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Abstract: Objectives: Radiomics and machine learning are innovative approaches to improve the
clinical management of NSCLC. However, there is less information about the additive value of FDG
PET-based radiomics compared with clinical and imaging variables. Methods: This retrospective
study included 320 NSCLC patients who underwent PET/CT with FDG at initial staging. VOIs were
placed on primary tumors only. We included a total of 94 variables, including 87 textural features
extracted from PET studies, SUVmax, MTV, TLG, TNM stage, histology, age, and gender. We used
the least absolute shrinkage and selection operator (LASSO) regression to select variables with the
highest predictive value. Although several radiomics variables are available, the added value of these
predictors compared with clinical and imaging variables is still under evaluation. Three hundred
and twenty NSCLC patients were included in this retrospective study and underwent 18F-FDG
PET/CT at initial staging. In this study, we evaluated 94 variables, including 87 textural features,
SUVmax, MTV, TLG, TNM stage, histology, age, and gender. Image-based predictors were extracted
from a volume of interest (VOI) positioned on the primary tumor. The least absolute shrinkage and
selection operator (LASSO) Cox regression was used to reduce the number of variables and select
only those with the highest predictive value. The predictive model implemented with the variables
selected using the LASSO analysis was compared with a reference model using only a tumor stage
and SUVmax. Results: NGTDM coarseness, SUVmax, and TNM stage survived the LASSO analysis
and were used for the radiomic model. The AUCs obtained from the reference and radiomic models
were 80.82 (95%CI, 69.01–92.63) and 81.02 (95%CI, 69.07–92.97), respectively (p = 0.98). The median
OS in the reference model was 17.0 months in high-risk patients (95%CI, 11–21) and 113 months in
low-risk patients (HR 7.47, p < 0.001). In the radiomic model, the median OS was 16.5 months (95%CI,
11–20) and 113 months in high- and low-risk groups, respectively (HR 9.64, p < 0.001). Conclusions:
Our results indicate that a radiomic model composed using the tumor stage, SUVmax, and a selected
radiomic feature (NGTDM_Coarseness) predicts survival in NSCLC patients similarly to a reference
model composed only by the tumor stage and SUVmax. Replication of these preliminary results
is necessary.
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1. Introduction

Over the past few years, there have been significant advances in the treatment of
non-small cell lung cancer (NSCLC). Biological, target, and immunotherapies have been
introduced in the clinical routine along with standard treatments, represented by surgery,
chemotherapy, and radiotherapy. Despite the wide therapeutic armamentarium available,
lung cancer still remains the first cause of cancer-related death worldwide. Moreover, it is
evident that patients at the same stage according to the classification of malignant tumors
based on tumor size, T, lymph nodes, N, and metastasis, M, (TNM) and with the same
treatment may experience different outcomes, suggesting a different biological behavior
within the tumor [1].

The ability to predict prognosis on the basis of tumor biology and set up a therapy
may be difficult in clinical practice. It is not uncommon that the outcomes of patients with
tumors classified in the same TNM staging group may evolve differently. One of the causes
is tumor heterogeneity. According to recent research, spatial heterogeneity is correlated
with tumor progression, treatment resistance, and recurrence [2]. Radiomics, defined as the
process of identifying mineable parameters hidden in the pixels of images and routinely
non-detectable by the human eye, is a new technology that potentially could allow to study
of tumor heterogeneity and to investigate its role in disease development. Indeed, specific
features extracted from images by radiomics analysis (e.g., intensity, shape, and texture)
add relevant information, which could be related to other clinical variables [3,4]. Radiomics
analysis provides quantitative information based on signal intensity of regions of interest
that improves the set of qualitative (semantic) information currently used in clinical practice.
Radiomic features extracted from the medical images belong to different categories defined
as a function of increasing complexity. The structural ones describe morphological aspects,
such as eccentricity, volume, and presence of concavity (solidity), while those of greater
complexity are defined according to the organization of spatially contiguous areas with
different signal intensities [5]. In recent years, machine learning and radiomic techniques
have been increasingly used for whole-body and brain image analysis in oncology and
neuroimaging in order to improve diagnostic accuracy for several disorders [6,7]. The
enormous amount of data associated with medical images, such as size, morphology, and
radiotracer uptake, represents a great source of information where radiomics can play
an important role in the detection of quantitative information normally not evaluable
by the human eye. In this study, we described a machine learning approach to create
a prognostic model for patients with newly diagnosed NSCLC. To explore the additive
value of radiomics, we compared the performance of a machine learning radiomic model,
integrating the tumor stage, standardized uptake values (SUVmax), and radiomic features,
with a reference model integrating only tumor stage and SUVmax for the prediction of
overall survival (OS) in NSCLC patients. Our major finding is that the radiomic model did
not significantly increase the prediction of survival in NSCLC patients compared with the
reference model.

2. Materials and Methods
2.1. Population

This retrospective study was based on clinical records and F-18 fluorodeoxyglucose
positron emission tomography/computed tomography (FDG PET/CT), images of NSCLC
patients from two institutions (S. Andrea Hospital, La Spezia, Italy, and IRCCS Ca’ Granda-
Ospedale Maggiore Policlinico, Milan, Italy) collected between November 2010 and Decem-
ber 2019.

Patients were retrospectively recruited from (S. Andrea Hospital, La Spezia, Italy,
and IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Milan, Italy). The analysis was
performed on clinical records and imaging studies collected between November 2010 and
December 2019. The regional review committee granted ethical approval (CER Liguria:
251/2020/10601) for this study (8 June 2020). We de-identified data to avoid any potential
breach of patient privacy and processed them for research purposes from 1 July 2020.
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Inclusion criteria were as follows: (1) histologically confirmed lung adenocarcinoma or
squamous cell carcinoma diagnosed on surgical specimen according to the World Health
Organization (WHO) classification [8]; (2) whole body FDG PET/CT performed at initial
staging; (3) availability of information about survival status. Exclusion criteria were as
follows: (i) previous history of other malignant tumors; (ii) anticancer treatment prior to the
baseline PET/CT scan; (iii) PET/CT performed not at initial staging. Written informed con-
sent was obtained from all patients before PET/CT imaging procedures. As 1184 out of the
1504 patients initially recruited from the institutional database did not meet inclusion crite-
ria, they were excluded. Therefore, the study cohort consisted of 320 subjects (21% of the
initial sample) with histologically confirmed diagnosis of NSCLC, encompassing 219 males
and 101 females. Among these, 209 were adenocarcinomas and 111 were squamous cell
carcinomas. Patients were classified by a nuclear medicine physician and an oncologist
according to the 8th edition of the TNM staging system [9] measuring the tumor size (T) on
the unenhanced CT of the PET/CT; the analysis of the presence of regional lymph node
involvement (N) and distant metastases (M) was based on visual and semiquantitative
evaluation of FDG uptake compared with background without any fixed uptake threshold
and cytology/histology, as available.

Overall survival was defined by the time between the date of imaging and that of
death or censoring. The date of the last follow-up visit was used for censoring surviving
patients. Hospital records were used to assess patients’ status.

All procedures were performed in accordance with institutional and/or national
ethical standards and the 1964 Helsinki Declaration and its subsequent amendments.

Informed consent was obtained from all individual participants included in the study.

2.2. PET Imaging and Segmentation Procedures

PET/CT imaging was performed on a Discovery 710 (GE Healthcare, Chicago, IL,
USA) and a Biograph (Siemens Healthcare, Erlangen, Germany) tomograph according to
standard clinical scanning protocol used in the two participating centers. Patients were
required to fast for ≥6 h prior to administration of 3.84 MBq/kg body weight of FDG (range,
2.57–4.91 MBq/kg). The mean FDG uptake period was 63 min (range, 47–83 min). Head-to-
hip scanning was performed in all patients with the standard protocol using low-dose CT
followed by PET acquisition. CT images were obtained at 120 kV and 100 mA, 0.33 s per
rotation using a slice thickness of 3.0 mm and reconstructed to a 512 × 512 matrix (voxel
size: 0.98 × 0.98 × 3.0 mm3). PET imaging was obtained in a three-dimensional mode
with 6 to 8 beds and lasting not less than 2 min each for a whole body acquisition from
head to hip. PET images were reconstructed with CT-based attenuation correction using an
ordered subset expectation maximization (OSEM) iterative algorithm. Final PET images
had 256 × 256 matrix size and anisotropic voxels of 2.73 × 2.73 × 3.27 mm3. SUVmax was
obtained by normalizing the injected activity concentration to the patient’s body weight.

PET images were reviewed in the Nuclear Medicine Unit laboratory of the S. Andrea
Hospital by two board-certified nuclear medicine physicians. Fused PET/CT and CT
images were processed under PET Volume Computerized Assisted Reporting (PETVCAR
version 2.0) commercial software running on Advantage Workstation (version 4.6; GE
Healthcare) in order to segment lung cancer. PETVCAR uses an adaptive iterative volume
delineation algorithm (AT-AIA), which is able to automatically segment the target volume
from background tissue using a SUVmax threshold of 2.5 and a 3D isocontour of 41% of the
maximum voxel value measured in the target lesion [10,11]. SUVmax and SUVmean were
obtained as the maximum and mean activity of the voxels within the volume of interest.
Metabolic tumor volume (MTV) was defined as the total tumor volume contained in the
VOI. Total lesion glycolysis (TLG) was calculated as MTV multiplied by the mean SUV of
the lesion.
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2.3. Image Analysis and Textural Features Extraction

Before the extraction, we applied the ComBat harmonization method [12] to remove
batch effects from images of different scanners using the “neuroCombat” package in R.

In compliance with protocols described by the Imaging Biomarker Standardization
Initiative (IBSI) (https://arxiv.org/abs/1612.07003, accessed on 1 March 2024), intensity
discretization and spatial resampling were applied before feature extraction. Images were
discretized with a 64 fixed bin width and resampled to 5 mm3 voxel size with B-spline
interpolation.

Spatial and intensity heterogeneity of FDG PET images were evaluated with two
groups of features including (a) intensity and (b) texture. First-order statistics describing
the voxel intensities within the VOI mask, including the tumor image, were assessed
using SUV metric, including maximum voxel intensity (SUVmax), MTV, and TLG. The
target volume was also limited to tumor volume in patients with lymph nodes and distant
pathological FDG uptake sites.

Eighty-seven radiomic variables were extracted with the Pyradiomics software pack-
age (version 3.1.0) from each lung tumor [13,14].

Among them were 15 first-order, 21 gray-level co-occurrence matrix (GLCM), 16 gray-
level run-length matrix (GLRLM), 16 gray-level size zone matrix (GLSZM), 14 gray-level
dependence matrix (GLDM), and 5 neighborhood gray-tone difference matrix (NGTDM)
textural features. To summarize, the whole set of predictors used for this study included
94 features—namely, 87 radiomic features, SUVmax, MTV, TLG, tumor stage, histology,
age, and gender.

2.4. Feature Selection and Classification

The survival prediction model was implemented, starting with the whole set of
demographic, clinical, radiomic, and molecular variables obtained from PET/CT studies.
In order to reduce the number of variables to be included in the model, we used the
least absolute shrinkage and selection operator (LASSO) Cox regression analysis [15,16].
The analysis was performed in R 4.1.3 (http://www.r-project.org) with the cv.glmnet
package [17].

The model with the best performance was selected using a 10-fold cross-validation
and the C-statistic. The detailed description of the method is reported in our previous
paper [18].

The model used in subsequent analyses was implemented with the predictors selected
from the LASSO Cox regression analysis.

2.5. Model Validation and Calibration

Model performance was estimated with the calibration and validation procedures
available under the RMS package [19]. The evaluation metric was based on C-index and
Brier scores. The calibration method was performed by comparing the predicted to the
observed probabilities. Validation was obtained by computing an optimism-corrected
C-statistic after 1000 bootstrapped resampling. To test data not included in the training
process, we also carried out the validation of the test dataset. The high- and low-risk
survival groups were defined using the median individual risk score assessed with the
GGrisk package of R software [20]. Kaplan–Meier analysis with the ggsurvplot function
and log-rank test was used to evaluate the accuracy of the risk score in identifying patients
with a lower probability of survival.

2.6. Model Design

Ninety-four predictors were included in Lasso’s initial selection. They included
2 demographic (age and gender), 3 metabolic (SUVmax, MTV, and TLG), 87 radiomic,
and 2 clinical features (histology and disease stage). The model was built with all the
predictors chosen by Lasso analysis. For comparison, a model including the disease stage
only was implemented.

https://arxiv.org/abs/1612.07003
http://www.r-project.org
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Model performance was assessed on a test dataset obtained by splitting the study
sample into training (80%) and test (20%) datasets. Therefore, the performance evaluation
was carried out on data excluded from the training.

The ratio used to divide the study population into training and test samples is reported
to be useful in developing high-performance predictive models when the sample size is
greater than 100 and the percentage of incomplete data is less than 15% [21].

Moreover, the risk prediction model implemented using the disease stage alone was
used to assess the added value of the radiomic model to the reference model. Model
performance was evaluated by applying estimates derived from the training dataset to the
test sample. Supplementary Table S2 reports clinical and demographic characteristics of
the study sample by dataset.

2.7. Statistics

Statistical analysis and figures were obtained under R software (version 4.1.3, http:
//www.r-project.org). T-statistic was used for continuous variables. Where appropriate,
the degrees of freedom were adjusted for inequality of variance.

Glmnet was used for LASSO regression analysis. Kaplan–Meier was performed under
the ggsurvplot R package. The pROC and survival-ROC packages were applied to analyze
the area under the receiver operating characteristic curve (AUCs).

Validation plots were produced by the root mean squares (RMS) package. The chi-
square analysis was used for categorical variables. Positive predictive value (PPV), negative
predictive value (NPV), and their 95% confidence intervals (CIs) were calculated to estimate
how strongly the model-predicted diagnosis was associated with clinical outcomes.

The RMS package was used for predictive model validation [22]. The chi-square
test was used to measure categorical variables’ association with outcome. Moreover, the
predictive model performance was assessed with positive predictive value (PPV) and
negative predictive value (NPV) with their 95% confidence intervals (CIs).

In order to evaluate the model’s predictive performance in different disease stages
we also split the sample into an early disease group (stages I and II) and an advanced
disease group (stages III and IV). The ability of the model to distinguish deceased from
survivors was assessed with AUCs. The differences between the AUCs obtained in the
two subgroups were evaluated with the DeLong test [23]. Two-sided p-values less than
0.05 were considered statistically significant.

3. Results

Three hundred and twenty patients were recruited and randomized to include 80%
(n = 256) in training and 20% (n = 64) in test datasets. The distribution of histological types
showed no significant differences between the training and test datasets (p > 0.05). Patients’
characteristics are summarized in Table 1.

Table 1. Clinical and demographic characteristics of lung cancer patients. ADC = adenocarcinoma,
SCC = squamous cell carcinoma, CTx = chemotherapy, RTx = radiotherapy, Sx = surgery.

Outcome

Variable Overall, n = 320 1 Alive, n = 123 1 Deceased, n = 197 1 Statistic p-Value 2

Age −2.6 0.011
Median (Range) 72 (43, 92) 70 (43, 87) 73 (46, 92)

Gender 4.6 0.032
Female 101 (32%) 48 (39%) 53 (27%)
Male 219 (68%) 75 (61%) 144 (73%)

Smoking status 0.88 0.35
Nonsmokers 165 (52%) 68 (55%) 97 (49%)

Smokers 155 (48%) 55 (45%) 100 (51%)

http://www.r-project.org
http://www.r-project.org
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Table 1. Cont.

Outcome

Variable Overall, n = 320 1 Alive, n = 123 1 Deceased, n = 197 1 Statistic p-Value 2

Histology 20 <0.001
ADC 238 (74%) 109 (89%) 129 (65%)
SCC 82 (26%) 14 (11%) 68 (35%)

Stage 93 <0.001
IA, IB 119 (37%) 84 (68%) 35 (18%)

IIA, IIB 35 (11%) 14 (11%) 21 (11%)
IIIA, IIIB, IIIC 77 (24%) 17 (14%) 60 (30%)

IVA, IVB 89 (28%) 8 (6.5%) 81 (41%)

Treatment <0.001
Combined 141 (44%) 41 (33%) 100 (51%)

CTx 66 (21%) 6 (4.9%) 60 (30%)
RTx 10 (3.1%) 2 (1.6%) 8 (4.1%)
Sx 103 (32%) 74 (60%) 29 (15%)

1 n (%); 2 Welch two-sample t-test; Pearson’s chi-squared test; Fisher’s exact test.

The full set of textural, non-textural, and clinical predictors available for each patient
consisted of 94 variables. Predictors were selected with 10-fold cross-validation LASSO
regression and C-statistic. The parameter producing a C-index within one standard error
was 0.195 corresponding to a C-index of 0.782 (standard error = 0.019) (Figure 1). The
coefficients of all predictors estimated with the LASSO shrinking algorithm are reported in
Supplementary Figure S1.

Three predictors with non-zero coefficients survived the tuning parameters giving the
C-index within one standard error of the maximum (Figure 1C). Selected variables included
the tumor stage, SUVmax, and the radiomic variable NGTDM_Coarseness (Figure 1C). The
LASSO procedure is an automatic operator-independent selection based on a predefined
algorithm. Based on the LASSO regression results, two models were created to predict
survival in patients with NSCLC: (1) a radiomic model composed using the tumor stage,
SUVmax, and NGTDM_Coarseness; (2) a reference model composed using only the tumor
stage and SUVmax.

In the training dataset, the concordance between the predicted survival and ob-
served survival curves was detected by the internal validation procedure (Supplementary
Figure S2, left panel). The unadjusted and bias-adjusted probabilities were aligned with
the line of the best possible correlation (dashed line) between the predicted and observed
outcome assessed by the mean absolute error (MAE) of 0.010. Moreover, the scores of 0.791
and 0.159 obtained for the C-statistic and Brier scores, respectively, confirmed the accuracy
of the prediction. Validation results on the test set are shown in Supplementary Figure S2,
right panel where the scores of 0.015, 0.819, and 0.162 were estimated for the MAE, C-index,
and Brier scores, respectively.

The individual risk score was calculated with Cox regression in both the training and
test datasets. Figure 2 shows the distribution of the risk score in the test sample. The results
of the Kaplan–Meier analysis performed by dividing the patients of each dataset into high-
and low-risk groups are shown in Figure 3. The median OS in the training dataset was
16.0 months in high-risk patients (95%CI, 11–18) and was not reached in the low-risk group
(hazard ratio, HR: 5.65, p < 0.001) (Figure 3A). In the test dataset, the median OS in the
high-risk group was 16.5 months (95%CI, 11–20) and 113 months in the low-risk group
(HR 9.64, p < 0.001) (Figure 3B). Figure 4 shows the hazard ratio values by dataset and
prediction model. The hazard ratio’s p-value used to estimate model performance was
significant in the training and testing datasets for both prediction models.
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Figure 1. LASSO Cox regression results. (A) LASSO coefficients. Coefficient values are plotted against
the log (λ). The coefficient of each feature is shown by a colored line. (B) C-Index. The plot shows
the C-index plotted against log (λ). (C) The hazard ratio and 95% confidence interval of predictors
survived LASSO selection as estimated by multivariate Cox regression.

The radiomic model correctly classified the majority of deceased and surviving patients
into high- and low-risk groups in both datasets. In the training dataset, the radiomic model
identified 70% of true positives and 83% of true negatives (OR, 95%CI = 11, 6–20). In the
test sample, the model recognized 72% of true positives and 84% of true negatives (OR,
95%CI = 12, 3–40) (Table 2).

The AUCs obtained from the reference and radiomic models were 80.82 (95%CI,
69.01–92.63) and 0.8102 (95%CI, 69.07–92.97), respectively (Figure 5A). The DeLong statistic
showed no significant difference between the performance of the two models (p = 0.98).
Radiomic model performance was also evaluated separately on a subset including only I
and II stages (early disease) vs. III and IV stages (advanced disease). The AUCs obtained
from the early and advanced disease were 66.73 (95%CI, 56.29–77.16) and 73.06 (95%CI,
64.12–81.99), respectively (Figure 5B). No statistically significant difference between AUCs
was shown by the DeLong test (p = 0.37).



J. Clin. Med. 2024, 13, 2613 8 of 16

Table 2. Bivariate analysis of model performance by dataset.

Observed

Predicted n Deceased 1 Alive 1 χ2 p-Value 2 SS 95%CI 3 SP 95%CI 4 PPV 95%CI 5 NPV 95%CI 6 OR 95%CI 7

Training 256 62 4.4 × 10−15 70 (62, 77) 82 (73, 89) 86 (79, 91) 62 (54, 71) 10 (5, 18)
High risk 110 (70%) 18 (18%)
Low risk 48 (30%) 80 (82%)

Validation 64 17 4.1 × 10−5 72 (55, 85) 84 (64, 95) 88 (71, 96) 66 (47, 81) 12 (3, 40)
High risk 28 (72%) 4 (16%)
Low risk 11 (28%) 21 (84%)

1 n (%); 2 Pearson’s chi-squared test; 3 sensitivity, confidence interval; 4 specificity, confidence interval; 5 positive predictive value, confidence interval; 6 negative predictive value,
confidence interval; 7 odds ratio, confidence interval.
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Figure 6 shows the results of the Kaplan–Meier analysis obtained using the two models.
The median OS in the reference model was 17.0 months in high-risk patients (95%CI, 11–21)
and 113 months in the low-risk group (HR 7.47, p < 0.001) (Figure 6A). The median OS in
the radiomic model was 16.5 months (95%CI, 11–20) and 113 months in high- and low-risk
groups, respectively (HR 9.64, p < 0.001) (Figure 6B).

The median OS in the advanced disease group was 11 months (95%CI, 10–12) and
21 months (95%CI, 19–42) in high- and low-risk groups, respectively (HR 2.48, p < 0.001).
The median OS in the early disease group was 113 months in high-risk patients and was
not reached in the low-risk group (HR 2.40, p = 0.007). Survival estimates in our study are
similar to those previously reported in the literature [24,25].
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4. Discussion

A wide variation in clinical outcomes has been observed in patients within the same
tumor stage [26,27]. In order to improve risk assessment, several attempts have been made
to develop linear models based on Cox regression [28] and forest plot [29] integrating TNM
with the other known prognostic factors in NSCLC, such as age and histology. Nevertheless,
these models are characterized by poor performance, probably due to the limited number
of features available and to the linear logic that does not take into account the complexity
of clinical variables.

In our study, we investigated the potential impact of the prediction of the clinical
outcome of a machine learning approach integrating tumor stage and SUVmax with tumor
radiomic features extracted by FDG PET from newly diagnosed NSCLC patients. We
used Cox regression analysis to predict the risk of mortality using one model integrating
one selected PET radiomic feature (NGTDM_Coarseness), SUVmax, and tumor stage,
defined as the radiomic model, and one model using only tumor stage and SUVmax,
named the reference model. In fact, TNM is the reference standard for NSCLC staging,
and SUVmax, which can be very easily and quickly calculated, was consistently shown to
predict survival in NSCLC patients [30]. Although radiomics is fascinating and powerful,
its application is also cumbersome and time-consuming and it should be preferred or added
to established biomarkers for a specific clinical question in case of a significant added value.
Unfortunately, in our study, for the prediction of survival in NSCLC patients, the selected
radiomic variable did not provide any significant additional value to that provided by the
combination of tumor stage and SUVmax.

This study is part of a framework of machine learning emerging applications in
clinical oncology. Machine learning has been employed in the context of medical imaging
for segmentation and malignancy characterization [31], in histopathology [32], and in
the study of biomarkers [33]. Recent studies have begun to explore the potential role of
machine learning networks in prognosis, applying machine learning models to predict
OS in NSCLC, mainly integrating tumor stage with clinical factors showing promising
results [34–44]. However, a possible research gap lies in the fact that although studies
indicate the potential of radiomics to predict survival in oncological patients, the clinical
settings and the most important radiomic variables for such prediction need to be better
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established. This motivated our study. The comparison between the reference and the
radiomic model differentiates our study from others in the radiomic field. A careful analysis
of the papers suggests that the discrepancy between our study and other studies might be
related to the different methodologies adopted.

For example, Ahn et al. reported that different radiomic variables derived from
pretreatment FDG PET predicted survival in NSCLC patients; however, in their case, only
radiomic variables were included in the analysis [35]. Similar univariate approaches were
adopted in other positive studies [36,37].

In another group of studies, radiomic features were integrated with other clinical
or imaging variables in fully integrated models, but their added value compared with a
reference model was not assessed [38,39].

Moran et al. studied radiotherapy, planning CT and PET/CT 39 for stage III NSCLC
patients [41]. Seven conventional prognostic factors, including stage (IIIA vs. IIIB), were
collected. Patients were divided into two risk groups based on Kaplan–Meier curves. They
showed that the discriminatory power was significantly increased when conventional prog-
nostic factors were combined with PET features compared with conventional prognostic
factors alone. There was no significant improvement when conventional prognostic factors
were combined with CT features. The main difference from our study is that in their study,
SUVmax was not included in the analysis—a factor that might contribute to the different
results. Contrarily, Oikonomou et al. showed that radiomic features, but not SUVmax,
predict OS after radiotherapy in NSCLC, but in their study, the role of tumor stage was not
assessed [42].

Results very similar to ours were obtained by Hannequin et al. [40] and Oliveira
et al. [43]. Hannequin et al. showed that PET and CT radiomic features have intrinsic
power to predict survival, but they do not significantly improve the prediction of OS
and progression-free survival in different multivariate models, in comparison to stage
and gender [40]. Oliveira et al. found at univariable analysis no significant association
between radiomic features predicting either event-free survival or OS [43]. The authors
of this multicentric study emphasized the need for standardized protocols. Indeed, it is
also possible that the bicentric nature of our study, with some protocol differences, might
have increased the variability of the data and partially reduced the statistical power of the
radiomic analysis.

To overcome this drawback, the radiomics data were harmonized using the ComBat
approach. This method has proven to be useful in harmonizing the radiomic features
extracted from PET obtained with different acquisition and/or reconstruction parameters
and in facilitating the validation of the radiomic signatures of data obtained from different
centers [45].

The study sample was distributed between the two centers (218 and 102 patients). Clin-
ical and demographic characteristics were similar between the two groups (Supplementary
Table S1). Survival rates did not differ significantly between the two groups (Log-rank
p = 0.2).

It might be objected that our results are biased by the fact that the majority of our
sample is represented by advanced-stage patients; therefore, the variable stage naturally
outweighs the role of radiomics in the determination of survival. However, when the
analysis was performed separately for patients with early disease and advanced disease
(Figure 5B), the results of the two analyses were similar showing that the accuracy of the
model is independent of the disease stage.

The definition of T was based on the measurement of tumor size on the unenhanced
CT of the PET/CT. However, stages III and IV are based not only on size but also on
the infiltration of various tissues (pleura, vessels), which is difficult to assess on PET/TC.
Owing to the retrospective design of the study, contrast-enhanced CT was not available for
all patients as it was often performed in other centers. Therefore, the proportion of stages
III and IV may have been slightly underestimated.
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In this study, we extracted radiomic data only from the primary tumor, excluding
lymph nodes and distant metastases, as the radiomic variables can be affected by various
factors, which can limit the reproducibility and accuracy of the estimates (lesion size,
contouring, and/or harmonization approach [46].

Li et al., using PET/CT, showed that the best classifier for predicting local relapse had
only tumor features; in contrast, the best classifier for predicting overall relapse included a
node feature [47].

In the study by Carvalho et al., common SUV descriptors were significantly related
to OS when extracted from lymph nodes but not from tumor region, while radiomic
features were significant when extracted from both lymph nodes and tumor. Therefore, a
combination of FDG-PET radiomic features from tumors and lymph nodes was considered
desirable to achieve a higher prognostic discriminative power for NSCLC [48]. These
preliminary results do not conclude that radiomic analysis is useless, but they show that
FDG PET radiomic analysis of only primary tumor provides no additional information
in this clinical context. Nowadays, the most common approach in PET studies is to limit
radiomic analysis to the tumor. Radiomic analysis of lymph nodes and distant metastases
would be more cumbersome but, potentially, also more informative. Similarly, unenhanced,
low-dose CT radiomic signature could provide useful information to differentiate and
identify histology of lung cancer or to predict survival [18,49,50], but the assessment of CT
radiomics was beyond the aim of our study and should be considered as a study limitation.

The main limitation of our study relates to the reproducibility of the results, i.e.,
test-retest reliability. A sizeable number of factors, such as number of patients, number
and type of radiomic variables, software used for data extraction, validation procedure,
data harmonization, type of treatment, etc., can all affect radiomic analysis variability.
Therefore, replication of our study is warranted, and until such replication is obtained, our
results should be considered preliminary. Attention was paid to describing all parts of our
methods so that independent replication of our results could be achieved. In future studies,
we would like to test the robustness of the current results in a larger population and use a
different data selection method.

5. Conclusions

We performed a retrospective study, which included 320 NSCLC patients who un-
derwent PET/CT with FDG at initial staging. VOIs were placed on primary tumors only.
There is increasing interest in assessing the role of radiomics in predicting survival or other
clinical-pathological features in NSCLC [44,51–56]. While most studies uniquely tested the
role of models mixing clinical and radiomic variables, we performed a comparative study
where a model containing uniquely clinical variables (tumor stage and SUVmax), referred
to as the reference model, was contrasted with a model that, in addition to tumor stage and
SUVmax, contained one radiomic variable (NGTDM_Coarseness, radiomic model); these
variables had been automatically selected by our data selection method (LASSO procedure).
Our design allowed for assessing the additional value introduced by the radiomic variable.
Results showed that the radiomic model predicted survival in NSCLC patients similarly to
the reference model. Replication of these preliminary results is warranted to shed more
light on the role of radiomic variables in the prediction of prognosis in NSCLC patients.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcm13092613/s1, Figure S1. LASSO Cox coefficients of all variables
used for prediction model implementation; Figure S2. Calibration curves from regression model
predictions by datasets; Figure S3. Overfitting impact on prediction model; Table S1. Clinical and
demographic characteristics by recruitment center; Table S2. Clinical and demographic characteristics
of Lung Cancer patients by dataset.

https://www.mdpi.com/article/10.3390/jcm13092613/s1
https://www.mdpi.com/article/10.3390/jcm13092613/s1
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