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Abstract: Electrochemical impedance and chronopotentiometric measurements with Na+-selective
solvent polymeric (PVC) membranes containing a neutral ionophore and a cation exchanger revealed
low-frequency resistance, which is ascribed to Na+ ion transfer across the interface between the
membrane and aqueous solution. The attribution is based on the observed regular dependence of this
resistance on the concentration of Na+ in solutions. The respective values of the exchange current den-
sities were found to be significantly larger than the currents flowing through ion-selective electrodes
(ISEs) during an analysis in non-zero-current mode. This fact suggests that the interfacial electro-
chemical equilibrium is not violated by the current flow and implies that the Nernst equation can be
applied to interpret the data obtained in non-zero-current mode, e.g., constant potential coulometry.

Keywords: Na+-selective electrode; ionophore; ion exchanger; interfacial charge transfer; electrochemical
impedance; chronopotentiometry

1. Introduction

Practical applications of ion-selective electrodes (ISEs) with membranes containing
ionophores usually involve recordings of the EMF: a zero-current potentiometric signal
(ISE potential) measured against a suitable reference electrode (RE). However, in recent
years, ISEs have been increasingly used in non-zero-current modes: voltammetry [1–7]
and chronoamperometry/coulometry [8–18]. A voltammetric analysis with ISEs allows for
simultaneous measurements of the concentrations (rigorous activities) of several ions in a
sample, using only one electrode [1–6]. This is achieved by combining several ionophores,
each selective to a particular ion, in the same membrane. The practical advantage of this
approach is obvious. The advantage of chronoamperometric/coulometric measurements
with ISEs, called constant potential coulometry, is the ability to register very small relative
changes in analyte concentrations. A sensitivity of 0.1% was reported for the measurements
of K+ [11] and Ca2+ in blood model solutions [16]. Importantly, voltammetric measurements
with ISEs are performed at a scan rate of 100 mV/s, and the currents recorded achieve
1–2 µA [7]. In chronoamperometric measurements, the currents flowing through mem-
branes (and therefore across membrane/solution interfaces) are typically low: 10−9–10−7 A.
However, sometimes they may achieve 10−4 A, especially in the reversed amperometric
setup [18]. Thus, ISEs may be polarized during measurements whereas the interpretation
of the results assumes their Nernstian response to activities of ions in solutions. The Nern-
stian response, in turn, requires interfacial electrochemical equilibrium between the ISE
membrane and the solution. It is therefore necessary to examine the issue of the kinetics of
ion transfer across the membrane/solution interface to estimate the values of the exchange
current densities and thus to find out how reliable the assumption of a Nernstian response
when the current flows through the membrane is.
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Sometimes the rate of re-establishment of interfacial electrochemical equilibrium at
the interface between the ISE membrane and aqueous solution is estimated from the ISE
response time: the time required to achieve a steady EMF value after a change in the solution
composition. Furthermore, one can often encounter statements such as the following: fast
response times indicate a fast formation of the ion-to-ionophore complex. However, it
is widely known that the ISE response time depends on the measurement conditions:
whether the sample is stirred, whether the measurements are carried out in a beaker or in a
flow-through cell, etc. This dependence suggests that the response time depends primarily
on the hydrodynamics of the cell. Therefore, we believe that conclusions about the kinetics
of charge transfer across the interface between the ISE membrane and aqueous electrolyte
solution in view of the response time are rather dubious. More reliably, these kinetics
can be quantified in terms of the exchange current density at the membrane/solution
interface [19,20].

In practical measurements with ISEs, a signal is recorded for a time period from a
few seconds to a few minutes in each sample or calibration solution, and the average
value is considered the analytically relevant signal. Therefore, the kinetics of the interfacial
charge transfer does not affect the throughput of the analysis with ISEs. Considered of
little practical importance, measurements of the exchange current density at the interface
between an ISE membrane and a solution are currently far from mainstream in ISE studies.
The data available refer to the results obtained in the 1980s–1990s or in the early 2000s when
the mechanism of the ISE response attracted much attention [21–38]. These data suggest
that the kinetics of the interfacial charge transfer are relatively fast, and the time required
to establish the interfacial electrochemical equilibrium lies in the millisecond range, and
for sure does not exceed 1 s. However, more studies are needed to address the issue of
the interfacial charge transfer at ISE membranes to justify the equilibrium approach to the
interpretation of ISE signals obtained in non-zero-current modes.

In this paper, we report on a systematic study of the interfacial properties of Na+-
selective ISEs. This ISE was chosen as a model system for two reasons. Firstly, the Na+ con-
centration in, e.g., blood serum varies in a relatively narrow range from 120 to 160 mM [39],
and thus the variation makes 0.12 logarithmic units only, so chronoampero/coulometric
measurements of Na+ may be necessary. Secondly, the literature data on the kinetics of
charge transfer across the interface between ionophore-based Na+-selective membranes
and solutions are controversial [33]. Our study was carried out using electrochemical
impedance and chronopotentiometric measurements.

Solid-contact construction is predominating in the practical use of ISEs. However, in
such ISEs, only the external side of the membrane is in contact with the solution, while
the internal side contacts the transducer layer (a conducting polymer or a carbonaceous
material or else). The current flows through the whole electrode, and therefore the measured
signal depends on the processes at both sides of the membrane. Therefore, it is hardly
possible to extract data referring to the membrane/solution interface from signals recorded
with solid-contact ISEs. So-called conventional ISEs, i.e., with an internal aqueous solution
and an internal reference electrode, are more suitable for such studies. Furthermore, for
a correct interpretation of the results, the compositions of the internal and the external
solutions must be the same so that the two interfaces are identical. Therefore, this study
was performed with conventional ISEs.

Here, for the first time, we report on low-frequency resistances, which regularly
depend on the concentration of Na+ ions in aqueous solutions. We ascribe these resistances
to the interfacial charge transfer, and using these results, we estimate the exchange current
densities at the interface between Na+-selective membranes and aqueous solutions.

2. Materials and Methods

The sodium ionophore X: 4-tert-Butylcalix[4]arene-tetraacetic acid tetraethyl ester
(Na X), potassium tetrakis-p-Cl-phenylborate (KClTPB), lipophilic salt tetradodecylammo-
nium tetrakis-p-Cl-phenylborate (ETH 500), solvent plasticizer 2-nitrophenyloctyl ether
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(oNPOE), and high-molecular-weight poly(vinyl chloride) (PVC) were Selectophore-grade
reagents from Merck (Darmstadt, Germany). The volatile solvents were extra-pure cy-
clohexanone (CH) and HPLC-grade tetrahydrofuran (THF) from Vekton (St. Petersburg,
Russia), freshly distilled before use. The inorganic salts were from Reaktiv (Moscow,
Russia). The MgCl2·6 H2O was from AppliChem (Darmstadt, Germany) and titrated with
EDTA to determine the exact content of MgCl2 in the chemical. All the aqueous solutions
were prepared with deionized water with a resistivity of 18.2 MΩ·cm (Milli-Q Reference,
Millipore, France).

The membrane cocktails were prepared by dissolving appropriate amounts of PVC
and oNPOE in THF. After that, Na X, KClTPB, and ETH 500 were added as appropriate
aliquots of stock solutions in cyclohexanone. In this way, weighing small amounts was
avoided, ensuring high accuracy of the membrane composition. To obtain the membranes,
the cocktails were stirred for 30 min using roller-mixer Selecta Movil Rod (Barcelona, Spain)
and then poured into 30 mm diameter Teflon Petri dishes. The dishes were covered with
filter paper to slow down the evaporation of THF. The complete evaporation of THF and
CH took 2 days, and after that, master membranes with a thickness of about 70 µm were
obtained. Four membranes were prepared: membrane M1 contained Na X: a Na+-selective
ionophore, KClTPB: a cation exchanger (ionic sites), and ETH 500: a lipophilic electrolyte.
Membrane M2 was similar to M1 but did not contain ETH 500, M3 contained only a cation
exchanger, and M4 contained only an ionophore. The membrane compositions are specified
in Table 1.

Table 1. Membrane compositions.

Membrane Na X KClTPB ETH 500 oNPOE PVC

M1 15 mmol
1.0%

7.5 mmol
0.2%

7.5 mmol
0.6% 65.5% 32.7%

M2 15 mmol
1.0%

7.5 mmol
0.2% - 65.9% 32.9%

M3 - 7.5 mmol
0.2% - 66.5% 33.3%

M4 15 mmol
1.0% - - 66.0% 33.0%

The electrodes were prepared by cutting disks with a diameter of 10 mm from the
master membrane and gluing them to PVC bodies with an outer diameter of 12 mm and an
inner diameter of 8 mm. A solution of PVC in CH was used as the glue. The electrodes
were filled with 0.01 M NaCl. A chlorinated silver wire in a polypropylene body was used
as the internal reference electrode.

Zero-current potentiometric measurements were performed with the Lawson EMF-
16 16-channel potentiometric station (Lawson Labs, Malvern, PA, USA). The reference
electrode was a single junction Ag/AgCl electrode in 3.5 M KCl with a salt bridge with a
limited leak of KCl. Potentiometric calibrations in pure NaCl solutions were performed
from 10−1 M down to 10−8 M NaCl using an automatic burette Metrohm 700 Dosino
controlled by the Metrohm 711 Liquino Controller. Once the value 10−8 M NaCl was
achieved, a suitable aliquot of MgCl2 was added to the solution. This was conducted
to estimate the possible interference from Mg2+ with the ISE response to Na+ ions. The
selectivity of Na+ over K+ was measured in the same way.

Chronopotentiometric and electrochemical impedance studies were performed with
Potentiostat-Galvanostat Autolab 302N with a frequency response analyzer module FRA 2
(Metrohm, Herisau, Switzerland). The chronopotentiometric and impedance measurements
were carried out using an ordinary three-electrode cell. The compositions of the internal
solution (inside the ISE) and the external solution (in the beaker) were the same, so the ISE
membranes were in contact with identical solutions from both sides. In these measurements,
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the internal and the external reference electrodes were also identical: chlorinated silver
wires. The counter electrode was a glassy carbon rod. The concentration of NaCl in
the chronopotentiometric and impedance measurements varied from 10−1 to 10−6 M.
At chloride concentrations below 10−3 M, especially in non-zero-current measurements,
Ag/AgCl electrodes may be polarized. To prevent this effect, NaCl solutions used in
chronopotentiometric and impedance measurements always contained at least 2 mM Cl−

added as 10−3 M MgCl2.
The impedance measurements were made in potentiostatic mode with an excitation

magnitude of ±5 mV around the open-circuit potential (OCP), over the frequency range
from 10 kHz to 0.01 Hz. Regarding the chronopotentiometric measurements, the OCPs
were recorded for the first 3 s, then the current was turned on, and the potential was
registered for 10 s. After that, the current was turned off, and the potential was registered
for another 10 s. The time resolution was 0.005 s.

Before the studies, the ISEs were soaked in 0.01 M NaCl for 3 days. In between the
measurements, the ISEs were stored in the same solution. All the measurements were
carried out in plastic beakers with a volume of 50 mL at room temperature (22 ± 1 ◦C).
Three replicate electrodes with each membrane composition were used in this work.

The activity coefficients of the Na+ ions in the solutions were calculated according to
the 3rd approximation of the Debye–Hückel theory):

log(γNa) = − 0.512·
√

I
1 + 0.328·aNa

Kiell ·
√

I
+ 0.05·I (1)

Here, γNa is the ion activity coefficient, zI is the ion charge number, I is the solution
ionic strength, and aNa

Kiell is the Kielland parameter for Na+ [40,41].

3. Results and Discussion
3.1. Potentiometric Studies

Freshly prepared ISEs were calibrated potentiometrically in pure NaCl solutions. The
example of the time traces of the EMF vs. time along with the calibration of the ISE with
membrane M2 in NaCl solutions is shown in Figure S1, Supplementary Material. The
calibration plots are presented in Figure 1.
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Figure 1. Potentiometric response of freshly prepared ISEs with membranes M1, M2, M3, and M4.
Data inside the rectangle refer to EMF values recorded in pure 1 mM MgCl2.

Not surprisingly, the ISEs with the membrane M1 containing the ionophore, the ion
exchanger, and the lipophilic electrolyte ETH 500, as well as M2 without ETH 500, showed a
near-Nernstian response over the NaCl concentration range from −5 to −1 (in logarithmic
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units) and a good selectivity (measured by the separate solutions method [42]) to Na+ over
K+ and Na+ over Mg2+: log(KNa/K) ≈ −2.3, log

(
KNa/Mg

)
≈ −4. The obtained values

are consistent with the literature data [43]. The potentiometric response of the ISEs with
membranes M1 and M2 was close to Nernstian during more than two months, whereas the
ISEs with membrane M3 (only KClTPB) showed a sub-Nernstian slope, see Figure S2A–C,
Supplementary Material. At the same time, the bulk resistance of membranes M1 and M2
increased over time, as discussed in Sections 3.2 and 3.3.

Interestingly, the ISEs with the membrane M4 (only the ionophore) showed a good
cationic slope, as shown in Figure S2D (Supplementary Material), and were selectivity
similar to those with membranes M1 and M2. The membranes based on neutral ionophores
are usually doped with ion exchangers to ensure the Donnan exclusion of co-ions (Cl− in
this case). Normally, this is considered necessary to obtain the Nernstian response of an
ISE. However, in the early days of ionophore-based ISEs, the membranes did not contain
intentionally added ion exchangers [44,45]. A near-Nernstian response was explained
as follows: water in water droplets inside the membrane dissociates into H+ and OH−,
and cations from the solution partially replace the H+ ions in the membrane, whereas the
OH− ions are entrapped in water droplets, effectively acting as quasi-ion exchangers [46].
Later it was shown that the response of the membranes without ion exchangers is due to
the inevitable presence of impurities [47–49]. The concentration of the impurities in the
PVC membranes plasticized with oNPOE is roughly 0.16 mM; in membranes with bis(2-
ethylhexyl)sebacate and with bis(2-ethylhexyl)phthalate, it is roughly 0.01–0.06 mM [49].
Obviously, membranes with such a low content of charged species should have a high bulk
resistance. This expectation turned out to be true, as described in Section 3.2.

3.2. Electrochemical Impedance Studies

Although the potentiometric response of ISEs with membranes M1 and M2 was stable
and close to Nernstian during the whole period of studies, the resistance of the membranes
increased significantly over time. The impedance spectra of freshly prepared ISEs contained
semicircles at high frequencies, but it is difficult to interpret the low-frequency part of the
spectra (Figure S3, Supplementary Material). Over time, not only did the bulk resistance
of the ISEs increase, but well-developed semicircles also appeared at low frequencies, as
shown in Figure 2.
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Figure 2. Change in the impedance spectra of the electrodes during the period of 70 days, registered
in 0.01 M NaCl. (a) Membrane M1; (b) membrane M2.

The same trend, an increase in membrane resistance over time, was observed for
membrane M3 containing only an ion exchanger, see Figure 3. Unlike the ISEs with
membranes M1 and M2, electrodes with membrane M3 did not show a well-developed
low-frequency semicircle. In the cases of M1 and M2, the low-frequency semicircle appears
in frequency ranges from 200 to 0.4 Hz (M1) or from 100 to 0.2 Hz (M2). In the case of M3,
the high-frequency semicircle is larger and refers to frequencies down to 20 Hz. Apparently,
the time constants of the two semicircles for membrane M3 do not differ enough, and
therefore, the low-frequency part of the spectra of the ISE with membrane M3 is hidden
within the high-frequency part.
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70 days, registered in 0.01 M NaCl.

Apparently, the main reason for the increase in the membrane bulk resistance over time
is the leakage of ion-exchanger sites from membranes, due to the insufficient lipophilicity
of ClTPB− [50,51]. Estimations made using Molinspiration Cheminformatics [52] give the
lipophilicity values (logP) of 10.13 for the Na X ionophore, 6.64 for KClTPB, and 5.36 for
oNPOE. Thus, one can expect that the ionic sites and the plasticizer tend to leak from the
membrane to a much greater extent than the ionophore. The leakage of the ion-exchanger
sites directly results in an increase in the membrane resistance due to a decrease in the
concentration of charge carriers. The leakage of the plasticizer causes the increase in the
resistance via the increased viscosity of the membrane. Bearing in mind the relatively small
amount of ion exchanger in membranes, its leakage appears to be the main reason for the
gradual increase in the membrane resistance.

The increase in the bulk resistance, besides the leakage of the ion exchanger, can
be due to the gradual uptake of water from solutions. We have shown earlier that water
uptake results in an increase in the bulk resistance of the K+, Ca2+, Cd2+, and NO3

− selective
membranes [38,53]. Importantly, water is non-uniformly distributed within ISE membranes:
layers in the vicinity of the membrane/solution interface are enriched with water [54–56].
This may be the reason for changes in the ion transfer across the membrane/solution
interface, in addition to the gradual increase in the membrane bulk resistance. This results
in the development of low-frequency semicircles, which can be seen within the frequency
range from 200 to 1 Hz. Nyquist plots of the impedance of the ISE with membranes M1
and M2 registered at different concentrations of NaCl on the 35th day (the middle of the
overall period of studies) are presented in Figure 4.

Examples of the impedance spectra of the ISEs with membranes M1 and M2, together
with the circuit used for fitting, are shown in Figure 5. One can see that the circuit containing
a high-frequency resistance (RHF) in parallel with a high-frequency constant phase element
(CPEHF), as well as analogous low-frequency components (RLF, CPELF) and Warburg
resistance, allows for a good fitting of the experimental results. Factor n of CPEHF was
about 0.9, close to an ideal capacitor. The respective values were roughly 10−10 F. We
therefore ascribe RHF to the bulk resistance of the membrane and CPEHF to its geometric
capacitance. Factor n of CPELF was about 0.6–0.8, and the values of CPELF varied from
10−8 to 10−7 F. Obviously, CPELF cannot be treated as an ideal capacitor, but its value
anyway allows one to ascribe this element to the capacitance of the double electric layer
at the membrane/solution interface. This, together with a strong dependence of RLF on
the concentration of NaCl, assumes that the low-frequency part of the spectra refers to the
interface between the membrane and solution.
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Figure 4. Impedance spectra of the electrodes in solutions with different concentrations of NaCl with
constant background of 0.001 M MgCl2, day 35. The insets show the impedance spectra recorded at
NaCl concentrations 0.1–0.001 M on a larger scale. (a) Membrane M1; (b) membrane M2.
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Figure 5. Experimental (black dots) and fitted (red curve) impedance spectra recorded in 0.01 M NaCl
with 0.001 M MgCl2, day 35. (a) Membrane M1; (b) membrane M2.

If indeed RLF refers to the transfer of Na+ ions across the interface between the
membrane and aqueous solution, its value must regularly depend on the concentration
of Na+ ions. The symmetry of the measurement setup (the membrane is in contact with
two identical solutions–internal and external) implies the following relation between the
charge transfer resistance (RCT) and RLF: RCT = RLF/2. The values of RLF plotted vs. the
concentration of NaCl (log–log) are shown in Figure 6.

One can see that the values of the low-frequency impedance gradually increase during
the whole period of studies. However, RLF, the low-frequency resistance, always showed a
regular dependence on CNa, the concentration of Na+ ions in solutions (the solid lines in
Figure 6a,b), and complies with Equation (2):

log(RLF/2) = log
(

R0
LF/2

)
+ αlog(CNa) (2)

The regular dependence of the low-frequency resistance (RLF) on the concentra-
tion of Na+ ions in solutions (see Figure 6) is in line with the Butler–Volmer theory [57].
This confirms ascribing this resistance to the interfacial charge transfer. The slope α =
d(logRLF)/d(logCNa) of about −0.6 suggests a fairly symmetric activation barrier of the
interfacial transfer of Na+ ions from the solution to the membrane and back. Over time,
both the bulk and interfacial resistances increase so that clear low-frequency semicircles
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appeared also at 0.01 and 0.1 M NaCl, as can be seen in Figure 2. The dependence of
the low-frequency resistance on the Na+ concentration (log–log) remains linear with the
same slope, although the very values of RLF during one month increased in one order of
magnitude, see Figure 6a,b.
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Figure 6. The dependence of low-frequency resistance on the concentration of NaCl, registered on
different days during the period of this study. (a) Membrane M1; (b) membrane M2.

We used the values of the low-frequency resistance to calculate the standard values of
the exchange current density using Equation (3) [57]:

i0Na,0 = RT/
(

F·1
2

R0
LF·A

)
, (3)

Here R, T, and F are the gas constant, temperature, and the Faraday constant, respec-
tively, and A is the electrode surface area (2.6 cm2). The values of R0

LF, the low-frequency
resistance extrapolated to 1 M NaCl, and those of the standard exchange current density
are presented in Table 2.

Table 2. Low-frequency resistance (R0
LF/2), transfer coefficient (α), and the standard exchange current

density (i0Na,0) at the interfaces between membranes M1 and M2 and NaCl solution, measured on
different days during the study.

Membrane, Day log
(
R0

LF/2
)

α R0
LF/2, kΩ i0

Na,0, µA/cm2

M1, day 25 2.51 −0.57 0.324 30.0
M1, day 35 2.86 −0.59 0.724 13.6
M1, day 55 3.22 −0.57 1.66 5.95
M2, day 20 2.22 −0.59 0.166 59.5
M2, day 35 3.35 −0.56 2.24 4.41
M2, day 55 3.53 −0.55 3.39 2.91
M2, day 70 3.51 −0.56 3.24 3.05

Thus, the standard values of the exchange current densities on membranes aged
1 month or less exceed the currents, which flow during chronoamperometric measurements
in two or three orders of magnitude, and those in voltammetric measurements in one order
of magnitude. This result is in favor of using the Nernst equation when interpreting ISE
signals measured in non-zero-current mode. However, this may not be the case with aging
electrodes, so the lifetime of the ISE in the non-zero-current mode may be shorter than in the
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traditional potentiometric mode. On the other hand, the use of ionic sites with lipophilicities
higher than KClTPB, e.g., sodium tetrakis[3,5-bis-(trifluoromethyl)phenyl]borate, may
allow for a large improvement in the ISE lifetime.

3.3. Chronopotentiometric Studies

Chronopotentiometric measurements carried out with ISEs with the membrane M1 re-
vealed the same trend as obtained by impedance studies: drastic changes in the magnitude
of polarization and relaxation along with the change in the NaCl concentration in solutions,
see Figure 7. By analogy with the impedance measurements, the chronopotentiometric
data also showed an increase in the resistance along with the time of the ISEs’ contact with
the solution, as shown in Figure S4, Supplementary Material.
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Figure 7. Chronopotentiometric curves recorded with ISE M1 in NaCl solutions with concentrations
from 10−1 M to 10−6 M, with constant background of 1 mM MgCl2. Polarizing current 10−8 A
(current density 10−8 A/cm2), time resolution 0.005 s.

The polarization and relaxation parts of the curves including the respective Ohmic
drops were fitted to the equation below, which combines the electrochemical impact (de-
caying exponent) and concentration polarization, which evolves with the square root of
time:

E = i·ROhm + i·
(

Rexpon(1 − exp(−t/τ)) + N√t
)

(4)

Here, E is the potential; i is the polarizing current density; ROhm is the resistance
obtained from the Ohmic drop; Rexpon is the resistance, which refers to the decaying
exponent with τ—the characteristic time; and t is the time from the moment when the
current was turned on or off. Factor N is dependent on A—the electrode cross-section
area, CI is the concentration of the ionic species in the membrane, and DI is their diffusion
coefficient: N = 2π1/2 F

RT
(

ACi
√

Di
)−1 [57]. Examples of the experimental and fitted curves

are shown in Figure S5, Supplementary Material.
The nature of the exponential part of the polarization and relaxation curves must be

the same as that of the low-frequency resistance in the impedance: Na+ ion transfer across
the membrane/solution interface. The data shown in Figure 8 confirm this expectation:
the values of Rexpon show the same trend as RLF—linear dependence (log–log) on the
concentration of NaCl. The respective values are also relatively close to each other except
Rexpon obtained from the relaxation curve at CNaCl = 1·10−6 M.
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4. Conclusions

The study of Na+-selective membranes performed by electrochemical impedance
spectroscopy and chronopotentiometry allowed us to obtain data on the interface between
the membrane and aqueous solution. A low-frequency resistance (RLF) at the interface of
the sodium-selective ISEs can be clearly seen in the electrochemical impedance, especially
at Na+ ion concentrations below 0.01 M, or on relatively “aged” ISEs after 3 weeks in
continuous contact with the solution. The same is true regarding Rexpon: the resistance
obtained from the exponentially decaying part of the polarization and relaxation curves
in the chronopotentiometric measurements. These resistances are dependent on the Na+

concentration in solutions so that the logarithm of the resistance is linearly dependent on
the logarithm of the solution concentration. This allows one to ascribe the values of the
low-frequency resistance measured by impedance: RLF and Rexpon obtained by chronopo-
tentiometric measurements to the process of Na+ ion transfer across the membrane/solution
interface.

Values of the exchange current density estimated from RLF vary within the range from
≈60 µA/cm2 for ISEs aged 3 weeks to ≈3 µA/cm2 for ISEs aged 2 months. Apparently, this
change, as well as the increase in the high-frequency resistance that we ascribe to the bulk
of the membrane, is caused by the leakage of ionic sites due to the insufficient lipophilicity
of KClTPB. Therefore, the replacement of KClTPB with more lipophilic ionic sites like,
e.g., sodium tetrakis[3,5-bis-(trifluoromethyl)phenyl]borate appears very promising in
view of maintaining a high exchange current over longer periods of time. Anyway, even
for membranes with KClTPB, the estimated values of the exchange current densities
significantly exceed the current densities used during analysis with ISEs by the constant
potential coulometry method. Also, frequencies characteristic of low-frequency semicircles
(ca. 200–1 Hz) imply a short equilibration time at the membrane/solution interface. These
facts indicate electrochemical equilibrium at the interface between the ISE and solution
and justify the use of the Nernst equation in the interpretation of ISE signals recorded in
non-zero-current measurements, e.g., with the constant potential coulometry method.

Tentatively, one can conclude that the facilitation of the interfacial ion transfer (in the
kinetic sense) is due to the ion exchanger rather than to the ionophore. This, however,
requires further studies with variations in the concentration of the electrolyte in the solution
together with variations in the concentrations of the ionophore and ion exchanger in
the membrane.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/membranes14040074/s1: Figure S1. Calibration of ISE with
membrane M2: time traces; Figure S2: Potentiometric response of ISEs with membranes M1 (A),
M2 (B), M3 (C), and M4 (D) at different times during the study; Figure S3: Impedance spectra of
ISEs after 5 days in contact with 0.01 M NaCl. Measurements in 0.01 M NaCl with 1 mM MgCl2,
inset shows enlarged spectra of ISEs with membranes M1 and M2; Figure S4: Chronopotentiometric
curves recorded for ISE with membrane M1 at different days during the study, polarizing current
10−8 A, 0.01 M NaCl with 1 mM MgCl2; Figure S5: Examples of fitting chronopotentiometric curves
to Equation (4). ISE with membrane M1 NaCl solutions with 1 mM MgCl2, 0.1 M NaCl (A), and 1 µM
NaCl (B).
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