multitude of human immune biological variables must be taken into
account [21–26], including but not limited to declining immunity over time, incomplete
vaccination regimens, variable vaccine efficacy across viral strains, vaccine storage and han-
dling protocols, individual immunological responses, interference from maternal antibodies
and occurrences of vaccine breakthrough infections.

The measles, mumps, and rubella (MMR) vaccine demonstrates high efficacy, with
the standard two-dose regimen conferring protective immunity to approximately 99% of
recipients [27–29], and it is provided free of charge within the examined countries.

Nevertheless, measles epidemics represent a longstanding challenge, with the measles
virus afflicting humanity for centuries [30–32]. However, the current surge in cases di-
verges from historical outbreaks characterized by periodic fluctuations prior to widespread
vaccination efforts. Notably, these contemporary outbreaks also occur within popula-
tions boasting high vaccination coverage [3,8,24–35], leading to potential confusion among
the public and presenting challenges for healthcare professionals, epidemiologists, and
clinical microbiologists [33]. While the prevalence of vaccination among individuals signifi-
cantly exceeds that of those who are unvaccinated, there appears to be a subset within the
well-immunized cohort that may remain susceptible to unexpected infections, potentially
introduced through imported cases such as unvaccinated travelers. Consequently, even a
minor proportion of vaccinated individuals, encompassing also the aforementioned im-
munization gaps contracting the virus, could contribute substantially to the overall case
count [32–35].

The surge in cases intensified toward the end of 2023 and has persisted into 2024.
Figure 1 illustrates the alarmingly increasing case numbers between 2022 and 2023, as
featured by the European Centre for Disease Prevention and Control (ECDC) Surveillance
Atlas for Infectious Diseases [36]. It is anticipated that measles cases will continue to
rise across the EU/EEA in the coming months. This trend can be attributed primarily
to suboptimal vaccination coverage for measles-containing vaccines (MCVs) in specific



Vaccines 2024, 12, 486 3 of 23

EU/EEA countries, heightened susceptibility to importation from areas with widespread
circulation of the virus and the convergence of the upcoming months with the seasonal
peak of measles transmission [37].
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The WHO European region—encompassing a considerably larger geographic scope
compared to the territory of the ECDC Europe—witnessed a surge in measles cases in
2023, with more than 30,000 cases documented across 40 of the 53 countries, resulting
in 21,000 hospitalizations. This escalation has continued into 2024 (Figure 2). Measles
infections have impacted individuals of all age groups, with notable disparities in age
distribution observed among different countries. Approximately two out of every five re-
ported measles cases involve children under the age of five [38]. Austria and Romania
rank among the ten most affected countries, as identified by the WHO Regional Office
for Europe, although Kazakhstan, Kyrgyzstan, and Armenia exhibit the highest incidence
rates [39]. The upsurge in measles cases is largely attributed to the decline in vaccination
coverage during the COVID-19 pandemic from 2020 to 2022. This decline resulted in a
significant rise in the number of individuals who were either unvaccinated or incompletely
vaccinated, both within the European region and globally [38,40].

In December 2023, the US Centers for Disease Control and Prevention (CDC) re-
leased the updated 2024 Advisory Committee on Immunization Practices (ACIP) Adult
Immunization Schedule. These guidelines were introduced during a concerning rise in
vaccine-preventable viral infections, such as SARS-CoV-2, and the resurgence of measles,
once thought to be eradicated. This increase is attributed to vaccine hesitancy and noncom-
pliance [41]. Recent data from the CDC present alarming evidence confirming the ongoing
problem. As of 11 April 2024, a cumulative total of 121 measles cases had been reported
across 18 jurisdictions: Arizona, California, Florida, Georgia, Illinois, Indiana, Louisiana,
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Maryland, Michigan, Minnesota, Missouri, New Jersey, New York City, New York State,
Ohio, Pennsylvania, Virginia, and Washington. There have been seven outbreaks (defined
as 3 or more related cases) reported in 2024, and 71% of cases (86 of 121) are outbreak-
associated [42]. The re-emergence of measles virus infections, previously under control in
Western countries due to the measles, mumps, and rubella (MMR) vaccine, underscores
the public health risks associated with insufficient efforts to emphasize the importance of
vaccination adherence [41–52].
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information does not constitute part of the intellectual property of our research group and is solely
intended to provide an informative illustration of the serious nature of the problem and to raise
awareness. Countries with the highest number of measles cases during the specified period are
based on provisional data derived from monthly reports submitted to the World Health Organization
(WHO) headquarters in Geneva as of early February 2024. The data cover a time period ranging from
July 2023 to December 2023. ** The World Health Organization (WHO) classifies all suspected measles
cases reported from India as clinically compatible if a specimen was not collected according to the
algorithm for the classification of suspected measles in the WHO Vaccine-Preventable Diseases (VPD)
Surveillance Standards. Consequently, there might be disparities between the numbers reported by
the WHO and those reported by India. Data source: https://www.cdc.gov/globalhealth/measles/
data/global-measles-outbreaks.html#print (accessed on 20 April 2024).

Moreover, in January 2024, the WHO Region of the Americas issued an epidemiological
alert concerning measles, urging countries in the region to persist in their efforts to improve
and sustain sufficient vaccination coverage against measles, rubella, and mumps [53]. Ac-
cording to this ‘Epidemiological Alert’ (PAHO/WHO; January 2024, Washington, DC, USA),
in light of the persistently low coverage rates of MMR1 and MMR2 vaccines, the escalating
global incidence of measles, and the emergence of imported cases within the Americas, the
Pan American Health Organization/World Health Organization (PAHO/WHO) advocates
for Member States to enhance vaccination coverage against measles, rubella, and mumps. A
focus on vaccination, robust surveillance systems and swift response capabilities constitutes
fundamental strategies to sustainably control the spread of these viruses [53].

www.cdc.gov
https://www.cdc.gov/globalhealth/measles/data/global-measles-outbreaks.html#print
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Regarding preventive intervention measures in Europe, the European Centre for Dis-
ease Prevention and Control (ECDC) advises public health authorities within the European
Union (EU) and European Economic Area (EEA) to prioritize the following fundamental
strategies (Figure 3): addressing immunity gaps and achieving high vaccination coverage
for measles-containing vaccines, enhancing the quality of surveillance systems, strength-
ening public health capacities, particularly in terms of outbreak control, and improving
compliance in vulnerable settings to enhance acceptance and adherence to vaccination
efforts [37].
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Figure 3. ECDC recommendations for EU/EEA public health authorities regarding an anticipated
increase in measles cases. The data shown in the figure are adopted from the ecdc.europa.eu website
(THREAT ASSESSMENT BRIEF, Measles on the rise in the EU/EEA: considerations for public health
response, 16 February 2024 [37]). The depicted information does not constitute part of the intellectual
property of our research group and is solely intended to provide an informative illustration of the
serious nature of the problem and to raise awareness. Data source: https://www.ecdc.europa.eu/
sites/default/files/documents/measles-eu-threat-assessment-brief-february-2024.pdf (accessed on
20 April 2024).

Accordingly, the main scope of the present immune-serological analysis is to address
population-wide immunity gaps against the presumably eradicated vaccine-preventable
diseases measles, mumps and rubella. While focusing on medicine and epidemiology,
broader socio-economic and geopolitical factors influencing herd immunity are crucial to
consider. With Ukraine’s significant population and history of measles outbreaks, disrup-
tions in healthcare and vaccination schedules heighten epidemiological risks. Experts warn
of potential measles outbreaks in Ukraine, stressing the need for proactive measures [54–61].
Additionally, the CDC cautions that infectious diseases can rapidly spread, reaching major
urban centers worldwide within 36 h. Measles, with its relatively long incubation and
latency period, poses significant risks. Decreases in measles vaccination rates during the
COVID-19 pandemic have raised the global outbreak risk, with over 61 million doses of
measles-containing vaccine postponed or omitted between 2020 and 2022 due to COVID-19
disruptions [37,56,61–65].

ecdc.europa.eu
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Hence, we conducted an age-stratified study, synthesizing data from a cross-border
collaboration with Osijek, Croatia. Leveraging former sero-epidemiological assessments of
anti-measles (and subsequently anti-MMR) humoral antibody levels (IgG), subsequently
transformed into seropositivity ratios, our aim was to elucidate age-specific epidemiological
patterns, identify high-risk cohorts and discern potential analogies through a comparative
analysis between the cross-border regions of Hungary and Croatia. Our model stands as a
robust and equitable representation of the South–Western European population from an
epidemiological standpoint, given the historically consistent demographic characteristics
over recent decades. Our principal objectives encompassed the delineation of age-specific
risk profiles and the exploration of age-related epidemiological dynamics within adjacent
nations. We suggest that the herein presented analysis might help in the assessment of
targeted intervention feasibility tailored to specific age strata amidst potential disease
importation scenarios and the overarching endeavor of enhancing societal awareness.

2. Materials and Methods
2.1. Human Serum Samples

Within the framework of a double-centered cross-border cooperation with Osijek,
Croatia, we evaluated a total of 2680 residual anonymous serum samples from Hungary
(Department of Laboratory Medicine, Department of Immunology and Biotechnology,
Clinical Centre, Medical School, University of Pécs, Hungary) and 1764 residual anony-
mous serum samples received from Osijek, Croatia (Scientific Centre for Excellence for
Personalized Health Care, Josip Juraj Strossmayer University of Osijek). Detailed sample
numbers are represented in Table 1.

Table 1. Measles, mumps, and rubella sample numbers per age group of the Hungarian and
Croatian samples.

10–20 yrs 20–30 yrs 30–40 yrs 40–50 yrs 50–60 yrs 60–70 yrs ≥70 yrs Total

Measles
Hungary (Pécs) 682 517 313 383 248 257 280 2680
Croatia (Osijek) 143 279 359 307 291 253 132 1764

Mumps Hungary (Pécs) 220 266 159 205 116 122 111 1199
Croatia (Osijek) 143 279 359 307 291 253 132 1764

Rubella
Hungary (Pécs) 220 266 159 205 116 122 111 1199
Croatia (Osijek) 143 279 359 307 291 253 132 1764

2.2. ImmunoSerological Meassurment of Human Serum Samples

As outlined in our previously published research on immunoassay scaling, setup and
refinement [66,67], our laboratory executed triple measles, mumps, and rubella (MMR)
enzyme-linked immunosorbent assays (ELISAs) utilizing the robotic functionalities of the
Siemens BEP 2000 Advance System (Siemens/Dade Behring, Marburg, Germany). During
the development of our in-house ELISAs, commercially available antigen preparations were
utilized, comprising the measles Edmonston strain cultured in Vero cells (PIP013 Bio-Rad,
Hercules, CA, USA), the mumps Enders strain cultured in BSC-1 cells (PIP014 Bio-Rad), and
the rubella HPV-77 strain cultured in Vero cells (PIP044 Bio-Rad). The calibration of internal
standards adhered to established international standards, recognized as ‘gold standards’,
including the 3rd WHO International Standard for Anti-Measles (NIBSC 97/648), Anti-
Rubella Immunoglobulin 1st WHO International Human Standard (NIBSC RUBI-1-94),
and Anti-Mumps Quality Control Reagent Sample 1 (NIBSC 15/B664).

Prior to the automated execution of the assays, manual specimen pre-analytics and
sample predilution were performed. As described earlier [66,67], self-developed MMR
ELISAs underwent optimization utilizing a range of commercially available reference assays
from various providers (Novalisa, Sekisui -Virotech, Immunolab, Serion, Euroimmun,
Siemens Enzygnost, Vircell, Novatec, DiaPro, ORGENTEC Alegria® Test Strips). For
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an independent reference method, a population-based validation of the in-house MMR
ELISAs’ indirect immunofluorescence (EUROIMMUN Medizinische Labordiagnostika AG.
Lübeck, Germany) was employed, also confirmed by an independent laboratory (National
Centre for Epidemiology, Department of Virology, Budapest, Hungary). Additionally,
as an in-house reference method, the results were verified using monoclonal anti-viral
antibody-based sandwich ELISAs. Optimization experiments were conducted to enhance
the signal-to-noise ratio and minimize nonspecific background, guided by the concordance
with reference tests [66,67]. Assay precision and specific assay characteristics across various
variables have been comprehensively outlined in our prior publications [66,67]. As outlined
in the prior literature [66,67], the determination of the threshold was achieved via an
analysis of Receiver Operating Characteristics (ROCs), employing the Area Under the
Curve (AUC) method, coupled with the application of Youden’s J equation. Subsequently,
these normative reference cut-off values were refined according to the findings of reference
commercial tests. Extinction values were transformed into quantitative data by fitting
sigmoidal dose–response curves to the dilution points of the standards. Supplementary
Table S1 provides a schematic representation of the fundamental steps of the assay protocol.

2.3. Methods of Result Evaluation

To conduct a rigorous analysis of age-stratified sero-epidemiological data intended to
monitor variations in humoral immunity between two distinct nations, seropositivity ratios
were determined using the formula seropositivity = (number of positive samples per age
group/total number of samples per age group) × 100. These ratios were then graphically
presented via dot plots for a clear and concise visualization of the results. OriginLab data
analysis and graphing software was employed to ensure accuracy and efficiency in the
graphical presentation of the findings.

To comprehensively analyze the data from a statistical perspective, we implemented
the Clopper–Pearson exact binomial confidence interval as a statistical method in order to
calculate the confidence intervals for proportions regarding our binomial data (positive
or negative seropositivity outcomes) for both Croatia and Hungary simultaneously. The
absence of overlap in the confidence intervals (CI 95%) was interpreted as indicative of a
statistically significant difference between the respective age groups. Recognizing the poten-
tial variability stemming from varying case numbers, we opted against presenting p-values
as a measure of statistical significance (For multiple statistical tests, such as comparisons
across various variables, False Discovery Rate Correction may be necessary to overcome
the increased likelihood of observing a ‘significant’ result by random chance alone).

3. Results

The observations illustrated in Figure 4a–c (based on Table 2) regarding anti-measles,
mumps, and rubella (MMR) seropositivity ratios within the Croatian and Hungarian popula-
tions elicit significant epidemiological concerns, particularly with respect to measles (Figure 4a).
Given the widely cited basic reproduction number (R0) for measles, typically falling within
the range of 12–18, which denotes the average number of secondary infections generated
by a single infectious individual within a wholly susceptible population [29,31,32,68], and
acknowledging that achieving herd immunity for measles necessitates vaccination coverage of
≥95%, alongside an expected seroconversion rate of ≥95–98% [1,9,12–14,16,18,20,40,51,55–68],
the specific findings delineated in the age-stratified clusters present in Figure 4a–c are less than
reassuring. Despite concerted immunization efforts, suboptimal anti-measles seropositivity
ratios were detected in multiple age clusters.

The highest vulnerability within the Croatian cohorts was recorded in the age groups
20–30, 30–40, and 40–50 years, demonstrating seropositivity ratios of 75.7%, 77.5%, and
73.3%, respectively. Similarly, among the Hungarian samples, suboptimal seropositivity
ratios were observed within the age clusters of approximately 30–40 and 40–50 years, with
80.9% and 87.3% seropositivity ratios, respectively.
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Moreover, regarding mumps- and rubella-associated seropositivity ratios, individuals
within the age range of approximately 30–50 years in both examined nations exhibited
heightened vulnerability (Figure 4b,c). The conspicuous deficit in humoral antibody titers
and subsequent existence of seropositivity gaps within this age cohort prompt inquiries
into vaccine efficacy [24,30,37,69–83]. These findings echo previous studies [35,66,67,69–71]
and data in the literature [72–79], indicating persistent challenges in achieving sufficient
immunity against measles despite vaccination efforts.

The highest seropositivity ratios in both adjacent nations for measles, mumps and
rubella were observed among individuals aged 50 years and older (Figure 4a–c, based on
Table 2). This demographic cluster likely experienced natural infections either during the
early stages of vaccination or before widespread vaccination efforts were implemented.
Our observation aligns with the established literature suggesting that immune protection
resulting from wild-type infection elicits a more durable and robust immune response
compared to vaccine-induced immunity [35,66,69,70,80–85].

Furthermore, it is noteworthy to observe relative similarities in the trends and over-
laps of seropositivity patterns between the two countries (Figure 4a–c), despite known
disparities in vaccination protocol schedules, immunization inocula, geopolitical histories
and consequent healthcare system statuses and availability. This finding is also consistent
with prior observations [35].

Table 2. Measles, mumps and rubella. Number of seronegative samples versus total sample number
per age group.

AGE (Years) 10–20 20–30 30–40 40–50 50–60 60–70 ≥70 Total

M
ea

sl
es

Hungary
(Pécs)

Sample numbers per
age group 682 517 313 383 248 257 280 2680

Number of seronegative
samples 52 54 60 49 7 14 7 284.39

Croatia
(Osijek)

Sample numbers per
age group 143 279 359 307 291 253 132 1764

Number of seronegative
samples 17 68 81 82 34 17 10 309

M
um

ps

Hungary
(Pécs)

Sample numbers per
age group 220 266 159 205 116 122 111 1199

Number of seronegative
samples 17 34 29 21 4 4 8 117

Croatia
(Osijek)

Sample numbers per
age group 143 279 359 307 291 253 132 1764

Number of seronegative
samples 20 44 74 69 43 39 19 308

R
ub

el
la

Hungary
(Pécs)

Sample numbers per
age group 220 266 159 205 116 122 111 1199

Number of seronegative
samples 15 30 18 22 11 5 4 105

Croatia
(Osijek)

Sample numbers per
age group 143 279 359 307 291 253 132 1764

Number of seronegative
samples 11 37 60 42 18 27 17 212
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on quantitative data obtained through immunoassays (ELISAs), which were then translated into 
qualitative outcomes (positive or negative). Seropositivity = number of positive samples per age 
group/total number of samples per age group × 100. Dots are connected solely to facilitate visual 
tracking of consistent trends between countries, serving the purpose of facilitating easy interpreta-
tion based on direct observation. (a) Anti-measles IgG seropositivity ratios; (b) anti-mumps IgG se-
ropositivity ratios; (c) anti-rubella IgG seropositivity ratios.  
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younger age groups (20–30, 30–40 and 40–50 years) of vaccinated individuals (age < 50 
years), as discerned from nonoverlapping confidence intervals (Figure 5a–c, Supplemen-
tary Tables S2 and S3). These findings substantiate our hypothesis: the initial recipients of 
targeted vaccination may have still encountered residual virus circulation during the pro-
gram’s inception, while subsequent age groups might have experienced vaccine failure 
and/or immune senescence due to a lack of natural boosting (i.e., disrupted virus circula-
tion). Notably, the youngest vaccine recipients (10–20 years) in both countries exhibit suf-
ficiently high seropositivity rates comparable to the elder clusters. 

In the analysis of Hungarian mumps (Figure 5b) data, statistically significant differ-
ences are most pronounced among age groups 30–40, 50–60 and 60–70. Intriguingly, in 
the Croatian samples (Figure 5b), no statistically significant nonoverlaps were observed. 

Regarding rubella (Figure 5c), significant statistical disparities were found exclu-
sively in the Croatian samples, with the most notable contrast observed between age 
groups 30–40 and 50–60 years when considering nonoverlapping confidence intervals. 

Figure 4. (a–c). Simple dot plot representation of anti-measles IgG seropositivity ratios. During result
computation, no discrimination was made between immune responses elicited by vaccination and
those triggered by natural infection, including subsequent seroconversion. The analysis relied on
quantitative data obtained through immunoassays (ELISAs), which were then translated into qualita-
tive outcomes (positive or negative). Seropositivity = number of positive samples per age group/total
number of samples per age group × 100. Dots are connected solely to facilitate visual tracking of
consistent trends between countries, serving the purpose of facilitating easy interpretation based
on direct observation. (a) Anti-measles IgG seropositivity ratios; (b) anti-mumps IgG seropositivity
ratios; (c) anti-rubella IgG seropositivity ratios.

Furthermore, age-related disparities are also detectable at a statistical level (Figure 5a–c).
Regarding measles (Figure 5a), the analyses of both the Hungarian and Croatian cohorts
reveal notable distinctions between earlier vaccination eras (age > 50 years) and younger
age groups (20–30, 30–40 and 40–50 years) of vaccinated individuals (age < 50 years),
as discerned from nonoverlapping confidence intervals (Figure 5a–c, Supplementary
Tables S2 and S3). These findings substantiate our hypothesis: the initial recipients of
targeted vaccination may have still encountered residual virus circulation during the pro-
gram’s inception, while subsequent age groups might have experienced vaccine failure
and/or immune senescence due to a lack of natural boosting (i.e., disrupted virus circu-
lation). Notably, the youngest vaccine recipients (10–20 years) in both countries exhibit
sufficiently high seropositivity rates comparable to the elder clusters.

In the analysis of Hungarian mumps (Figure 5b) data, statistically significant differ-
ences are most pronounced among age groups 30–40, 50–60 and 60–70. Intriguingly, in the
Croatian samples (Figure 5b), no statistically significant nonoverlaps were observed.

Regarding rubella (Figure 5c), significant statistical disparities were found exclusively
in the Croatian samples, with the most notable contrast observed between age groups 30–40
and 50–60 years when considering nonoverlapping confidence intervals.
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Figure 5. (a–c). Assessing nonoverlapping confidence intervals for age group comparison. The Clop-
per–Pearson exact binomial confidence interval was used as a statistical method in order to calculate 
the confidence interval for a proportion regarding our binomial data (positive or negative seroposi-
tivity outcomes). The absence of overlap in confidence intervals (CI 95%) was interpreted as indica-
tive of a statistically significant difference between the respective age groups. For detailed analysis, 
structured in a clear, table-based design, highlighting only the nonoverlapping confidence intervals 

Figure 5. (a–c). Assessing nonoverlapping confidence intervals for age group comparison. The
Clopper–Pearson exact binomial confidence interval was used as a statistical method in order to
calculate the confidence interval for a proportion regarding our binomial data (positive or negative
seropositivity outcomes). The absence of overlap in confidence intervals (CI 95%) was interpreted
as indicative of a statistically significant difference between the respective age groups. For detailed
analysis, structured in a clear, table-based design, highlighting only the nonoverlapping confidence
intervals between age groups, please see Supplementary Table S2; for all computed Clopper–Pearson
exact binomial confidence intervals, see Supplementary Table S3.
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4. Discussion

In developed European regions with high vaccination rates and generally favorable
compliance, elucidating gaps in humoral protection presents a significant challenge in
addressing susceptibility to infection. These gaps are closely associated with instances of
vaccine failure, which can be attributed to various factors, including the age of the vaccine
recipient at the time of vaccination, the vaccination regimen, the immunogenicity of the vac-
cine strain and regional demographic characteristics. Primary vaccine failure, characterized
by individuals failing to mount an adequate immune response following vaccination, and
secondary vaccine failure, occurring when individuals previously exhibiting serological
conversion following vaccination experience measles infection, contribute to the complexity
of this issue [72,73,76–79,86–88].

Aligned with the directives set forth by the ECDC, our current article highlights
key points emphasized in the February 2024 ‘Threat Assessment Brief’. The emphasis of
our present analysis lies in addressing deficiencies in humoral immunity against measles,
mumps and rubella (MMR), specifically focusing on anti-viral IgG-derived seropositiv-
ity ratios. Additionally, we suggest that identifying vulnerable population groups may
facilitate efforts to mitigate the spread of the virus in scenarios involving sudden or un-
foreseen rises in potentially late-diagnosed imported cases. Despite vaccination coverage
exceeding 95% with both doses of measles-containing vaccines (MCVs) in the examined
countries (Hungary, Croatia), historical epidemiological data reveal instances of major
epidemics occurring even after the implementation of mandatory and cost-free vaccina-
tions [38,72–77,79,88,89]. This suggests the presence of potential imperfections or gaps in
the epidemiological protective measures. Additionally, the basic reproduction number (R0)
for measles is notably high, estimated to be between 12 and 18. This means that, on average,
each person infected with measles could potentially transmit the virus to 12–18 others in
a completely susceptible population Achieving herd immunity for measles necessitates
vaccination coverage of at least 95%, coupled with an anticipated seroconversion rate
of 95–98% [1,9,13,14,20,22,23,30,40,51,55–64]. However, the specific findings for the age
clusters depicted in the results section (Figures 4 and 5) are not reassuring, indicating a
significant disparity between the observed seropositivity rates and the thresholds required
for herd immunity.

In order to provide a comprehensive discussion of the age-cluster-related seropositivity
analysis presented in the results section, it is pertinent to contextualize the vaccination
schedules of the compared countries from an epidemiological perspective. Tables 3 and 4
(Table 3: Hungary; Table 4: Croatia) provide a comprehensive overview of the modifications
made to vaccination schedules, including the timing of primary and booster immunizations,
targeted demographics, administration techniques, and the types and formulations of the
administered vaccines. By delineating age group boundaries within the aforementioned
tables, connections between vaccination and epidemiological trends become traceable
and interpretable.

Despite the potential limitations in humoral protection levels indicated by the pre-
sented results, it is noteworthy that both Croatia and Hungary adhere to established and
well-tested vaccination protocols. These protocols are based on the fundamental principle
of mandatory, easily accessible, and cost-free MMR immunizations. In Croatia, children
are vaccinated at 12 months of age and again at 6–7 years (grade 1 students) [90], while in
Hungary, children receive the MMR immunization at 15 months and again at 11 years (as
part of the routine school-based vaccination schedule in 6th grade) [90,91].

Our result analysis shows that in the Croatian cohort aged ~40–50 years, encompassing
individuals born between 1983 and 1973 (±1 year), despite undergoing systematic immu-
nization initiatives with concerted endeavors aimed at achieving comprehensive coverage
on multiple occasions (Table 4), the levels of humoral anti-measles antibodies tested fall
notably below expectations. Considering the age range of this cohort and adhering to the
principle that earlier years of immunization protocol implementation are more likely to



Vaccines 2024, 12, 486 13 of 23

result in suboptimal seroconversion outcomes due to the perceived fledgling state of the
system, our focus should be directed towards the early years of implementation.

Table 3. Measles/MMR vaccination schedules in Hungary.

Year/Period of
Vaccination

Who Received Vaccinations This Year,
and What Were the Underlying Rationales for Their Administration?

Prior to 1969
Patients who have not received vaccinations are susceptible to wild-type infections or have been through a
wild-type virus infection. In 1969, the measles vaccine was introduced in Hungary, utilizing the live, attenuated
Leningrad-16 strain manufactured in the Soviet Union.

1969–1977

Between 1969 and 1974, a single dose of the measles vaccine was administered during widespread campaigns to
individuals aged 9–27 months. Initially, the recommended age for vaccination was 10 months, until it was
adjusted to 14 months in 1978.
After an initial decline in the incidence rate, notable epidemics emerged, predominantly among unvaccinated
children aged 6 to 9 years, during the period spanning 1973–1974.
Following the epidemic of 1980–81, individuals born from 1973 to 1977, who would have been vaccinated at
10 months, were given a revaccination.
The 1988–89 epidemic predominantly affected individuals aged 17–21 years, who were prioritized for
vaccination during the early phases of the vaccination program in Hungary.
Subsequently, starting in 1989, children were routinely revaccinated at the age of 11 with the monovalent
measles vaccine according to a structured schedule. As a result, the earliest recipients of this 11-year reminder
vaccination were born in 1978. Consequently, the cohort born between 1969 and 1977 represents the final group
not included in the official vaccination schedule to receive a reminder vaccine at age 11.

1978–1987
These are the first individuals who benefited from the reminder monovalent measles vaccine at the age of 11. In
1999, the administration of the trivalent vaccine was started in Hungary; consequently, those who received the
first trivalent vaccine in 1999 were born in 1988.

1988–1990 In 1989, the rubella vaccine was introduced, coinciding with the initiation of the monovalent measles reminder
vaccination at the age of 11. The following year, in 1990, the measles–rubella bivalent vaccines were introduced.

1991–1995

The initiation of the initial vaccine administration at 14 months of age persisted from 1978 until 1991. In 1991,
the measles–mumps–rubella (MMR) trivalent vaccine was introduced. Subsequently, in 1992, the MMR vaccine
was administered at 15 months of age. The MERCK MMR II, featuring the Enders’ Edmonston strain (live,
attenuated), was introduced in 1996.

1996–1998

In 1996, the MERCK MMR II, incorporating the Enders’ Edmonston strain (live, attenuated), was introduced.
In 1999, a shift occurred from the monovalent measles vaccine to the measles–mumps–rubella (MMR)
revaccination. This transition coincided with the introduction of GSK PLUSERIX, featuring the Measles
Schwarz Strain.

1999–2002 In 1999, the GSK PLUSERIX vaccine, containing the Measles Schwarz Strain, was introduced. Subsequently, in
2003, the GSK PRIORIX vaccine was introduced.

2003 In 2003, the GSK PRIORIX vaccine, containing attenuated Schwarz Measles, was introduced.

2004–2005 During the years 2004 to 2005, the MERCK MMR II vaccine was administered.

2006–2010 From 2006 to 2010, during a five-year tender period, the GSK PRIORIX vaccine containing attenuated Schwarz
Measles was utilized.

After 2011
Starting in 2011, a Sanofi-MSD product, MMRvaxPro, containing the live attenuated Measles virus Enders’
Edmonston strain, has been employed for both the initial vaccination and revaccination of children. Meanwhile,
GSK PRIORIX remains available on the market and is predominantly utilized for vaccination in adulthood.

Sources of information include International Notes Measles—Hungary, MMWR Weekly, October 06, 1989/38(39);
665–668 [73], relevant national and international public sites on vaccination calendars, information, and
safety [90,91], as well as verbal information obtained from partners and colleagues at the Hungarian National
Institute of Epidemiology (with special regards to Dr. Zita Rigó and Dr. Zsuzsanna Molnar).
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Table 4. Measles/MMR vaccination schedules in Croatia.

Vaccination
Period (Years)

Who Received Vaccinations This Year,
and What Were the Underlying Rationales for Their Administration?

. . .–1968/69

1968: The measles vaccine was incorporated into the national childhood vaccination schedule [90].
During the initial phases of vaccine implementation, individuals with a history of prior measles infection were
generally not targeted for vaccination. Diagnosis primarily depended on medical history and clinical
presentation, leading to the possibility that some children were not immunized due to underrecognition of
past infections.

1968–1969

The live measles vaccine was cultivated in human diploid cells (WI-38) at the Institute of Immunology of Zagreb
from a further-attenuated Edmonston–Zagreb strain originally propagated in tissue culture in chick embryos.
The Edmonston–Zagreb strain of measles virus is a further-attenuated Edmonston–Enders strain that has
undergone 19 passages in human diploid cells (WI-38), including three plaquings [92]. Based on contemporary
data, post-immunization reactions induced by the Edmonston–Zagreb vaccine were categorized as mild. The
incidence of individuals experiencing fever exceeding 38 ◦C was less than 2%. Additionally, a fourfold rise in
antibody titers among the seronegative cohort exceeded 90% [92].

1969

The implementation of large-scale measles vaccination initiatives began in the former Yugoslavia in 1969,
utilizing a monovalent measles vaccine for both primary and booster doses.
Children born between 1965 and 1967 who had not contracted the measles virus (MeV) were targeted
for vaccination.
Additionally, children attending first grade during the 1968/69 school year (typically aged 6 or 7, born in 1962 or
1963) and who remained free from measles infection were included in the vaccination campaign. Immunization
efforts extended to infants in their eleventh month of life.
Furthermore, children scheduled for vaccination in 1968 (those born in 1966), as well as subsequent cohorts,
including second-grade students (aged 7 or 8, born in 1961–1962), and those in childcare facilities who missed
vaccination opportunities due to various reasons, were also prioritized for immunization.

1970

Children born between 1963 and 1968 who had not been previously exposed to measles and had not undergone
any vaccination were administered immunization, except for those designated to receive the third dose of the
DTaP (Diphtheria, Tetanus, Pertussis) vaccine.
Additionally, vaccination was provided to children in the fourth grade of elementary school during the 1969/70
academic year (aged 9 or 10; born in 1959 or 1960), who had not encountered the measles virus and had not yet
received vaccination.
Furthermore, infants in their eleventh month of life were administered vaccination following the
continuous protocol.

1973 Primary vaccination was administered to children at one year of age, with the additional inclusion of the
rubella component.

1974 The mumps component of the vaccine was added

1975

1975: The rubella vaccine introduced in the national childhood vaccination schedule [90]. In 1975, children older
than one year who followed a consistent vaccination schedule were set to receive their initial vaccination.
Moreover, children born in 1973 eligible for targeted vaccination campaigns, excluding those awaiting their third
DTaP dose, were designated to receive their first vaccination. Additionally, children over one year of age
enrolled in preschool facilities who had not yet been vaccinated were also scheduled for their initial vaccination.
Furthermore, children born in 1971 and those entering first grade in the 1974/75 academic year were also slated
to receive their initial vaccination.

In 1976, the MMR trivalent vaccine was officially integrated into the national childhood vaccination schedule,
replacing single-antigen vaccines for the first dose and introducing a mumps vaccination program. Additionally,
a rubella catch-up vaccination program for 14-year-old girls was initiated in the same year [90]. In 1976, the
Institute of Immunology in Zagreb introduced a trivalent measles–mumps–rubella vaccine, replacing the
monovalent vaccine used for the initial dose. As a result, children received their first trivalent vaccinations
against measles, mumps, and rubella (MMR) through ongoing vaccination protocols beginning after their first
year of life since that time.
Under the campaign vaccination approach, all children born in 1974, except those set to receive the third dose of
DTaP (Diphtheria, Tetanus, Pertussis) during that timeframe, received their first vaccinations against measles,
mumps, and rubella (MMR).
Additionally, girls in the eighth grade of elementary school (born in 1963 or 1962) received their initial rubella
vaccination. Furthermore, children entering first grade during the 1975/76 school year (aged 6 or 7, born in 1970
or 1969) received the measles vaccination.
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Table 4. Cont.

Vaccination
Period (Years)

Who Received Vaccinations This Year,
and What Were the Underlying Rationales for Their Administration?

1994
In 1994, a second dose of MMR (MMR2) was introduced at 7 years of age, replacing the single-antigen vaccines
for the second dose [90]. Since 1994, the trivalent vaccine of the Institute of Immunology in Zagreb has been
routinely utilized for the administration of the second dose as well.

1996

Children who, for any reason, did not receive their initial MMR vaccination remained eligible for vaccination up
to the age of 14.
Additionally, all girls attending eighth grade during the 1996/97 academic year (aged 13 or 14, born in 1983 or
1982) received the rubella vaccination. The present regulations prohibit exemptions from vaccination for
individuals who have previously experienced measles, mumps, or rubella infections.

1997
Since 1997, it had been recommended to administer MMR2 at 12 years of age [90]. The timing for revaccination,
initially slated for administration during the first grade of elementary school, had been adjusted to take place in
the sixth grade.

1999 In 1999, the recommendation for MMR2 was reverted back to 7 years of age [90].

2008–2009

PRIORIX (GlaxoSmithKline), a live attenuated combined vaccine against measles, mumps, and rubella, is
recommended for active immunization against these infections. PRIORIX is a lyophilized mixed preparation of
the attenuated Schwarz measles, RIT4385 mumps (derived from the Jeryl Lynn strain) and Wistar RA 27/3
rubella strains of viruses, separately obtained by propagation either in chick embryo tissue cultures (mumps and
measles) or MRC5 human diploid cells (rubella). In pediatric settings, a single dose is typically advised for
children, either on or shortly after their first birthday. Older children lacking documented evidence of prior
vaccination should also receive the vaccine [93].

2009

Due to adverse events caused by the mumps component of the national ‘MoPaRU’ (MMR) vaccine (produced by
the Institute of Immunology in Zagreb), which occurred after the first dose of the vaccine, this vaccine was
replaced for the first dose by another producer in 2009. (Due to the discontinuation of its production in 2011, this
vaccine was replaced by another, also for the second dose.)

2010

The aforementioned PRIORIX (GlaxoSmithKline) and M-M-RVaxPro (Merck Sharp & Dohme) are two
commercially available vaccines used to confer protection against measles, mumps and rubella in individuals
aged 12 months or older. M-M-RVaxPro may be administered to infants between 9 and 12 months of age under
specific circumstances [94]. This vaccine contains live attenuated strains of measles virus (Enders’ Edmonston
strain), mumps virus (Jeryl Lynn [Level B] strain) and rubella virus (Wistar RA 27/3 strain) [94]. In addition to
these commercial products, the national vaccine “MoPaRU” (MMR), produced by the Institute of Immunology
in Zagreb, remained in use until 2011.

2011–2014 PRIORIX (GlaxoSmithKline) and M-M-RVaxPro (Merck Sharp & Dohme)

2015–. . . PRIORIX (GlaxoSmithKline)

Information relies on co-author accounts, literature overview [76,77,79,90,92] and commercial vaccine product
inserts [93,94].

As per the vaccination schedule delineated in Table 4, the primary vaccination was
administered to children at the age of one, with subsequent inclusion of the rubella com-
ponent. In 1974, the mumps component of the vaccine was also incorporated. During
1975, children older than one year adhering to a consistent vaccination regimen were slated
for their initial vaccination dose. Furthermore, children born in 1973 eligible for targeted
vaccination campaigns, excluding those awaiting their third DTaP dose, were designated
to receive their first vaccination. Additionally, unvaccinated children over one year of age
attending preschools were also scheduled for their initial vaccination. Moreover, children
born in 1971 and those entering first grade during the 1974/75 academic year were included
in the initial vaccination plan.

Based on the aforementioned data, it appears highly probable that insufficient vaccina-
tion coverage was not the primary issue. Commonly cited traditional factors contributing
to vaccine insufficiency include waning immunity, incomplete vaccination series, variability
in vaccine effectiveness and suboptimal conditions during distribution and administra-
tion. Consequently, attention may be redirected towards the composition of the vaccine
itself. Historical data indicate the utilization of different measles vaccines over the years,
including the MoPaRu (MMR by Institute of Immunology of Zagreb) vaccine from 1963 to
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2007, as well as the Priorix and GlaxoSmithKline MMR vaccines alongside the Croatian
national product. Notably, adverse events linked to the mumps component of the MoPaRu
(Institute of Immunology of Zagreb) prompted the replacement of the vaccine used for
the first dose in 2009, followed by a replacement for the second dose in 2011 due to the
discontinuation of production.

In the cohort aged ~30–40 years in Croatia, born between 1993 and 1983 (±1 year), the
challenge of addressing the deficiency in humoral antibody levels is pronounced, resonating
with experiences observed in Hungary. Previous analyses of Hungarian serum samples
have revealed a parallel trajectory [35,66,67,71]. Our prior research endeavors have sought
to delineate the potential determinants of vaccine inadequacy. Drawing from national
data, we have pursued two main avenues to discern the underlying factors contributing
to suboptimal humoral antibody levels [35,66,67,95], recognizing that such insufficiency
does not necessarily equate to a complete absence of protection, given the involvement
of T cell memory, albeit raising pertinent inquiries. The occurrence of measles epidemics
in both examined countries lends support to the plausibility of primary vaccine failure
(characterized by the inability to seroconvert post-vaccination) and secondary vaccine
failures (manifested by waning immunity following seroconversion) [72,73,76–79,86–88].

When examining the cohort of approximately 20–30-year-old individuals in Croatia,
born between 2003 and 1993 (±1 year) (Table 4), the observation of humoral antibody levels
significantly diverging from expected standards can be particularly noteworthy. While
the primary focus of this analysis lies in epidemiological inquiry rather than delving into
the broader realms of political, economic, cultural and social contexts, it is imperative to
acknowledge significant historical geopolitical events, like the Yugoslav Civil Wars span-
ning from 1991 to 2001. These conflicts also exerted notable influence within the Baranja
Region in Eastern Croatia, which serves as the primary area for our biological sampling.
Understanding the impact of these conflicts might provide valuable contextual insight
for our epidemiological investigation. The extensive political instabilities experienced
during this period may have resulted in disrupted healthcare systems and hindered access
to quality healthcare services and effective response measures for the local population.
Therefore, encountering suboptimal sero-epidemiological data within this young age group
may be less surprising, given the lasting repercussions of these historical challenges. This
presumption may also extend to the previously mentioned cohort of individuals aged
30–40 years. Notably, when examining data pertaining to mumps and rubella alongside
measles, a consistent trend is observed across all three measured parameters within these
sample cohorts.

Focusing on the Hungarian findings, our current comprehensive analysis aligns with
the trends observed in our previous publications [35,66,67,71]. Notably, individuals within
the relatively young age group of 30–40 years exhibit a predominant association with
suboptimal seroprevalence outcomes. Specifically, within this age cohort, susceptibility to
measles and mumps is notably pronounced, with similarly elevated vulnerability observed
in relation to rubella. The potential underlying factors have been previously elucidated in
our works and are briefly summarized here.

In Hungary, the epidemiological dynamics are presumed to be as follows (Table 3):
Prior to the introduction of measles immunization in 1969, measles was endemic, result-
ing in widespread childhood infection and subsequent long-lasting immunity for most
individuals. However, with the advent of immunization and subsequent adjustments to na-
tional vaccination policies and schedules, the disease epidemiology underwent significant
transformations. Despite these efforts, large-scale measles epidemics persisted, indicating
potential deficiencies in the immunization protocols [72,74,75,96]. The epidemic patterns
in Hungary reveal distinct outbreaks occurring at different intervals among various age
groups. Notably, the significant epidemics in 1973–74 and 1980–81 predominantly affected
unvaccinated children aged 6–9 years and 7–10 years, respectively. Subsequently, the
1988–89 epidemic primarily impacted individuals aged 17–21 years, a group targeted for
vaccination during early mass campaigns [74]. Furthermore, a minor epidemic in 2017
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underscored persistent challenges, attributed to latent susceptibility within the domestic
population and proximity to measles-endemic regions [71,74]. This episode underscores
the ongoing significance of addressing these issues and the importance of heightened
awareness and prioritized interventions [35,71].

In our current comparative analysis, we reaffirm the previously articulated similari-
ties in age-related epidemiological dynamics between Croatia and Hungary, as described
in our prior publication [35]. Despite variations in vaccination protocols, immunization
doses, geopolitical histories and healthcare system statuses, we observe consistent trends
in affected and susceptible age clusters. This suggests that the challenge of eradicating
vaccine-preventable diseases, notably measles, is multifaceted, influenced by both vaccina-
tion routines and the dynamics of antibody evolution and natural decline. We hypothesize
that declines in seropositivity ratios may not solely result from primary or secondary
vaccine failure but also from the biological dynamics of vaccination and the waning of
long-term immunogenicity [97–100]. As population immunity increases through vacci-
nation and natural boosting exposures become less frequent, the risk of outbreaks may
rise [32,34,35,81,97,100,101].

In summary, we wish to reiterate the paramount importance of raising awareness. Based
on the data presented herein and in alignment with ECDC and WHO directives [37,40,53],
we suggest that it is crucial to analyze the factors contributing to insufficient vaccine effi-
cacy to tailor interventions effectively. Comprehensive strategies might also include risk
communication, initiatives to enhance awareness and training programs for healthcare
providers to enable informed vaccination dialogues [37,53]. Given the challenges and
burdens associated with responding to epidemiological crises caused by compliance issues,
we advocate for early prevention through screening and proactive awareness-raising as
preferable to implementing emergency measures in the midst of a healthcare disaster. Fur-
thermore, identifying potential risk groups is essential to enable targeted community-based
interventions in the event of virus spread, thereby bolstering vaccination efforts [37,53].

5. Conclusions

Measles epidemics have persisted for centuries, but the current surge differs from
historical outbreaks due to high vaccination rates. Despite this, outbreaks still occur, posing
challenges for healthcare professionals and epidemiologists [3,8,21–36]. Our age-stratified
study, leveraging cross-border sero-epidemiological assessments [35,66,67,71,76], highlights
concerns about humoral antibody protection. Suboptimal seropositivity ratios reveal age-
specific risk profiles in the cross-border regions of both Croatia and Hungary, potentially
identifying high-risk cohorts. Relying solely on favorable vaccination rates and presumed
herd immunity can be misleading and undermine vaccination efforts, despite these diseases
nearing eradication. Sero-epidemiological screening and monitoring remain crucial, given
alarming age-related seronegativity data, especially for measles [37,56,61–65]. Our analysis
emphasizes considering factors beyond primary and secondary vaccine failure, noting sim-
ilarities in trends and seronegativity overlap between countries with varied immunization
backgrounds. The dynamics of vaccination, including waning long-term immunity, warrant
attention [32,34,35,81,97–101]. Prolonged, structured immunization suppresses epidemic
fluctuations and eliminates seasonal virus circulation’s booster effect on immunity, likely
causing a decline in vaccine-induced antibody titers [12,37,38,55,62,71,76,81,82,100,101].
Aligned with WHO reports and ECDC directives, preventive measures should address and
close immunity gaps, enhance surveillance quality, elaborate outbreak control scenarios
and improve compliance in vulnerable settings to bolster vaccination efforts [37,53]. Our
analysis aims to underscore the sensitivity of this issue and contribute to assessing targeted
interventions and enhancing societal awareness.

6. Implications of the Study

In evaluating anti-MMR humoral antibody titers (IgG), distinctions between solely
vaccine-induced, solely infection-induced (measles, mumps, or rubella wild-type viruses)



Vaccines 2024, 12, 486 18 of 23

and vaccine plus infection-induced “hybrid or combined immunity” cases were avoided
due to limitations in specimen nature (clinical residual anonymous sera). The vaccine type
and regimen were deduced from birth dates.

This analysis primarily focuses on circulating humoral antibody (IgG) measurement;
however, it is noted that cellular immunity assessment was not included, potentially ren-
dering the picture incomplete. Nevertheless, following Plotkin’s definitions, humoral
antibody-associated seropositivity ratios can be considered valid “correlates of protection”.
Plotkin posits that vaccines primarily function through antibodies that block infection,
providing a “correlate of protection”. The functional characteristics and quantity of anti-
bodies are also crucial, as they may correlate highly with protection or synergize with other
functions. Immune memory is a critical correlate as well. Some vaccines lack true correlates,
relying solely on useful surrogates for an unknown protective response [25,61,81,102–104].

Furthermore, there might be a bias in the selection of participants. As mentioned
in the materials and methods section, anonymous clinical residual samples were used
from the Hungarian partner, specifically from the Clinical Center of the University of Pécs,
and from the Croatian partner, specifically from the Scientific Centre for Excellence for
Personalized Health Care. The known data regarding the samples included gender and
age, without personal names or patient-specific identification numbers. Therefore, in the
present study, immunization time points and vaccine regimens can only be deduced based
on dates of birth (age cluster-based analysis). Additionally, it is important to note that al-
though multicenter studies have advantages over single-center studies by including a larger
number of participants and allowing a more comprehensive population-level examination,
they may introduce complexities in data analysis—especially in the case of neighboring
countries [105]. The potential drawbacks of sample heterogeneity might also lead to in-
creased variability in the data, complicating the interpretation of the results. Furthermore,
this heterogeneity can contribute to confounding bias by encompassing unmeasured or
uncontrolled factors [106,107]. Moreover, the use of clinical residual samples [108–110]
entails the inherent limitation of “loss-of-follow-up”, which, in our case, is the major reason
for the infeasibility of cellular investigations targeting T cell memory responses. This
limitation results in incomplete data and potential bias. Nevertheless, we believe that our
robust sample numbers are sufficient to balance such deviations, and the overlaps found
with former reports and similar studies support the reliability of the dataset. Additionally,
a highly diversified sample multitude best represents the general immunity status and
makeup of a population. Therefore, our samples may truly mimic real-life conditions,
rendering our serum bank suitable for representative epidemiological studies.
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Analysis of statistically significant differences (non-overlapping confidence intervals, CI 95%) among
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Pearson exact binomial confidence intervals were computed as a statistical method. The absence of
overlap in confidence intervals (CI 95%) was interpreted as indicative of a statistically significant
difference between the respective age groups.
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