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Abstract: Background: Recent research has identified alternative transcript variants of LMNA/C
(LMNA, LMNC, LMNA∆10, and LMNA∆50) and insulin receptors (INSRs) as potential biomarkers
for various types of cancer. The objective of this study was to assess the expression of LMNA/C
and INSR transcript variants in peripheral blood mononuclear cells (PBMCs) of leukemia patients
to investigate their potential as diagnostic biomarkers. Methods: Quantitative TaqMan reverse
transcriptase polymerase chain reaction (RT-qPCR) was utilized to quantify the mRNA levels of
LMNA/C (LMNA, LMNC, LMNA∆10, and LMNA∆50) as well as INSR (IR-A and IR-B) variants in
PBMCs obtained from healthy individuals (n = 32) and patients diagnosed with primary leukemias
(acute myeloid leukemia (AML): n = 17; acute lymphoblastic leukemia (ALL): n = 8; chronic myeloid
leukemia (CML): n = 5; and chronic lymphocytic leukemia (CLL): n = 15). Results: Only LMNA and
LMNC transcripts were notably present in PBMCs. Both exhibited significantly decreased expression
levels in leukemia patients compared to the healthy control group. Particularly, the LMNC:LMNA
ratio was notably higher in AML patients. Interestingly, IR-B expression was not detectable in
any of the PBMC samples, precluding the calculation of the IR-A:IR-B ratio as a diagnostic marker.
Despite reduced expression across all types of leukemia, IR-A levels remained detectable, indicating
its potential involvement in disease progression. Conclusions: This study highlights the distinct
expression patterns of LMNA/C and INSR transcript variants in PBMCs of leukemia patients.
The LMNC:LMNA ratio shows promise as a potential diagnostic indicator for AML, while further
research is necessary to understand the role of IR-A in leukemia pathogenesis and its potential as a
therapeutic target.
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1. Introduction

Leukemia, a complex group of disorders consisting of myelogenous and lymphocytic
types with acute and chronic subtypes, has undergone significant changes in its classifica-
tion. These changes involve the inclusion of genetic and immunologic features in addition
to morphology, resulting in a more comprehensive understanding of the disease and the
role of genetic mutations [1–3]. Immunophenotyping, cytogenetics, and molecular analysis
have become essential in the diagnosis and classification of leukemia [4,5], enhancing our
ability to accurately categorize the disease for targeted treatments.

The use of monoclonal antibodies in immunologic classification has greatly advanced
our knowledge of leukocyte differentiation and the origins of leukemia [6]. This approach
has played a crucial role in identifying distinct phenotypes and subtypes [6]. For example,
in adult acute lymphocytic leukemia, the presence of myeloid markers has been linked to
poorer outcomes, highlighting the significance of precise classification based on specific
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markers [7]. Ongoing research is exploring the application of high-throughput sequencing
to further improve the accuracy of classification [8], alongside advancements in diagnostic
and therapeutic strategies that have significantly enhanced the prognosis of leukemia
patients [8].

Cytogenetic analysis and molecular genetics have greatly advanced the classification
and treatment of leukemias [9–11]. These methods are essential for identifying specific
chromosomal abnormalities and genetic mutations, providing valuable prognostic infor-
mation and guiding targeted therapies. They have played crucial roles in diagnosing,
risk-stratifying, and monitoring therapy responses in pediatric and adult leukemias [10,11],
leading to more effective treatment strategies based on the identification of specific genetic
markers [9].

Nuclear lamins, classified as type V intermediate filaments, are crucial for nuclear
stability and the regulation of nuclear processes such as DNA replication, transcription,
and chromatin organization [12,13]. The LMNA/C gene, which encodes these proteins, has
12 exonal splicing variants, some of which are linked to cancer [14]. The loss of LMNA/C
expression has been observed in breast cancer, lung cancer, leukemia, and lymphoma, while
its up-regulation has been noted in prostate and colorectal cancer [15]. In solid tumors, the
LMNC:LMNA mRNA ratio has been suggested as a potential biomarker [16,17]. However,
the expression of LMNA/C transcript variants in leukemia remains unexplored.

Insulin signaling involves two main pathways. The first pathway operates through the
phosphatidylinositol 3-kinase (PI3K)/AKT (protein kinase B (PKB)) pathway, responsible
for producing insulin’s metabolic effects and connected through insulin receptor substrates
(IRSs). The second pathway involves the Raf/Ras/MEK/MAPK (mitogen-activated protein
kinase, also known as extracellular signal-regulated kinase (ERK)), pathway, controlling
gene expression and, in conjunction with the PI3K pathway, regulating cell growth and
differentiation [18]. The INSR plays significant roles in cancer progression, with overexpres-
sion in cancer cells leading to increased sensitivity to hyperinsulinemia [19]. The complex
interplay between the INSR and tyrosine kinase receptors, such as growth factor receptors,
and RAS pathway activation has significant implications for leukemia pathogenesis [20].
Dysregulated signaling through these pathways can lead to abnormal cell growth, survival,
and differentiation, all characteristic features of leukemia development [21]. For instance,
mutations or the overexpression of tyrosine kinase receptors like EGFR can directly ac-
tivate the RAF/RAS/MEK/MAPK pathway, promoting the proliferation and survival
of leukemic cells [22]. Additionally, the abnormal signaling of INSR can contribute to
metabolic changes in leukemia cells, further propelling disease progression [23]. The
significance of INSR in cancer is further emphasized by their overexpression in various
human malignancies, particularly IR-A, and their involvement in the formation of hybrid
receptors with the IGF-IR [24,25]. These hybrid receptors display enhanced ligand-binding
affinity and signaling activity, leading to increased cancer cell proliferation and survival.
Furthermore, the presence of these hybrid receptors confers resistance to targeted therapies
that specifically target either INSR or the IGF-IR alone [24,26]. A thorough understanding
of these signaling networks and their dysregulation in leukemia can offer valuable insights
into potential therapeutic targets aimed at disrupting oncogenic signaling and improving
treatment outcomes for leukemia patients [27].

The INSR gene undergoes alternative splicing, leading to the production of two mature
isoforms with distinct structural characteristics. IR-A, which lacks exon 11, is widely
expressed and is the predominant isoform in lymphocytes, while IR-B retains exon 11 and
is responsible for mediating the metabolic effects of insulin in insulin-sensitive tissues like
muscle, liver, and adipose tissues [28]. IR-A and IR-B play different roles in cancer. IR-A is
often overexpressed in cancer and is linked to an increased risk of malignancies, whereas
IR-B is typically found in insulin-sensitive tissues. The upregulation of IR-A enhances
the mitogenic response of cancer cells to insulin and IGF-2, indicating that these isoforms
could serve as potential targets for anti-cancer therapies [25,29,30]. Additionally, IR-A and
IR-B exhibit differences in their ligand-binding capabilities and signaling pathways, with
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IR-A being more mitogenic and antiapoptotic [31]. The tissue-specific expression of these
isoforms is regulated at both the mRNA and protein levels [32]. The ratio of IR-A:IR-B has
been investigated in solid tumors like breast adenocarcinoma [30,33] and non-small cell
lung cancers (NSCLC) [34] and has been proposed as a potential marker for predicting
cancer progression and response to treatment.

PCR testing of biomarkers, such as transcript variants of genes like LMNA/C and
INSR, presents numerous challenges and limitations. These include the need for meticulous
primer design and validation, the difficulty of obtaining high-quality RNA samples, and
the potential for false-negative and false-positive results [35,36]. The reproducibility and
reliability of PCR assays across different laboratories and platforms also require rigorous
validation and standardization protocols [37]. Furthermore, the clinical relevance and utility
of these biomarkers often require additional validation through correlation studies with
clinical outcomes and patient characteristics [38]. Despite these challenges, the potential
of PCR in detecting transcript variants is significant, and further improvements in PCR
techniques and protocols are necessary to enhance sensitivity and specificity [39].

In this study, we utilized TaqMan RT-qPCR to evaluate the mRNA expression levels
of various transcript variants of LMNA/C (LMNA, LMNC, LMNA∆10, and LMNA∆50)
and INSR (IR-A and IR-B) in PBMCs collected from healthy subjects and individuals with
the four primary types of leukemia (AML, ALL, CML, and CLL). The objective was to
investigate the possible effectiveness of these transcript variants as diagnostic biomarkers
for these particular leukemias.

2. Materials and Methods

Subjects: Blood samples were obtained from a total of 32 healthy adult volunteers.
These volunteers were selected from King Abdulaziz Medical City (KAMC) and King Abdu-
laziz bin Saud University for Health Sciences (KSAU-HS). Additionally, leukemic samples
were collected from the Hematology departments at KAMC and the Hematopathology
department at King Fahad Medical City (KFMC). The leukemic samples were obtained
from a total of 45 patients who had been diagnosed with one of the four primary leukemias:
AML with 17 samples, ALL with 8 samples, CML with 5 samples, and CLL with 15 sam-
ples. The study obtained ethical approval from the Institutional Review Boards (IRB) of
both KAMC and KFMC. Furthermore, written informed consent was obtained from all
participants involved in the study.

Isolation of PBMC: PBMC were isolated by collecting blood samples with Na-EDTA
as an anticoagulant. Following this, 10 mL of the anticoagulated blood was combined with
an equal volume of phosphate buffered saline (PBS) and slowly placed on top of 15 mL of
Ficol-Hypaque in Leucosep Tubes (50 mL, Greiner Bio-One North America Inc., Monroe,
NC, USA). The samples were then centrifuged at 450× g using a swing-out rotor for 30 min
at 22 ◦C. Post-centrifugation, PBMC formed a distinct layer above the red blood cell (RBC)
pellet. The PBMC band was collected using a pipette and washed several times with PBS.
In order to maintain RNA integrity, 50 µL of Qiagen RNALater (Qiagen, Germantown, MD,
USA) was added to the PBMC pellet, and the samples were subsequently frozen at −80 ◦C.

Reverse Transcriptase–Quantitative RT-qPCR Analysis: The Ambion Aqueous kit
(Ambion, Austin, TX, USA) was used to isolate the total RNA, and its quality and quantity
were evaluated using the Agilent Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA). Fol-
lowing this, 1 µg of total RNA was subjected to reverse transcription using the first-strand
cDNA synthesis Kit (MilliporeSigma, Billerica, MA, USA). Real-time RT-qPCR for INSR
(IR-A and IR-B) and LMNA/C transcript variants (LMNA, LMNC, LMNA∆10, LMNA∆50)
was conducted using the 7900HT Fast Real-Time PCR System (Thermo Fisher Scientific Inc.,
Waltham, MA, USA), as described before [17,30]. All probes were labeled with a fluorescent
dye (FAM) for detection and a non-fluorescent quencher (BHQ-1). The sequences for all
primer/probe combinations are listed in Table 1. A reaction volume of 20 µL was used
for Taqman RT-qPCR. The probe reaction assay consisted of 100 mM KCl, 20 mM Tris (pH
9.2), 5 mM MgSO4, 0.02% Triton X-100, 0.2 mM dNTP, 200 mM Betaine, 5% DMSO, 1.25 IU
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Taq Polymerase, 0.2 µM Sense/Anti-sense primers, 0.1 µM Probe, and 2 µL of cDNA. The
reaction protocol involved an activation cycle of 50 ◦C for 2 min, followed by 95 ◦C for 15 s.
Subsequently, 40 cycles of denaturation at 95 ◦C for 15 s, and annealing/extension (LMNA:
58 ◦C, LMNC: 60 ◦C, LMNA∆50: 60 ◦C, LMNA∆10: 66 ◦C, IR-A: 60 ◦C, and IR-B: 60 ◦C)
for 2 min were performed. The gene expression levels were standardized by employing
Ubiqiotin C and RPL13 as internal control genes, aided by geNORM V3.5 software [40].

Table 1. Primer sequences for all primers used in qRT-PCR.

Primer. Sense (5′→3′) Anti Sense (5′→3′) Probe Accession Number

LMNA TGACTGTGGTTGAGGACGAC GACACTGGAGGCAGAAGAGC CGCTGAGTACAACCT NM_170707.3

LMNC GTGGAAGGCACAGAACACCT GCGGCGGCTACCACTCAC AGATGACCTGCTCCATCACC NM_005572.3

LMNA∆10 AACTCCACTGGGGAAGGCTCC GCTCCTGAGCCGCTGGCAGA AGTACAACCTGCGCTCGCGC NM_170708.3

LMNA∆50 GCGTCAGGAGCCCTGAGC GACGCAGGAAGCCTCCAC AGCATCATGTAATCTGGGACCT NM_001282626.1

INSR (IR-A) TATCCGGAACAACCTCACTA GGAAGAGCAGCAAGTAATCA CTCTGTCATCGAAGGACACTTG NM_001079817

INSR (IR-B) AGGAGTCCTCGTTTAGGAAG AGGAAGTGTTGGGGAAAG AGAAAAACCTCTTCAGGCACTG NM_000208

Ubiquitin C ACTACAACATCCAGAAAGAGTCCA CCAGTCAGGGTCTTCACGAAG CCCACCTCTGAGACGGAGCACCAG NM_021009.6

RPL13 AACAAGTTGAAGTACCTGGCTTTC TGGTTTTGTGGGGCAGCATA CGCAAGCGGATGAACACCAACCCT NM_000977.3

Statistical Analysis: The statistical analysis was carried out using SigmaStat software
version 3.0 (Jandel Scientific, San Rafael, CA, USA). In order to compare normal and
leukemic specimens, the Mann–Whitney Rank Sum Test was utilized. Furthermore, the
Kruskal–Wallis One Way Analysis of Variance (ANOVA) on Ranks was employed to
compare normal specimens with different primary leukemic types. Subsequently, Dunn’s
test was conducted for all pairwise comparisons and comparisons against the control group.
A significance level of p value < 0.05 was used to assess the statistical significance of all
analyses. The results are presented as mean ± S.E.M.

3. Results
3.1. Demographic Data of Subjects

The study included 77 participants, with 32 healthy individuals and 45 subjects
diagnosed with one of the four main types of leukemia (AML: 17; ALL: 8; CML: 5; and
CLL: 15). The age distribution among the leukemia patients was notably different from
that of the non-leukemia group, with the exception of those with ALL (Table 2).

Table 2. Demographic data of the subjects that participated in the study. The results of the study
are presented in the form of mean ± S.E.M. Furthermore, statistical significance was determined by
comparing the results to the control group (* p < 0.05) and the ALL group (ε p < 0.05).

Gender Age
(years)

BMI
kg/m2

Control 14M, 18F 31.9 ± 2.18 32.1 ± 2.0
AML 9M, 8F 48.2 ± 5.18 * 26.4 ± 1.28
CML 4M, 1F 59.4 ± 6.75 *ε 30.4 ± 1.78
ALL 5M, 3F 34.4 ± 5.51 25.9 ± 2.38
CLL 7M, 8F 66.5 ± 3.42 *ε 28.1 ± 1.98

3.2. Differential Expression of LMNA/C mRNA Expression in PBMC

Differential expression of LMNA/C transcript variants (LMNA (TV1), LMNC (TV2),
LMNA∆10 (TV3), and LMNA∆50 (TV4 or Progerin)) mRNA was investigated in PBMCs
of both normal and leukemic subjects. Only LMNA and LMNC transcript variants were
detected in PBMCs. LMNA∆10 and LMNA∆50 mRNA were either not detected or had
high CT values in a few normal samples. In leukemia, the expression of LMNA mRNA
in PBMCs was significantly reduced, as indicated by Figure 1A (p < 0.001). The further
stratification of leukemic samples into the four primary leukemic types was shown to
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lead to the significant inhibition of LMNA in AML and CML, as depicted in Figure 1B
(p < 0.05). Similarly, the expression of LMNC mRNA in PBMC was significantly inhibited
in leukemia, as shown in Figure 2A (p < 0.001). Moreover, LMNC expression was signifi-
cantly inhibited in all four primary leukemias (AML, CML, ALL, and CLL), as depicted
in Figure 2B (p < 0.05). The mean normalized expression levels of LMNA and LMNC
were calculated using geNORM V3.5 software. A Mann–Whitney Rank Sum Test analysis
comparing normal (n = 32) and leukemia (n = 45) specimens revealed a significant differ-
ence between the two groups in terms of the LMNC:LMNA ratio, as shown in Figure 3A
(p < 0.05). Furthermore, Kruskal–Wallis ANOVA analysis identified significant differences
between normal and AML samples when stratified into the four primary leukemia types,
as depicted in Figure 3B (p < 0.05). Notably, no statistical correlation was found between
age and the expression of LMNA or LMNC or the LMNC:LMNA ratio.
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Figure 1. TaqMan qRT-PCR measurement of relative mRNA expression levels of LMNA in (A) normal
versus leukemic subjects and (B) following stratification into the four primary leukemias (AML, CML,
ALL and CLL). The error bars represent mean ± S.E.M.; ** p < 0.001; * p < 0.05.

1 

 

 Figure 2. mRNA expression of LMNC in PBMCs of both normal and leukemic subjects. In the case of
leukemia, the circulating PBMCs are linked to a decrease in the levels of LMNC mRNA expression (A).
Furthermore, when stratified into the four primary leukemias (AML, CML, ALL, and CLL), reduced
expression of LMNC is observed (B). The error bars in the figure represent the mean ± S.E.M., while
the symbols ** and * indicate statistical significance with p-values < 0.001 and 0.05, respectively.
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Figure 3. Comparison of the LMNC:LMNA mRNA ratio between normal and leukemic subjects in
(A), and the LMNC:LMNA mRNA ratio in the same samples after stratification based on the four
primary leukemias in (B). The error bars in the figure represent the mean ± S.E.M. Furthermore, the
asterisk (*) indicates statistical significance with a p-value < 0.05.

3.3. Inhibition of INSR (IR-A) mRNA Expression in PBMC

The INSR transcript variants, IR-A and IR-B, were assessed in PBMC samples collected
from both healthy individuals and individuals diagnosed with leukemia. The IR-A variant
(TV2) was present in PBMC samples from both healthy individuals and leukemia patients,
while the IR-B variant (TV1) was not detected in PBMC samples from either group, even at
a CT value exceeding 45. Interestingly, a notable reduction in IR-A expression was observed
in leukemia patients compared to healthy individuals (Figure 4A; p < 0.001). Subsequent
analysis, categorizing the leukemia patients into the four main types (AML, CML, ALL,
and CLL), demonstrated a significant suppression of IR-A expression across all four types
(Figure 4B; p < 0.05).
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Figure 4. Normalized mRNA expression levels of IR-A in PBMC of both normal and leukemic
subjects (A). The data are further categorized into normal and the four primary leukemic types (AML,
CML, ALL, CLL) (B). The error bars in the graph represent the mean ± Standard Error of the Mean
(S.E.M.). The significance of the results is indicated by the symbols ** (p < 0.001) and * (p < 0.05).
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4. Discussion

The levels of four transcript variants of the LMNA/C gene in humans, namely LMNA,
LMNC, LMNA∆10, and LMNA∆50 (Progerin), were evaluated using TaqMan RT-qPCR
assays that were specifically designed to accurately measure their mRNA levels without
any cross-reactivity [17]. Among these variants, only LMNA and LMNC were found to
be significantly present. Previous studies have reported a decrease in LMNA expression
in certain cell subsets characterized by low differentiation and high proliferation rates,
including various types of human cancers [41,42]. This reduced expression of LMNA has
also been observed in leukemia and lymphoma, often associated with epigenetic silencing
through CpG island promoter hypermethylation [43–45]. Our findings are consistent with
these observations, as we observed notably lower expression levels of LMNA/C variants
in PBMCs, particularly in cases of leukemia. This could potentially lead to alterations in
cell matrix strength, affecting drug sensitivity and proliferation rates [46].

Despite the sensitivity of our Progerin-specific RT-qPCR assay, we did not detect
significant levels of Progerin in PBMCs from normal or leukemic patients. A previous study
using the same assay found lower levels of Progerin in breast cancer biopsies compared
to normal tissue [17]. Progerin, which is predominantly found in Hutchinson Gilford
Progeria Syndrome (HGPS) cells, is typically expressed at very low levels in normal
cells, making its detection through RT-qPCR or Western blotting challenging [47–49]. The
protein expression of Progerin, which is absent at the mRNA level in skin samples from
newborns to elderly individuals, increases with age but remains relatively low even in older
individuals [50]. These discrepancies may be attributed to the insensitivity of progerin
antibodies due to their low abundance, necessitating the use of more sensitive detection
methods for Progerin protein. The distinction between Progerin and Lamin∆10 proteins
through Western blotting is challenging, as they only differ by 30 amino acids. Similarly,
we did not detect LMNA∆10 expression in PBMC, possibly due to the reduced or absent
expression of LMNA/C in PBMCs.

Cytokines play a crucial role in the initiation and progression of various pathologi-
cal processes, including cancer [51]. These molecules have the ability to either inhibit or
stimulate cell growth, regulate cell differentiation, and induce cell chemotaxis. Leukemia
originates from immature or developing cells in the bone marrow. In subsets of cells with
a low degree of differentiation, the expression of LMNA/C is either reduced or absent.
Research has shown that reduced LMNA/C expression in leukemia patients can lead to the
abnormal maturation of white blood cells, making them less effective in fighting off infec-
tions [52]. This is particularly evident in CLL, where impairments in granulocyte functions
contribute to increased susceptibility to infections [53]. Tumor growth can also impede the
maturation of natural killer (NK) cells, further compromising the immune system [54]. In
myelodysplastic syndrome (MDS), the reduced expression of activating receptors on bone
marrow NK cells is associated with the impaired killing of blasts [55]. CLL is also associ-
ated with a profound immune defect, leading to increased susceptibility to infections [56].
Furthermore, the overexpression of LMNA/C in macrophages has been found to activate
the proinflammatory nuclear factor κB (NF-κB) pathway and increase the expression levels
of proinflammatory genes, such as Interleukin-6 (IL-6), tumor necrosis factor α (TNFα),
and induced nitric oxide synthase 2 (NOS2) [57]. Conversely, the depletion of LMNA/C
in macrophages suppresses the inflammatory responses induced by lipopolysaccharides
(LPS) [57]. However, the aforementioned study did not specifically investigate the different
transcript variants of LMNA/C. Therefore, it is crucial to examine the role of these transcript
variants in cytokine production to gain a comprehensive understanding of the mechanism
underlying inefficient cytokine production in white blood cells, including those affected
by leukemia. These findings underscore the importance of understanding and addressing
immune dysfunction in leukemia patients to improve their outcomes. In our study, we
observed a downregulation of LMNA and LMNC transcript variants in leukemia, particu-
larly in AML. The ratio of LMNC to LMNA expression may potentially influence cytokine
production, as well as cell growth, differentiation, and chemotaxis. Further investigations
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are warranted to explore the modulatory effect of LMNA/C transcript variants on these
cellular functions in the context of leukemia.

The potential of the IR-A:IR-B ratio as a tumor biomarker has been investigated in
breast adenocarcinoma [33] and NSCLC [34]. In breast cancer, a decrease in IR-B expression
was identified as the primary factor responsible for altering this ratio, while IR-A expression
remained unchanged [34]. However, our TaqMan RT-qPCR analysis revealed an increase
in IR-A expression in breast cancer [30], which is consistent with the elevated levels of
IR-A observed in NSCLC [34]. Interestingly, while radioactive insulin binding sites were
found on most ALL, AML, CML, and AMoL cells, they were not detected in CLL [26].
This contradicts our findings of IR-A expression in CLL. Our results align with a previous
study that demonstrated the absence of IR-B in lymphocytes [28]. Notably, IR-B was absent
in PBMC, which consists of monocytes, T and B cells, and other lymphoid-origin cells.
Therefore, based on our findings, the IR-A:IR-B mRNA ratio cannot be considered a reliable
leukemia tumor marker.

Although neoplastic tissues typically express IR-A [24,26], this study found suppressed
IR-A transcript variant expression in AML, ALL, CML, and CLL. The INSR pathway di-
rectly impacts cancer development in solid tumors, with insulin and IGF-II activation
being prevalent in cancer cells, particularly in dedifferentiated/stem-like cells [26]. INSR
and IGF-IR play distinct roles in regulating genes associated with proliferation, apoptosis,
differentiation, and cell adhesion [25], and dysregulated IR-A expression plays a crucial
role. Historically, IGF-IR has been the primary focus of cancer therapy, overshadowing
INSR until recently. INSR facilitates farnesyltransferase activation, which is essential for
p21Ras activation via growth factors [58]. LMNA initially exists as a 74-kDa precursor,
preLMNA, featuring a C-terminal CaaX motif. Subsequent post-translational modifica-
tions such as farnesylation, aaX cleavage, and carboxylmethylation occur, followed by
endoproteolytic cleavage by Zmpste24 [59]. Our findings, in conjunction with these dis-
coveries, suggest a potential association between INSR and LMNA/C transcript variant
processing. Inhibiting IR-A may impede LMNA and LMNC transcript variant expression,
at least in PBMC, possibly by inhibiting farnesyltransferase activation. Further research is
necessary to elucidate this connection and investigate the potential of insulin potentiation
therapy (IPT) in leukemia treatment. IPT, which involves the use of insulin alongside
low-dose chemotherapy, has gained global attention but requires additional investigation
to determine its efficacy in treating leukemia.

Numerous investigations have provided evidence of a significant association between
higher body weight and the occurrence of leukemia. Prior studies have emphasized an
increased risk of leukemia among individuals who are overweight or obese, with the
latter group also showing a higher susceptibility to specific subtypes of leukemia [60,61].
Furthermore, another study revealed that excessive weight at the time of diagnosis had a
negative impact on the prognosis of pediatric acute lymphoblastic leukemia [62]. In contrast
to these findings, our study did not find any substantial disparity in weight between control
subjects and individuals diagnosed with leukemia.

The blood contains PBMCs, which are a diverse mixture of monocytes, dendritic cells,
lymphocytes (T and B cells), and other lymphoid cells. In myelogenous leukemia, the abnor-
mal cells primarily consist of granulocytes or monocytes, whereas lymphocytic leukemia is
mainly composed of lymphocytes. However, PBMCs may not be the most suitable sample
for studying AML and CML due to the absence of granulocytes. Moreover, the utilization
of heterogeneous PBMCs in this particular study is a significant limitation, and it would be
more advantageous to employ purified white blood cells for such investigations.

To summarize, the presence of LMNA and LMNC mRNA has been observed exclu-
sively in PBMCs. However, the expression of these transcript variants is suppressed in
PBMCs of individuals with leukemia. Notably, the ratio of LMNC to LMNA mRNA is
notably elevated in AML, suggesting its potential as a diagnostic marker for this type of
leukemia. On the other hand, IR-B is not detected in PBMCs, indicating that the ratio of
IR-A to IR-B mRNA cannot serve as a diagnostic marker for leukemia. Furthermore, the
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expression of IR-A is inhibited in various types of leukemia, including AML, CML, ALL,
and CLL.

5. Conclusions

In conclusion, our research offers significant findings regarding the expression profiles
of LMNA/C and INSR transcript variants in PBMCs among individuals with leukemia. We
have identified distinct patterns of expression for these variants, with particular attention
to the LMNC:LMNA ratio, which holds the potential for diagnosing AML. Furthermore,
our results underscore the importance of studying the role of IR-A in the development
of leukemia. Gaining a comprehensive understanding of IR-A’s contribution to disease
progression is essential for unraveling its mechanisms and exploring potential therapeu-
tic approaches.
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