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Abstract: Background: Subretinal hyper-reflective material (SHRM) sometimes causes vision loss in
spite of anti-vascular endothelial growth factor (VEGF) therapy in eyes with neovascular age-related
macular degeneration (nvAMD). We evaluated the impacts of combination therapy with intravitreal
ranibizumab (IVR) and tissue plasminogen activator (tPA) in eyes with nvAMD accompanying SHRM.
Methods: In total, 25 eyes of 25 patients (16 men and 9 women, 76.7 years old), who underwent
IVR/tPA for nvAMD with SHRM and were followed up for at least 12 months, were retrospectively
reviewed. In total, 15 eyes were treatment-naïve and 10 eyes had previous treatment for nvAMD.
Results: In total, 16 eyes had type 2 macular neovascularization (MNV), 5 eyes type 1 MNV with
fibrovascular pigment epithelial detachment and 4 eyes polypoidal choroidal vasculopathy. At
month 12, SHRM regressed or reduced in 18 eyes (72%) and the best-corrected visual acuity (BCVA)
improved in 6 eyes (24%) and was unchanged in 14 eyes (56%), while the mean BCVA was just
stabilized. The mean central retinal thickness, macular volume and SHRM thickness significantly
improved from 408 µm to 287 µm, from 11.9 mm3 to 9.6 mm3, from 369 µm to 165 µm, respectively
(p < 0.01). Conclusions: The combination therapy with IVR/tPA for nvAMD with SHRM may help
preserve vision by prompt regression of SHRM.

Keywords: neovascular age-related macular degeneration; anti-vascular endothelial growth factor
therapy; subretinal hyper-reflective material; tissue plasminogen activator

1. Introduction

Neovascular age-related macular degeneration (nvAMD) is a major cause of visual
loss in elderly populations in developed countries [1], and the incidence in Japan has been
increasing in recent years [2,3]. Since the efficacy and safety of intravitreal ranibizumab
(IVR) (Lucentis®, Genentech Inc., South San Francisco, CA, USA) for nvAMD has been
demonstrated [4,5], anti-vascular endothelial growth factor (VEGF) therapy is the first-line
treatment for nvAMD. Subsequent approvals of aflibercept (Eylea®, Regeneron Pharma-
ceutical Inc., Tarrytown, NY, USA) [6], brolucizumab [7] (Beovu® Novartis, East Hanover,
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NJ, USA) and faricimab [8] (Vabysmo® Roche, Basel, Switzerland) expanded the options
for anti-VEGF therapy.

In initial clinical trials [4–6], the effectiveness of a fixed monthly dosing regimen was
assessed. the requirement for monthly injections posed significant financial and mental
burdens for the patients. Subsequent research aimed to develop dosing schedules that
reduce the injection frequency while maintaining good visual outcomes. One such regimen
is the pro re nata (PRN) approach [9], in which treatment is administered based on signs of
disease activity. In contrast, the treat-and-extend (TAE) regimen [10] involves adjusting the
treatment intervals based on disease activity without the need for monthly assessments.
Moreover, the TAE regimen seeks to proactively manage patients by identifying individual
relapse patterns. Studies have shown that the TAE regimen is comparable to the fixed
regimen and superior to the PRN regimen [11]. Consequently, it is commonly used along-
side PRN [12]. Recently approved brolucizumab (Beovu, Novartis, Basel, Switzerland) [7]
and faricimab (Vabysmo, Genentech Inc.) [8] have shown efficacy with intervals of 12 to
16 weeks, which represents significant progress in extending the intervals and reducing the
treatment burden on patients.

The use of gene therapy via subretinal injection of recombinant adeno-associated
vectors [13] or intravitreous injection of AAV2-sFLT01 [14], and transplantation of retinal
pigment epithelial (RPE) cells derived from induced pluripotent stem cells (iPSCs) [15]
or HLA-matched allogeneic iPSC-derived retinal cells [16], have received considerable
attention as potential treatments for nvAMD. However, the practical application of these
therapies has been hindered by concerns regarding safety, versatility, and cost. Recently,
port delivery systems for anti-VEGF drugs, ref. [17] have been explored and provide less
burdensome treatment options. Nevertheless, the primary objective of these approaches is
to enhance the sustained efficacy of anti-VEGF drugs over prolonged periods.

However, long-term outcomes from large trials have revealed the limitations of anti-
VEGF treatment [18]. While anti-VEGF therapy effectively suppresses choroidal neovascu-
larization (CNV) and inhibits hyperpermeability and resulting exudative changes, it does
not cause regression of active fibrovascular neovascularization, such as fibrin-involved neo-
vascularization, that has already developed. Consequently, the formation of fibrovascular
scars in the macula can lead to severe visual impairment.

Subretinal hyperreflective material (SHRM) is identified as a homogeneous high-
intensity signal located between the neurosensory retina and retinal pigment epithelium
(RPE) on optical coherence tomography (OCT). SHRM reflects subretinal fibrinous and
fibrovascular tissue complexes of type 2 macular neovascularization (MNV) as well as
fibrin mass and subretinal hemorrhage observed in any type of MNV. SHRM is an im-
portant morphological biomarker, associated with fibrotic and non-fibrotic scar formation
and is considered a risk factor for vision loss in spite of anti-VEGF therapy in eyes with
nvAMD [19–22]. Jaffe et al. [18] evaluated the associations between morphologic features
and 5-year visual acuity (VA) in the Comparison of Age-related Macular Degeneration
Treatment Trials (CATT) and reported that the SHRM, thinner retina, greater CNV lesion
area, and foveal center pathology and intraretinal fluid (IRF) were independently associ-
ated with worse VA. Kumar et al. [23] evaluated the morphology of the SHRM (reflectivity,
shape, anterior, and posterior boundaries) and measured the SHRM height, width, and area
at the fovea in eyes with nvAMD and reported that SHRM including a layered appearance,
increased reflectivity, larger size, and hyperreflective spots was correlated with worse VA
at the 12- and 24-week follow-up examinations. The baseline SHRM characteristics can
help practitioners predict visual and morphologic prognosis and guide therapy.

Tissue plasminogen activator (tPA) is a serine protease with a catalytic ability to convert
plasminogen to plasmin, a major fibrinolytic enzyme. tPA is clinically used for embolic or
thrombotic stroke. tPA is also used as an adjuvant to displace submacular hemorrhages [24–29]
in nvAMD or ruptured retinal macroaneurysm. In our previous investigation [24], 59% of
patients who received tPA and sulfur hexafluoride (SF6) gas injection for submacular hemor-
rhages (SMH) secondary to AMD did not require supplementary interventions throughout
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the follow-up period. Additionally, in certain cases, notable regression of subretinal fibrinous
masses occurred promptly after treatment and was potentially linked to the administration of
tPA. Based on these findings, we deliberated on the use of intravitreal tPA in conjunction with
ranibizumab for type 2 MNV. In a previous study [30], in eyes with type 2 MNV, rapid and
pronounced regression or contraction of subretinal fibrinous or fibrovascular tissue complexes,
coupled with their separation from the outer retina, was observed in eyes treated with the
combined therapy of intravitreal ranibizumab and tPA (IVR/tPA) but not in those treated
with IVR monotherapy. Additionally, the mean best-corrected VA (BCVA) in the IVR/tPA
combination therapy group surpassed that of the anti-VEGF monotherapy group by month 6.
These findings suggested that tPA may have the specific ability to cause regression of already
formed subretinal fibrinous and fibrovascular tissue complexes in eyes with type 2 MNV while
preserving the VA. Hence, we hypothesized that tPA/IVR may be useful for managing SHRM
characterized predominantly by subretinal fibrinous and fibrovascular tissue complexes, fibrin
masses, and subretinal hemorrhage.

The purpose of this study was to evaluate the impacts of the combination therapy
with IVR/tPA in eyes with nvAMD accompanying SHRM.

2. Materials and Methods
2.1. Study Design and Ethics

This was a retrospective single-center observational study conducted in Nagoya City
University Hospital. The institutional review board (IRB) of Nagoya City University Grad-
uate School of Medical Science approved the study protocol (IRB approved number, 60-19-
0222) which was conducted in compliance with the ethical guidelines of the Declaration of
Helsinki and registered in UMIN-CTR (UMIN registration number, UMIN000046415). The
requirement for informed consent was waived because of the retrospective observational
nature of the study. The IRB of Nagoya City University Graduate School of Medical Science
had approved the tPA/IVR treatment for nvAMD (IRB approved number, 41-12-0005). All
patients provided informed, written consent. Patients were examined regularly for clinical
findings and adverse events, which were reported annually to the IRB.

2.2. Patients

The study enrolled 25 eyes of 25 patients (16 men, 9 women) diagnosed with nvAMD
accompanied by SHRM who underwent tPA/IVR at Nagoya City University Hospital
between April 2009 and March 2021, who could be followed for at least 1 year, and necessary
data were available. Cases of PCV with both SRH and hard exudates were excluded from
this treatment due to the risk of exacerbating exudative changes by fibrin dissolution with
tPA. Additionally, patients with large SRHs involving the fovea were not candidates for this
treatment, because pneumatic displacement is more appropriate. Eyes with high myopia
or a history of other vitreoretinal diseases such as retinal detachment, diabetic retinopathy,
retinal vein occlusion, and uveitis also were excluded. Further, patients with less potential
for VA improvement or those at risk of worsening systemic diseases also were excluded
from receiving this treatment due to its unapproved status.

Treatment with IVR/tPA included topical instillation of 4% xylocaine under sterile con-
ditions followed by intravitreal injection of tPA (40 kIU/100 µL of monteplase, Cleactor®,
Eisai Co., Ltd., Tokyo, Japan) with a 30-gauge needle. After paracentesis to reduce intraoc-
ular pressure, intravitreal injection of ranibizumab (0.5 mg/50 µL) was administered. If
intraocular pressure was elevated after IVR, additional paracenteses were performed.

The dosage of tPA was based on 40 kIU, as reported previously [31–33].
After IVR/tPA, patients were treated in the manner of a pro re nata (PRN) regimen

with any anti-VEGF drugs.

2.3. Research and Analysis

The medical data assessed included the patient’s ages at the start of treatment of
nvAMD, AMD subtypes, previous treatment history, additional treatments (anti-VEGF in-
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jections: IVR or aflibercept or any other treatment) and medical history. The ophthalmologic
examination including the BCVA in decimal units and the central retinal thickness (CRT),
macular volume (MV), and SHRM thickness measured by OCT (Cirrus OCT, Carl Zeiss,
Dublin, CA, USA) evaluated at the first visit, just before IVR/tPA, 1, 3, 6 and 12 months
after IVR/tPA. The CRT and MV were obtained from automatic measurements on OCT. The
SHRM thickness, observed as a high-intensity signal between the neurosensory retina and
RPE on OCT, was determined as the maximal diameter of the SHRM measured manually
on OCT images. For cases in which OCT was performed within 1 week, the SHRM status
was compared between the OCT images obtained immediately before and immediately
after treatment.

2.4. Statistical Analysis

The analysis of the VA was performed by converting the values from decimal units
to a logarithm of the minimum angle of resolution (logMAR) units. The changes of 30%
or more SHRM thicknesses were defined as reduced and worsened. ‘Complete regression’
was defined as no SHRM observed on OCT. Changes of 0.3 or more in the BCVA were
defined as improved or worsened. The differences in the BCVA, CRT, MV, and SHRM
thickness before treatment and at each time point were compared using the Steel–Dwass
test. The differences in the BCVA at month 12 among the SHRM statuses were compared
using the Steel–Dwass test, the differences among the AMD subtypes were compared
using Bonferroni’s test, and the differences between eyes with/without previous treatment
were compared using the unpaired test. p < 0.05 was considered significant. Microsoft
Excel Ver. 7 software (Microsoft Corporation, Redmond, WA, USA) was used for the
statistical analyses.

3. Results
3.1. Patient Characteristics

The patient characteristics are shown in Table 1. In total, 25 eyes of 25 cases (16 men
and 9 women; mean age, 76.7 ± 9.8 years) were evaluated. Regarding the medical history,
11 patients had no remarkable medical history, 8 had hypertension, 3 had cardiovascular
disease, 4 had cerebrovascular disease, and 4 had diabetes (including duplicate cases). The
AMD subtypes included type 2 macular neovascularization (MNV) in 16 eyes, type 1 MNV
with fibrovascular pigment epithelial detachment (PED) in 5 eyes, and polypoidal choroidal
vasculopathy (PCV) in 4 eyes.

Table 1. Patient characteristics.

Cases 25 Eyes of 25 Patients

Gender 16 men and 9 women
Mean age 76.7 ± 9.8 years old
Subtype Type 2 MNV 16 eyes

Type 1 MNV with fibrovascular PED 5 eyes
PCV 4 eyes

Previous treatment history Treatment-naïve 15 eyes
Anti-VEGF therapy and/or PDT 10 eyes

Twenty-four eyes received 40 kIU, and one patient with a history of acute myocardial
infarction received 20 kIU at the discretion of the attending physician. While 15 eyes were
treatment naïve, the other 10 eyes were treated with anti-VEGF therapy, photodynamic
therapy (PDT), or both. Of these 10 eyes, 4 eyes received IVR monotherapy, 3 eyes intravit-
real aflibercept (IVA) monotherapy, 1 eye IVR and IVA, 1 eye IVR and PDT, and 1 eye IVR,
IVA, and PDT. In the previous treatment group, six months before the start of treatment,
the mean total number of anti-VEGF injections was 2.1.
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3.2. Status of SHRM Immediately after Treatmen

In total, 8 of the 25 patients underwent OCT imaging the next day, and 1 underwent
OCT imaging on day 4. The fibrin disappeared in all patients (Figure 1 Case1), and the
size of the type 2 MNV decreased in affected patients. On day 4, the exudative changes
improved (Figure 1 Case2).
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Figure 1. Changes in SHRM immediately after treatment. Fibrin disappeared on the next day (case 1),
and exudative changes improved on day 4 (case 2).

3.3. Changes in Each Parameter

The changes in each parameter are shown in Figure 2.
The mean CRTs at baseline and months 1, 3, 6, and 12 were 408 ± 148 µm, 264 ± 89 µm,

277 ± 95 µm, 267 ± 88 µm, and 287 ± 104 µm, respectively, the mean CRTs improved
significantly at all time points after IVR/tPA compared with baseline (p-value < 0.01,
Dunnett’s test) (Figure 2a). The mean MVs at baseline and months 1, 3, 6, and 12 were
11.9 ± 1.6 mm3, 10.0 ± 1.0 mm3, 9.9 ± 0.8 mm3, 9.7 ± 0.8 mm3, and 9.6 ± 1.0 mm3,
respectively. The mean MVs also improved significantly (p < 0.01) at all time points after
IVR/tPA compared with baseline (Figure 2b). The mean SHRM thicknesses at baseline and
months 1, 3, 6, and 12 were 369 ± 163 µm, 166 ± 160 µm, 170 ± 190 µm, 167 ± 186 µm,
and 165 ± 164 µm, respectively. The mean SHRM thickness also improved significantly
(p < 0.05) at all time points after IVR/tPA compared with baseline (Figure 2c). The mean
BCVA at baseline and months 1, 3, 6, and 12 were 0.76 ± 0.27, 0.66 ± 0.36, 0.61 ± 0.33,
0.62 ± 0.36, and 0.73 ± 0.46, respectively (Figure 2d). The mean BCVA tended to slightly
improve until 6 months, but there were no statistical differences during the observation
period (Figure 2d) (p-value < 0.05, Steel–Dwass test).
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Figure 2. Changes in each parameter. The mean changes in central retinal thickness (CRT) (a), macular
volume (MV) (b), subretinal hyperreflective material (SHRM) thickness (c) and the best-corrected
visual acuity (BCVA) (d). * p < 0.05, ** p < 0.01, (Steel–Dwass test). bar = ±standard error of the mean.

3.4. Additional Treatments

The additional anti-VEGF therapy until 12 months after IVR/tPA is shown in Table 2.
Only 1 eye did not require any additional treatment and the other 24 eyes required addi-
tional anti-VEGF injections. In total, 14 eyes received IVR monotherapy, 5 eyes received IVA
monotherapy, and 5 eyes switched from IVR to IVA. The mean total number of anti-VEGF
injections was 3.6. Other treatments were additional IVR/tPA due to recurrence of SHRM
(1 eye), vitrectomy due to vitreous hemorrhage (1 eye), and tPA and gas injection due to
submacular hemorrhage (1 eye).

Table 2. Additional anti-VEGF therapy.

Cases 25 Eyes of 25 Patients

None additional treatment 1 eye
Type of anti-VEGF IVR mono therapy 14 eyes

IVA mono therapy 5 eyes
Switch from IVR to IVA 5 eyes

Mean number of injections 3.6 ± 2.2 times

3.5. Change in SHRM and BCVAtatus

At month 1, SHRM completely regressed in 11 eyes (44%), reduced in 7 eyes (28%), and
was unchanged in 7 eyes (28%). At month 12, SHRM completely regressed in 13 eyes (52%)
[9 of 13 eyes (36%) had no recurrence after complete regression of SHRM at month 1; 4 eyes
(16%) completely regressed by month 12], reduced in 5 eyes (20%) [2 eyes (8%) regressed
once but recurred during follow-up], was unchanged in 6 eyes (24%), and worsened in
1 eye (4%) (Figure 3a).
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Figure 3. Changes in SHRM and BCVAtatus. The SHRM regressed in 18 eyes (72%) of the patients at
1 and 12 months; at month 12, SHRM worsened in 1 eye (a). The BCVA improved in 6 eyes (24%)
and worsened in 1 eye (4%) at 1 month, improved in 6 eyes (24%) and worsened in 5 eyes (20%) at
12 months (b). M = month.

The BCVA improved in 6 eyes (24%), was unchanged in 18 eyes (72%), and worsened
in 1 eye (4%) at 1 month, and improved in 6 eyes (24%), was unchanged in 14 eyes (56%),
and worsened in 5 eyes (20%) at 12 months (Figure 3b).

3.6. Distribution of BCVA at Month 12

Figure 4a shows the BCVA assessed by SHRM status at 12 months. The mean BCVA at
month 12 was 0.79 ± 0.59 in the completely regressed group, 0.77 ± 0.34 in the reduced
group, 0.61 ± 0.26 in the unchanged group, and 0.52 in the worsened eye. The mean
BCVA at month 12 was 0.78 ± 0.52 with type 2 MNV, 0.67 ± 0.36 with type 1 MNV with
fibrovascular PED, and 0.62 ± 0.34 with PCV (Figure 4b) and 0.61 ± 0.44 with previous
treatment group and 0.89 ± 0.46 without previous treatment (Figure 4c).
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Figure 4. Distribution of BCVA at month 12. The BCVA at month 12 assessed by SHRM status (a),
AMD subtype (b) and treatment history (c). There were no significant differences in BCVA among
eyes with each groups SHRM status (Steel–Dwass test, p < 0.05), AMD subtype (Bonferroni’s test,
p < 0.05) and previous treatment history (unpaired t-test, p < 0.05). – median, × mean, * outlier.

There were no significant differences in the BCVAs among eyes with each SHRM
status (Steel–Dwass test, p < 0.05), AMD subtype (Bonferroni’s test, p-value < 0.05) and
previous treatment history (unpaired t-test, p-value < 0.05).

3.7. Representative Case

Figure 5 shows a representative case. An 85-year-old man was diagnosed with type
2 MNV in his right eye by fluorescein angiography (FA), Indocyanine green angiography
(ICGA) and OCT. IVR/tPA combined therapy was performed as the initial treatment.
A remarkable reduction in SHRM was observed 2 weeks after IVR/tPA. After 1 month,
complete regression of SHRM was observed and the BCVA improved from 20/100 to 20/50.
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No recurrence of SHRM was observed till month 12 and the BCVA further improved up to
20/25 without additional treatment.
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Figure 5. Neovascular age-related macular degeneration with macular neovascularization type 2 in
an 85-year-old treatment-naïve male patient. The color fundus photograph in the right eye observed a
well-demarcated gray lesion surrounded by a ring of marginal mild subretinal hemorrhage (top left).
The FA in the early phase showed a well-demarcated hyperfluorescent lesion surrounded by a ring of
slight hypofluorescence (fluorescence blocking) and in the late phase showed fluorescence leakage,
while the ICGA depicted type 2 MNV surrounded with hypofluorescence spots derived fibrinous
lesions and subretinal hemorrhage (bottom left). The OCT showed SHRM emanating through a break
in the retinal pigment epithelium (RPE) and lying above the RPE suggesting a type 2 neovascular
complex with marginal hemorrhage (orange circle) (top right). IVR/tPA combined therapy was
performed as the initial treatment. SHRM was decreased 2 weeks after IVR/tPA (orange circle and
white arrow). After 1 month, SHRM was regressed completely and maintained at month 12 without
additional treatment (right top to bottom). BCVA improved from 20/100 to 20/50 at month 1 and
20/25 at month 12. W = week, M = month, RV = best corrected visual acuity in the right eye.

4. Discussion

In this study, we evaluate the impacts of the combination therapy with IVR/tPA in
eyes with nvAMD accompanying SHRM. The IVR/tPA combination therapy dissolved the
fibrin immediately. The SHRM decreased from an average thickness of 369 µm at baseline
to 166 µm at 1 month; this effect was maintained at 165 µm at 12 months. At 12 months,
the SHRM regressed completely in 52% of eyes and decreased in 20% of eyes. The mean
BCVA in logMAR unit was 0.76 at the baseline and maintained at 0.73 at 12 months, and at
12 months, BCVA improved in 24% of eyes, maintained in 56% of eyes, and worsened in
20% of eyes.

SHRM is considered a poor prognostic factor for visual outcomes in patients with
nvAMD [19–22]. The fact that SHRM was reduced in 72% of patients and vision was
maintained in 80% of patients suggests that IVR/tPA may be effective in maintaining
visual acuity in nvAMD patients. tPA is often used as an adjuvant to displace subretinal
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hemorrhages (especially submacular hemorrhage) caused by nvAMD or retinal macroa-
neurysm [24–29] in the ophthalmological field. Although displacement itself is mainly due
to the tamponade effect of the gas, tPA is thought to play an ancillary role by dissolving
hematoma or fibrin and causing a larger displacement of the hematoma. In our previous
survey [34], many facilities in Japan used tPA in combination with gas rather than gas alone.
Furthermore, our previous study has demonstrated the efficacy of IVR/tPA combination
therapy was superior to the IVR monotherapy group at month 6 [30] in eyes with type
2 MNV.

We have focused on the role of tPA in angiogenesis and have examined its effects on
angiogenesis in vivo and in vitro studies. Arai et al. [35] reported that while tPA has no
direct impact on the vascular endothelial cells in vitro, tPA significantly reduced corneal
neovascularization in a rabbit model. These results suggest that among the essential steps
in angiogenesis, fibrin may play a pivotal role as a scaffold in the loose intercellular spaces
around highly permeable vessels and that tPA may have an inhibitory effect on angiogenesis
through its fibrinolytic and constrictive effects on the developing fibrovascular tissue.

Ozone et al. [36] reported that in an experimental laser-induced choroidal neovascu-
larization (CNV) model in mice, intravitreal injection of tPA suppressed fibrin/fibrinogen
expression, CNV leakage, and CNV volume without retinal toxicity. These results also
suggested that fibrin may have a pivotal role as an alternative extracellular matrix that
bridges the loosened intercellular space around highly permeable vessels and provides
a scaffold for endothelial cells to migrate and proliferate and fibrinolysis by exogenous
tPA may disrupt the fibrin scaffold and possibly interfere with migration and proliferation
and the subsequent steps in angiogenesis. Therefore, tPA may have a potential role as an
adjuvant therapy for CNV secondary to AMD.

We hypothesize the following possible roles for IVR/tPA in eyes with nvAMD accom-
panying SHRM (Figure 6). SHRMs, including neovascular vessels, fibrin, and subretinal
hemorrhage, are often adherent to the retina and RPE via permeable vessel-derived fibrin.
Anti-VEGF monotherapy suppresses the activity of CNV. However, fibrovascular scarring
involves the outer retina and causes irreversible damage with cystoid macular degenera-
tion and severe vision loss. In contrast, the combination therapy with IVR/tPA may cause
the fibrin to separate from the retina and RPE by dissolving the fibrin immediately after
tPA administration and possibly result in contraction of the fibrovascular tissue without
involvement of the outer retina. Consequently, tPA may minimize the damage of the
overlying neural retina and decrease the risk of severe vision loss in nvAMD accompanying
SHRM. Therefore, IVR/tPA should be performed before SHRM damages the neurosensory
retina in the eyes both with and without previous treatment.

We used ranibizumab as an anti-VEGF agent combined with tPA. Klettner A et al. [37]
reported that ranibizumab is not cleaved or functionally compromised by rtPA or plasmin,
while aflibercept is cleaved and its VEGF-binding ability is reduced when coapplied with
plasmin. Therefore, in this study, IVA was not used for the combination therapy. On the
other hand, brolucizumab [7] and faricimab [8] have been newly approved for the treatment
of nvAMD. The combination of these new options as well as aflibercept may be considered
with the potential of further efficacy in the future.

Our study had several limitations that warrant consideration.
First, certain cases of PCV with both SMH and hard exudates were excluded because of

the potential risk of exacerbating exudative changes with tPA fibrin dissolution. In addition,
cases involving large SMHs affecting the fovea also were excluded, because pneumatic
displacement with intravitreal injection of expandable gas and tPA is more appropriate.
Moreover, patients with less potential for VA improvement or those at risk of worsening
systemic diseases were excluded, because this treatment is unapproved status. The limited
indications are important to make this therapy effective, but further studies are needed to
determine the indications.
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Figure 6. Possible roles of IVR/tPA in eyes with wet AMD accompanying SHRM. In nvAMD
accompanying SHRM, anti-VEGF monotherapy suppresses the activity of CNV, fibrovascular scarring
involves the outer retina and causes severe vision loss. The combination therapy with IVR/tPA
separates the adhesion of fibrin from the retina and RPE and contracts fibrovascular tissue without
involvement of the outer retina. Thus tPA minimizes the damage of overlying neurosensory retina.
(Modified and quoted from [30]).

The second issue concerns the optimal concentration of tPA. We administered 40 kIU
of tPA via vitreous injection, a dosage consistent with previous Japanese studies addressing
macular edema associated with central retinal vein occlusion [32,33] or branch retinal vein
occlusion [31] without significant reported complications. Another contributing factor
to our decision was our institution’s longstanding practice of utilizing 40 kIU of tPA
during intravitreal injection for the displacement of SMHs, which has not resulted in any
discernible complications attributable to tPA. Nevertheless, further research is needed to
determine the optimal tPA concentration.

In addition, the small sample size, short follow-up period, and retrospective nonran-
domized trial design limit the robustness of our findings. Future studies with larger sample
sizes and more extensive analyses are warranted. Further, our study did not compare IVR
to IVR monotherapy. Larger randomized controlled trials should assess the long-term
visual outcomes of combination therapy comprehensively.

5. Conclusions

The combination therapy with IVR/tPA for nvAMD with SHRM may help preserve
vision by regression of SHRM.
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