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Abstract: Phosphorus (P) is one of the essential macronutrients for plant growth, being a highly
required resource to improve the productive performance of several crops, especially in highly
weathered soils. However, a large part of the nutrients applied in the form of fertilizers becomes
“inert” in the medium term and cannot be assimilated by plants. Rationalizing the use of phosphorus
is a matter of extreme importance for environmental sustainability and socioeconomic development.
Therefore, alternatives to the management of this nutrient are needed, and the use of P-solubilizing
microorganisms is an option to optimize its use by crops, allowing the exploration of less available
fractions of the nutrient in soils and reducing the demand for phosphate fertilizers. The objective of
this study is to discuss the importance of phosphorus and how microorganisms can intermediate
its sustainable use in agriculture. In this review study, we present several studies about the role of
microorganisms as phosphorus mobilizers in the soil. We describe the importance of the nutrient for
the plants and the main problems related to the unsustainable exploitation of its natural reserves and
the use of chemical fertilizers. Mainly we highlight how microorganisms constitute a fundamental
resource for the release of the inert portion of the nutrient, where we describe several mechanisms of
solubilization and mineralization. We also discussed the benefits that the inoculation of P-solubilizing
microorganisms provides to crops as well as practices of using them as bioinoculants. The use of
microorganisms as inoculants is a viable resource for the future of sustainable agriculture, mainly
because its application can significantly reduce the application of P and, consequently, reduce the
exploitation of phosphorus and its reserves. In addition, new research must be conducted for
the development of new technologies, prospecting new biological products, and improvement of
management practices that allow for higher efficiency in the use of phosphorus in agriculture.

Keywords: phosphorus mobilization; mineralization; microbial mechanisms; natural resources;
sustainable agriculture; plant growth promoting microorganisms

1. Introduction

Agriculture is fundamental to human beings and the constitution of society [1]. This
activity is responsible for the livelihood of about 40% of the global population and one-
third of the earth’s surface is dedicated to agriculture (excluding frozen areas), which
demonstrates the impact and representativeness of this practice globally [2,3].

However, agricultural production depends on resources, one of which is phosphorus
(P). This nutrient is essential for plant growth and is a limiting factor for crop yields [4,5].
The use of high-concentration phosphate fertilizers has become a continuous practice that
threatens natural resources, especially the natural reserves of high-level phosphate, which
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are not renewable resources. After the harvest, the phosphorus removed from the soil
and retained in agro-industrial residues is unlikely to return to the soil, mainly due to
the global aspect of the production chains and the disruption of small local chains, which
could facilitate the return and incorporation of this residue to the soil, returning part of the
phosphorus applied in the form of mineral fertilizer [6]. In addition, most of the fertilizers
applied to the soil become unavailable for assimilation by plants and can even lead to
biological imbalances in soil and water [7,8]. In this way, more sustainable alternatives for
agriculture should be proposed, considering the problems of modern agricultural systems
based on monocultures, the demand for safe food with better socio-environmental quality,
and the need to preserve environmental resources for future generations [9].

Many microorganisms have the potential of increasing phosphorus availability in
soil. Bacteria, fungi, cyanobacteria, mycorrhizal fungi, and actinobacteria have several
mechanisms that allow the mineralization of organic P and the solubilization of part of
the inorganic P unavailable to plants [10–12]. Additionally, these microorganisms can
promote plant growth by fixing nitrogen, producing phytohormones, supporting nutrient
assimilation, and promoting resistance to stress and pathogens. Therefore, they are an
interesting alternative to the P supplied in agriculture, as they reduce the demand for
phosphate fertilizers while promoting plant growth and productivity [13,14].

This study addresses the importance of phosphorus and its main sources in agriculture,
the threats related to phosphorus fertilizers production and application, and the impact
of soil microbes on phosphorus availability and related microbial mechanisms. Emphasis
is given to how microorganisms can intermediate sustainable alternatives in agriculture,
considering the different mechanisms that make possible the bioavailability of the insoluble
part of phosphorus, previously not accessible to plants, and their role in promoting the
growth of various vegetables. In this way, this study presents a bibliographic review that
gathers research about the use of P and the mechanisms and use of phosphate-solubilizing
microorganisms.

2. Phosphorus and Phosphate Fertilizers

P is an indispensable nutritional requirement for plants. Although it is not the nutrient
most demanded by plants, the amount supplied to crops is high, especially in highly
weathered soils, owing to the intensity of the specific adsorption processes of P in abundant
soil minerals such as goethite, hematite, and gibbsite. In the plant, P is a constituent of
certain sugars, nucleic acids, lipids, and other compounds. In metabolism, it is a mediator
of carbohydrate synthesis and acts in the activation and inactivation of enzymes. It also
stimulates germination, root growth, flowering, and seed formation [15,16]. It is even
involved in energy transfer processes such as photosynthesis and is also a component of
molecules such as ATP and GTP [17].

P is described as a limiting factor in plant growth in several studies, where its depri-
vation triggers cellular and physiological changes [5,18,19]. Meng et al. [20] show that P
availability affected the growth of sour pummelo (Citrus grandis). Its deficiency limits the
accumulation of dry matter in leaves and branches. In addition, the results of this study
show that low P also inhibits plant growth, affecting the absorption of other nutrients,
decreasing photosynthetic performance, and increasing the production of reactive oxy-
gen species. Therefore, the availability of this nutrient in the soil directly influences crop
productivity [21].

In general, P is found in the soil in two forms. The first is the organic form, where its
atom is covalently bonded to a carbon, either directly or via phosphodiester bonds [22].
However, it is predominantly found in inorganic forms, including orthophosphate anions
in solution, bound in minerals, or adsorbed on mineral surfaces and organic matter [22,23].

As a result of the immobilization of P in different complexes and adsorbents, only
approximately 0.1% of it is available for assimilation by plants in the soil [24,25]. Phos-
phorus dynamics is related to the balance between its organic and inorganic forms in the
soil, in addition to the balance of insoluble organic phosphorus and its adsorbed and/or
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precipitated forms [26]. Several factors can influence this process, such as soil type, man-
agement practices, and climate [26]. Globally, two-thirds of soils have limited phosphorus
availability, where the low rate of P diffusion in solution and the high rates of specific
adsorption in oxidic minerals are the main factors that make phosphorus less accessible to
plants and lead to low yield in field conditions [4,23].

According to Sims and Pierzynski [27], several factors of the P cycle affect its solubility
and concentration in soil. Among these factors are (1) the sorption–desorption ratio
(interaction between P and solid surfaces); (2) mineralization–immobilization (biological
conversion of P between organic and inorganic forms), and (3) dissolution–precipitation
(related to the mineral balance) [28]. Thus, the P found in soluble form in the soil quickly
precipitates with metals, forming insoluble complexes with calcium in alkaline soils, with
iron, silicate, and aluminum in acidic soils, or also adsorbing on clay [29–31].

The P demand of crops is often met using fertilizers with relatively elevated levels of
P, which may be organic or inorganic. However, the majority of phosphate fertilizers are
applied in their inorganic form, that is, approximately 70–80% of the P found in agricultural
areas is from this source [32]. Among the various inorganic fertilizers, rock phosphate,
nitric phosphates, phosphoric acid, ammonium phosphates, ammonium polyphosphate,
and calcium orthophosphates can be mentioned [33].

When applied, the P in the fertilizer is converted into water-soluble forms such as the
orthophosphate ions HPO4

2− and H2PO4
−, which are readily assimilable [34,35]. However,

a large part of the P once available can be lost due to the speed of the specific adsorption
processes, which in the case of phosphorus, have limited reversibility, and can also be lost
due to surface runoff and leaching processes [36]. Another process that leads to nutrient
loss is erosion, where P bound in organic matter, in mineral particles, or precipitated in
poorly soluble salts is lost along with the eroded soil [12,37,38].

In this context, the use of P by crops has an average efficiency between 20% and 25% of
the total amount of phosphate fertilizers applied [39,40] and may reach values below 10% in
some vegetables under intensive management. Therefore, an excessive amount of P fertiliz-
ers is required to increase the phosphorus available and thus increase crop productivity. In
terms of comparison, the annual use of phosphate fertilizers increased from 4.6 million tons
in 1961 to approximately 21 million in 2015 [41]. This indiscriminate use has adverse effects
on the soil, altering its biological, chemical, and physical properties, impacting its quality,
and potentially compromising the future of agricultural production [8,19].

The effects of long-term fertilization at high doses were also discussed. Chen et al. [42]
studied the effects of excessive phosphorus fertilization on pomelo orchards. The con-
centrations and relationships between total soil P, quantifiable P, and its fractions (such
as organic P, soluble P, and adsorbed P) were examined and the authors observed that
in non-cultivated areas the most common form of P is organic, corresponding to 57% in
superficial horizons (0–20 cm deep) and 57% in deep horizons (20–40 cm deep). In or-
chards with cultivation time longer than 10 years, it was noted that there was a P input of
947 kg P2O5 ha−1 yr−1, an output of 132 kg P2O5 ha−1 yr−1, and a surplus of 774 kg P2O5
ha−1 yr−1. The highest proportions of P in surface soils corresponded to Al-P: 39% and
Fe–P: 20%, while P-organic represented 19%. In deep horizons, this proportion was Al–P:
43%, Fe–P: 23%, and P–organic 15%. The authors warn about the excessive use of P in
agriculture, especially in the conversion of its forms in the soil, since there is a greater loss
of this essential nutrient in soils with higher proportions of inorganic forms.

The effect of excess fertilizer on the physical and biological properties of the soil was
described by Beauregard et al. [43]. They observed that phosphate fertilization for 8 years
in alfalfa (Medicago sativa) mono-crop increased the flux and amount of soluble P in the
environment, but reduced microbial activity and soil moisture.

Another concern is the exploitation of phosphate rocks, which are raw materials for
fertilizer manufacture. According to USGS [44], the world has about 71 billion metric tons
(bmt) of phosphate rocks. The phosphate in these rocks can be provided in the form of
carbonate apatite [3Ca3(PO4)2·CaCO3], hydroxyapatite [Ca10(PO4)6(OH)2], fluorapatite
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[Ca10(PO4)6F2], and sulpho-apatite [3Ca3(PO4)2·CaSO4] [45]. The countries with the largest
reserves of this resource are Morocco and Western Sahara (50 bmt), China (3.2 bmt), Egypt
(2.8 bmt), Algeria (2.2 bmt), and Brazil (1.6 bmt). In addition, IFASTAT [46] indicates that in
2020 the regions that consumed the most phosphate were: East Asia with 15,112 thousand
tons of P2O5 (kt P2O5), South Asia (11,011 kt P2O5), Latin America (8 541 kt P2O5), North
America (5256 kt P2O5), and Western and Central Europe (2992 kt P2O5). In 2020, globally
there was a consumption of around 48,975 kt P2O5.

These numbers point to a very worrying trend regarding the conservation of the
natural reserves of phosphate rocks, a non-renewable resource [28,41]. Several studies
indicate that we are facing a crisis regarding phosphate sustainability [47–50]. Furthermore,
some authors suggest that at this current frequency of consumption, phosphate rock
reserves will deplete in the next two centuries. Appalling projections indicate that the end
of this resource could even happen in the next 50 years [51,52]; especially, these projections
are based on known mines. The remaining potential reserves are of lower quality, with
higher exploration costs and less accessibility [53]. Other authors indicate that phosphate
reserves will persist into the future, where 40–60% of known resources will still be exploited
by 2100 [54,55]. However, amid these contrasting views, there is a certainty that currently
the value of phosphate fertilizer commodities is increasing, being consistent with greater
economic competitiveness and greater environmental exploitation [56–58].

The accumulation of toxic metals in the environment may be associated with the
inadequate application of phosphate fertilizers, as these metals may be present in their
source rocks. Li et al. [59] look at the cadmium input in Chinese provinces where in 2016
there was a deposition of 10.52 t. In Brazil, according to estimates by Vieira da Silva
et al. [60], 24–30 t of cadmium is deposited annually from phosphate fertilizers. Previous
studies also indicated the accumulation of toxic metals in the environment, such as the
accumulation of arsenic in groundwater in the state of São Paulo (Brazil) [61].

Therefore, this scenario raises awareness regarding the rational use of phosphate
rocks and their impact mitigation in natural and anthropic environments. At the same
time, new strategies, methods, and technologies are needed to increase the efficiency of
the use and application of fertilizers in crops, taking advantage of every fraction of the
nutrient and increasing its assimilation by plants. In this context, phosphate-solubilizing
microorganisms are fundamental vectors for the sustainability of modern agriculture.

3. Phosphate-Solubilizing Microorganisms

Phosphate solubilizing microorganisms (PSM) are a group of organisms composed of
actinobacteria, bacteria, fungi, arbuscular mycorrhizae, and cyanobacteria capable of hy-
drolyzing organic and inorganic phosphorus into soluble forms, thus making it bioavailable
to plants [12,62]. They are quite abundant in the soil, and commonly associated with the
rhizosphere of plants [63]. Djuuna et al. [64] performed a sampling of these microorganisms
in Indonesia. Agricultural soils with a relevant history of growing vegetables, cereals, and
legumes from different regions were collected. The results showed a population of solubi-
lizing bacteria ranging between 25 × 103 and 550 × 103 CFU g–1 of soil and solubilizing
fungi between 2.0 × 103 and 5.0 × 103 CFU g–1 of soil in all areas examined.

There is also great diversity in PSM. Bacteria have several representatives of the
genera Azospirillum, Bacillus, Pseudomonas, Nitrosomonas, Erwinia, Serratia, Rhizobium, Xan-
thomonas, Enterobacter, and Pantoea [12,63]. Among the non-mycorrhizal fungi are the
genera Penicillium, Fusarium, Aspergillus, Alternaria, Helminthosporium, Arthrobotrys, and
Trichoderma, [62,65]. Examples of mycorrhizal fungi are Rhizophagus irregularis, Glomus
mossea, G. fasciculatum, and Entrophospora colombiana [28,66].

Among actinobacteria, the genera Streptomyces, Thermobifida and Micrococcus are exam-
ples of PSM [67–70], and cyanobacteria, Calothrix braunii, Westiellopsis prolifica, Anabaena
variabilis, and Scytonema sp. [12,63].
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4. Phosphate Solubilization Mechanisms

Phosphate-solubilizing microorganisms have several mechanisms to increase the avail-
ability of this element in the soil. Figure 1 brings together the mechanisms and processes
involved in the nutrient dynamics in the soil and the various interactions with the mi-
crobiota. The main roles of microorganisms in P solubilization include (1) the release
of extracellular enzymes (biochemical mineralization), (2) the release of P during sub-
strate degradation (biological mineralization), and (3) the secretion of mineral-dissolving
complexes or compounds (siderophores, protons, hydroxyl ions, organic acids) [28,71].

Microorganisms interact in diverse ways in terms of the bioavailability of nutrients in
plants. Mycorrhizal fungi, for example, can provide an increase in the root surface from
the proliferation of their mycelium, helping in the exploitation of nutrients in the soil, thus
accessing soil portions, such as microaggregates, previously not accessible to the plant only
by root exploration [72,73].

In addition, PSM presents several mechanisms to make phosphate available in its
soluble form. When the substrate is organic, the processes are described as mineralization,
which is a step in the decomposition process of organic matter, while inorganic substrates
undergo solubilization processes [12,28,74].
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Figure 1. Phosphorus cycle and nutrient mobilization. The numbers and symbols at the base of the arrows are related to the P mobilization process described in the
heading of the figure. The numbers related to the mechanisms correspond to the topics in which they are explained. NSAPs (4.1.1), phytases (4.1.2), phosphonatases
(4.1.3), C–P lyases (4.1.4), organic acids (4.2.1), inorganic acids (4.2.2), enzymes or enzymolysis (4.2.3), siderophores (4.2.4), exopolysaccharides (4.2.5), proton release
(4.2.6), H2S production (4.2.7), and direct oxidation (4.2.8).
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4.1. Organic Phosphate

Organic phosphate corresponds to 20–30% of the total amount found in the soil [28].
Its main source of entry into the environment is biomass, being present in animal and
plant debris, and in microbial cell membranes, that is, they constitute biomolecules such as
phosphides, nucleotides, phosphoproteins, co-enzymes, sugar phosphates, phosphonates
and can be immobilized in the form of humus [75–77]. Figure 2 shows some organic
molecules that contain phosphorus in their composition.
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Figure 2. Organic phosphate compounds in the soil. (A) phytic acid, (B) adenine nucleotide, (C)
galactose 1-phosphate, (D) phosphatidyl inositol 3,4,5-triphosphate, (E) phospholipid, (F) adenosine
3-phosphate, (G) teichoic acid, (H) lipoteichoic acid.

4.1.1. Non-Specific Acid Phosphatases (NSAPs)

NSAPs are a class of enzymes bound to the lipoprotein membranes of microorganisms
or secreted extracellularly [78,79]. Also known as phosphomonoesterases, they act accord-
ing to the optimal pH of the environment, and can therefore be acidic or alkaline [80,81].
These enzymes can dephosphorylate a wide variety of phosphoesters (RO–PO3), solubi-
lizing around 90% of organic phosphate in soils [82,83]. Figure 3 shows how the catalytic
reaction of NSAFs occurs.
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Figure 3. Acid phosphatase catalytic reactions.

The proportion of phosphatases is relative to the abundance of P in the soil and
consequently influences the availability of this nutrient to plants. Fraser et al. [84] indicated
that in soybean (Glycine max) fields labile P in bulk soil was negatively correlated with
phoC and phoD genes abundance (acid and alkaline phosphatase encoders, respectively)
and phosphatase activity. According to the authors, the activity of NSAPs is greater in the
rhizosphere than in other soil portions. A positive correlation was also observed between
phosphatase activity, P uptake by plants, and nodule weight.

4.1.2. Phytases

Phytic acid is the major form of organic P present in the soil and is a component of seeds
and pollen [12,85,86]. However, because they form complexes with cations or are adsorbed
on various soil organic components, they are not readily available for plant assimilation [12].
Phytase enzymes are phosphatases produced by soil microorganisms. They are capable of
hydrolyzing phytic acid by acting on the phosphomonoester bonds present in the compound,
originating two subgroups, myo-inositol hexaphosphate or phytate (salt form). This process
means that, in addition to P, other nutrients associated with it also become available, such as
zinc and iron [87,88]. Figure 4 shows the catalysis of phytases.
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Figure 4. Phytase catalytic reaction.

Wang et al. [89] investigated the effect of mycorrhizal hyphae-mediated phytase
activity. Maize (Zea mays) cultivars inoculated and non-inoculated with the arbuscular
mycorrhizal fungi Glomus mosseae or Claroideoglomus etunicatum were evaluated, and the
plants were separated into two compartments, one with only roots and the other with
hyphae of the tested fungi supplemented with different concentrations of calcium phytate.
The effect of phytase and acid phosphatase on phytate mineralization was analyzed. The
authors observed that at higher phytate addition, the rate decreased, and lower phytate
addition caused an increased hyphal length density; phytate addition increased phytase
and acid phosphatase activity resulting in greater P uptake and plant biomass. It was
concluded that the observed increases in P uptake were primarily due to phytase activity
rather than phosphatase activity.
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4.1.3. Phosphonatases

Phosphonates are organic phosphoric compounds rich in hydrolytically stable C–
P bonds that are chemically inert and resistant to thermal and photolytic decomposi-
tion [90,91]. The enzymes that promote the breaking of this bond are known as phos-
phatases (phosphonate hydrolases) and act by catalyzing this reaction from a group β-
carbonyl electron scavenger that allows heterologous cleavage between nutrients [91].
Phosphonatases act on several substrates, including phosphoenolpyruvate, phosphonoac-
etate, and phosphoenol-acetaldehyde. Figure 5 shows the mechanisms of phosphonatases.

Figure 5. The catalytic reaction of phosphonatases. PaldH: phosphonoacetaldehyde hydrolase,
PAH: phosphonoacetate hydrolase.

Furthermore, organophosphoric compounds are the active components of many pes-
ticides, as they interfere with the catalytic activity of key enzymes in the target organism
(such as acetylcholinesterase and phosphate synthases) [92,93]. However, studies indicate
that these compounds are very persistent in the environment and may harm the quality of
soil, water, and even the germination of non-target plants [94–96]. Soil microorganisms act
on the bioremediation of these xenobiotics, using them as a source of P [97], thus contribut-
ing to the reduction of toxicity in the soil while converting the inert P of the phosphonate
into a nutrient assimilable to plants.

Chávez-Ortiz et al. [98] studied the effects of glyphosate and commercial formulation
(CH) on soil nutrient dynamics and microbial enzymatic activity. Two plots were used:
one with a 5-year history of glyphosate application (NP) and the other with a history of
agricultural management without glyphosate application (AP). The authors found that the
application of CH in the AP soil favored the specific activity of the phosphonatase. The
study shows how the application of the herbicide shapes the microbial community, and
how it adapts to metabolize the xenobiotic.

4.1.4. Carbon–Phosphorus Lyases

Carbon–phosphorus lyases are a complex of membrane enzymes that also allow the
release of P, cleaving the C–P bonds of several classes of phosphonates (i.e., alkyl, amino-
alkyl, and aryl phosphonates), producing hydrocarbons and inorganic phosphate [99,100].
This complex is the main mechanism for the use of phosphonates by microorganisms [101].

The enzymes and proteins of C–P lyases are complex and specific to their substrates.
In Escherichia coli, they are all encoded by the 14-cistron operon (Phn CDEFGHIJKLMNOP),
which is activated under conditions of phosphate deficit allowing the use of phospho-
nates [102]. Figure 6 shows the reaction of a C–P lyase.
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Figure 6. The catalytic reaction of α-D-ribose-1-methyl phosphonate-5-phosphate C–P lyase
(methane-forming).

Kryuchkova et al. [97] analyzed the effect of several growth-promoting bacteria on
glyphosate degradation. Among the bacteria analyzed, Enterobacter cloacae K7 proved to
be both resistant to a 10 mM concentration of the herbicide and enabled its degradation
in vitro (40% of the initial 5 mM content). The authors also analyzed the intermediate
metabolites involved in the degradation and verified, using thin-layer chromatography, the
activity of C–P lyase in the conversion of glyphosate to sarcosine, and later oxidation to
glycine.

4.2. Inorganic Phosphate

In turn, inorganic P is the most abundant conformation of phosphorus found in soil,
70–80% of its total [12]. In soil, it can be a constituent of primary or secondary minerals or
adsorbed on metallic oxides and clay, as shown in Figure 7 [103,104].
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Figure 7. Inorganic phosphorus in soil. (A) Apatite (Image author: Parent Géry, Source: Wikimedia
Commons, Public domain), (B) Strengite, cacoxenite (Image by: Modris Baum, Source: Wikimedia
Commons, Public domain), (C) Variscite (Image author: Jstuby at Wikipedia, Source: Wikimedia
Commons, Public domain), (D) Lazulite (Image author: Marie-Lan Taÿ Pamart, Source: Wikimedia
Commons, Reprinted/adapted with permission from the author. 2020, © Marie-Lan Taÿ Pamart, Own
work, License and link: Creative Commons Attribution 4.0 International CC BY 4.0), (E) Turquoise
(Image author: Parent Géry, Source: Wikimedia Commons, Public domain). All photographs of
rocks have had their brightness increased. (F) Conformation of a soil metal oxide and P adsorption
mechanisms, (G) Conformation of soil clay and P adsorption mechanism [105,106].

4.2.1. Organic Acids

Organic acids are low-molecular-weight compounds secreted by PSM and produced
in oxidative metabolic pathways [34]. They are described as the main mechanism for
inorganic phosphate solubilization [107]. The main organic acids produced are gluconic
and 2-keto gluconic [62,108]. In addition, the release of oxalic, acetic, fumaric, malic,
succinic, and tartaric acid, among others, may also occur [109,110].

In general, when released, organic acids acidify the rhizosphere, which causes a drop
in pH, and the cations linked to phosphorus are chelated from their hydroxyl and carbonyl
groups [111,112]. In addition, these acids can compete with P-adsorption sites and form
complexes with P-bound metal ions [12,113,114].

Mendes et al. [115] analyzed the effectiveness of organic acids commonly associated
with P solubilization by microorganisms for the solubilization of phosphate rocks with
different degrees of reactivity. Increasing concentrations of oxalic, gluconic, citric, malic, and
itaconic acids were used in vitro, and their effectiveness in solubilization was compared
with that of sulfuric acid. The authors saw that oxalic acid was the most effective for
the solubilization of rocks composed of apatite and was superior to sulfuric acid. On
average, each mmol of oxalic acid released 21 mg of P, while sulfuric acid solubilized
14 mg of P mmol−1.
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Patel et al. [116] analyzed the ability of Citrobacter sp. DHRSS for solubilization of
phosphate rocks. The researchers used different carbon sources to produce the organic
acids responsible for solubilization. It was seen that on sucrose and fructose, the bacteria
released 170 and 100 µM of phosphate and secreted 49 mM (2.94 g/L) and 35 mM (2.1 g/L)
of acetic acid, respectively. With glucose and maltose, Citrobacter sp. DHRSS produced
approximately 20 mM (4.36 g/L) of gluconic acid, and the released phosphate was 520 and
570 µM, respectively. This study shows the role of different carbon sources and different
organic acids in phosphate solubilization.

4.2.2. Inorganic Acids

In general, inorganic acids act in an equivalent way as organic acids, lowering the
pH of the environment and acting as chelators; however, they are less effective in the
same pH range [12,117]. Examples of these acids include sulfuric, nitric, carbonic, and
hydrochloric [118,119].

Cantin et al. [120] conducted a series of experiments to figure out the effectiveness
of the combination of a mixture containing commercial elemental sulfur + sewage sludge
inoculated with different combinations of bacteria of the genus Thiobacillus in the solubiliza-
tion of apatite P. The combinations used were (1) T. thioparus ATCC 23645, (2) T. thioparus
C5 + T. thioparus ATCC 8085, and (3) T. thioparus ATCC 23645 + T. thiooxidans ATCC 55128.
The phosphate solubilization capacity was verified in apatite–sulfur culture medium (ASM)
with 1, 10, or 20% (P/V) of apatite. The results showed that T. thioparus ATCC 23645 alone
lead to a decrease in pH in vitro (from 6.8 apatite 1; or 7.8 apatite 2 to 3.9), confirming that
the bacterium is capable of oxidizing sulfur into sulfuric acid. Furthermore, the researchers
saw that the consortia of combinations 2 and 3 were more effective for phosphate solubiliza-
tion than the inoculum with isolated bacteria. In addition, researchers evaluated the release
of P from the inoculum when applied to municipal wastewater sludge and incubated with
concentrations of 1, 10, or 20% (P/V) of apatite for 33 days. It was seen that 28% of the
initial P concentration was solubilized when the apatite–sulfur-sewage-sludge contained
20% apatite, this proportion increased to 86% when the mixture consisted of 1% apatite.
The authors suggest that combinations such as pellet form of sulfur, apatite, and stabilized
sewage sludge as a source of thiobacilli for agricultural use, would provide an effective P
fertilizer source.

4.2.3. Enzymes or Enzymolysis

The ability of microorganisms to solubilize phosphate via this mechanism is briefly
described in the literature [34].

Zhu et al. [121] evaluated the ability of the bacterium Kushneria sp. YCWA18 in the
solubilization of P in two culture media, where the first contained calcium phosphate
Ca3(PO4)2 as the only source of P and the second lecithin as the exclusive source of P. The
results showed that for the medium containing Ca3(PO4)2 in 11 days of cultivation, there
was the release of 283.16µg/mL of P, and the pH varied from 7.21 to 4.24 in about 4 days.
As for the medium containing lecithin, there was solubilization of 47.52µg/mL of P in
8 days; however, the pH remained stable at approximately 7.0, a value similar to that of
the control. Thus, the authors suggest that enzymolysis is the mechanism responsible for
the solubilization of P from lecithin because compared to the culture medium containing
Ca3(PO4)2 (where the solubilization possibly occurred through the release of organic acids),
the acidity of the medium does not change. Thus, P is released through catalysis performed
by enzymes that convert the substrate to choline.

4.2.4. Siderophores

Siderophores are low-molecular-weight secondary metabolites produced by PSM that
have a high affinity for inorganic iron and function as metal chelators [122,123]. They have
three functional groups, hydroxamates, catecholates, and carboxylates, and catalyze the
reduction of Fe3+ to Fe2+ [124]. They act at neutral to alkaline pH; however, the mechanisms
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of this reaction are still not fully understood [125]. Microorganisms use siderophores to
obtain the iron used in their cell, and so, during the breakage of its bond, they can release
the P bound of the metal, making it assimilable to plants [12,124].

As discussed earlier, in acidic soils, much of the P is fixed in metals such as iron.
Cui et al. [126] evaluated the ability of Streptomyces sp. CoT10 endophytic activity of
Camellia oleifera on P mobilization in acidic and deficient soils. The authors saw a release of
72.49 mg/L for FePO4, which was prominent in the production of different siderophores.
Moreover, the application of Streptomyces sp. aided in Fe-P mobilization improving P
availability by 15% in the soil. The authors conclude that the production of siderophores
leads to the observed results, including the promotion of plant growth.

4.2.5. Exopolysaccharides

Exopolysaccharides are compounds with high molecular weights that act indirectly
on the solubilization of P in soil [127]. They are secreted by microorganisms under stress
conditions. In bacteria, they form biofilms, which have a great affinity for binding with
metallic ions in the soil, thus competing with free P, providing its availability [128,129]. It is
seen that different exopolysaccharides have varying binding affinities with different metals,
and there are also different binding strengths between the metals themselves [130,131].

Yi et al. [127] evaluated that Enterobacter sp. EnHy-401, Arthrobacter sp. ArHy-505,
Azotobacter sp. AzHy-510 producing exopolysaccharides (EPS) have a higher tricalcium-
phosphate solubilization capacity than Enterobacter sp. EnHy-402 which does not produce
EPS. The authors analyzed that under the same conditions, Enterobacter sp. EnHy-402
solubilized 112 mg/L of P, the medium pH ranged from 7.0 to 4.5, had an organic acid
production of 258 mg/L, and did not produce EPS. Meanwhile Enterobacter sp. EnHy-401
solubilized 623 mg/L of P, the medium pH varied from 7.0 to 4.3, had an organic acid
production of 2092 mg/L, and produced 4 g/L of EPS. The authors suggest that EPS
potentiates phosphate solubilization mainly by benefiting the production and activity of
organic acids.

4.2.6. Proton Release

The release of protons is another mechanism that promotes rhizosphere acidification.
Soil microorganisms use various sources of nitrogen to form amino acids, one of which is
ammonium (NH4

+) which, when metabolized, generates ammonia (NH3) [132,133]. At the
end of the reaction, the excess H+ protons generated are released into the soil, allowing the
desorption of P immobilized in metals [134].

Studies have shown different ways in which proton extrusion favors phosphate solubi-
lization. Öğüt et al. [135] reported an increase in proton extrusion in maize roots after being
inoculated with Bacillus sp. 189 causing acidification of nutrient solution supplemented
with ammonium. The bacteria contributed to the increase in evaluable P by 8.0 mg/Kg,
while in the control the concentration of evaluable P was 6.3 mg/Kg. The authors suggest
that the increase in proton release was due to (1) stimulation of plasmalemma ATPase of
plant roots, (2) proton release by the PSM associated with the release of organic acid anions,
and (3) proton release by the PSM in response to NH4 uptake.

Habte and Osorio [136] verified the influence of various sources of nitrogen on the
solubilization of phosphate rocks by Mortierella sp. The results showed that in the presence
of NH4Cl and NH4N3, the pH of the solution decreased from first value of 7.6 to 3.4 and 3.7,
respectively. When the N source was KNO3, the pH decreased to 6.7. As for P solubilization,
it was seen that supplementation with NH4Cl was responsible for the release of 130 mg/L
of P, with NH4N3 it was 110 mg/L of P, and with KNO3 only 0.08 mg/L of P. The authors
also indicated that excess NH4

+ negatively affected fungal growth. However, this may
have promoted a greater pumping of H+ that significantly decreased the pH of the solution
and consequently favored the solubilization of P.
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4.2.7. H2S Production

Hydrogen sulfide is a compound produced by sulfur-oxidizing and acidophilic bacte-
ria. It is released from metabolic pathways such as sulfate reduction and organic matter
decomposition [12,137]. This compound interacts with minerals that have phosphate, re-
leasing it into the soil solution [128]. An example is ferric phosphate, which forms ferrous
sulfate with the release of immobilized phosphorus in the soil [138,139].

Phosphate solubilization mediated exclusively by the production of H2S does not
have many practical examples in the literature. However, some studies have analyzed the
synthesis of compounds by bacteria [140–142].

4.2.8. Direct Oxidation of Glucose

The direct oxidation of glucose is another strategy used by PSM to make P bioavailable.
In bacteria, this mechanism begins with the oxidation of glucose in the periplasmic space
by the enzyme glucose dehydrogenase, generating gluconic acid, which is eventually con-
verted to 2-keto gluconic by the enzyme gluconate dehydrogenase [28,143]. Subsequently,
the release of these acids to the outside of the cell occurs, acidifying the medium. As seen
previously, these acids function as ferric ion chelators, releasing the P from its bond [144].

Phosphate solubilization by the direct oxidation pathway is a mechanism that is
extremely restricted by the effectiveness of glucose dehydrogenase. Therefore, studies
seek to identify the enzyme in microorganisms using molecular methods, as was the case
with the work by Mei et al. [145] who identified the enzyme in the bacteria Pantoea vagans
IALR611, Pseudomonas psychrotolerans IALR632, Bacillus subtilis IALR1033, Bacillus safensis
IALR1035 and Pantoea agglomerans IALR1325.

In addition, studies have also highlighted the importance of gluconic acid in plant
growth. Rasul et al. [146], showed that Acinetobacter sp. (MR5) and Pseudomonas sp. (MR7)
producing gluconic acid were responsible for promoting rice growth, increasing grain
yield (up to 55%), plant-associated P (up to 67%), and soil available P (up to 67%), with
20% reduced fertilization. The authors confirmed the activity of the enzyme based on the
construction of new primers designed to amplify the gcd, pqqE, and pqqC genes responsible
for glucose dehydrogenase-mediated phosphate solubilization.

Other studies have pointed out the reasons for the failure or reduction of phosphate
solubilization from the inhibition of glucose dehydrogenase catalysis. The work by Bhar-
wad and Rajkumar [147] and Iyer and Rajkumar [148] describe how succinate inhibits
enzyme activity in Acinetobacter sp. and Rhizobium sp. respectively.

5. Applications of Phosphate-Solubilizing Microorganisms as Plant Growth Promoters

In addition to making P available, microorganisms can also promote plant growth
in complementary ways. They have direct and indirect mechanisms of action for plant
growth promotion, including biological nitrogen fixation [149] and phytohormone produc-
tion [150,151].

They can stimulate tolerance to environmental stresses such as drought [152] and
low soil fertility [153]. They can also induce host plant defense from the production of
antibiotics and secondary metabolites [154,155], and biosurfactant compounds [156,157].

In addition, the application of isolated microorganisms or consortia can modulate
the physiological response of plants and aid their growth and development. Thus, the
inoculation of microorganisms plays a notable role in reducing the time required for the ac-
climatization of seedlings [158], improving foliar gas exchange [159], and the accumulation
of fresh and dry matter, as well as increasing plant root growth [160].

Thus, the use of microorganisms and their versatility in growth promotion mechanisms
constitute a notable resource to produce bioinoculants, and consequently, for sustainable
agricultural production. Table 1 summarizes studies in which the microorganisms used
can solubilize and make phosphate available. They were inoculated into different crops
and their effects were described.
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Table 1. Applications of growth-promoting microorganisms capable of phosphorus solubilization in cultures.

Microorganism/Consortia Crop Mechanism of Action Highlights Reference

Glomus mosseae
+/or

Bacillus megaterium

Alfalfa
(Medicago sativa)

Increased the mycorrhizae infection
rate, shoot biomass, chlorophyll

content in leaves, and soluble
sugar content

AMF and PSB significantly
promoted the nutritious quality of
alfalfa under different phosphorus

application conditions

Liu et al. [161]

Advenella mimigardefordensis, Bacillus
cereus, Bacillus megaterium, and

Burkholderia fungorum

Barley
(Hordeum vulgare)

Improved levels of assimilated
phosphate, dry weight of ears, and

total starch accumulated on ears

The use of PSB is a promising
strategy to take advantage of
non-accessible soil P reserves

Ibáñez et al. [52]

Acinetobacter pittii +/or Escherichia coli +/or
Enterobacter cloacae

Betel nut
(Areca catechu)

The strains significantly improved
plant height, shoot and root dry

weight, and nutrient uptake.
Moreover, the co-inoculation

enhanced the solubilization of
tricalcium and

aluminum phosphate.

The strains can be potentially
applied as inoculants in tropical and

aluminum-rich soils
Liu et al. [162]

Azotobacter sp. SR-4
+/or

Aspergillus niger

Calabash
(Lagenaria siceraria) and Okra

(Abelmoschus esculentus)

Increased plant height, leaf
length/width, fruit size, and the

number of fruits per plant.
Consortium shows better results

Selected strains may replace costly
and the environment-toxic

chemical fertilizers
Din et al. [13]

Pseudomonas donghuensis JLP2,
Pseudomonas grimontii JRP22, Pantoea

roadsii HRP2, Enterobacter hormaechei SSP2,
Paraburkholderia caffeinilytica JRP13,

Novosphingobium barchaimii JRP23 and
Ochrobactrum pseudogrignonense JRP24

Chinese fir
(Cunninghamia lanceolata)

Improved plant height, stem
diameter, biomass, and nutrient

content. Also enhanced soil nutrient
content and enzyme activity

PSB could be used as biological
agents instead of chemical fertilizers

for agroforestry production
Chen et al. [140]

Bacillus megaterium
+/or

Bacillus cereus

Common bean
(Phaseolus vulgaris)

Single and dual inoculation
increases root length, plant height,

root and shoot dry weight, P content
in plants and photosynthetic

pigments even in salt
stress conditions

Decreased the harmful effects of
salinity and improve plant growth

in stress conditions
Abdelmoteleb et al. [163]

Bacillus subtilis Q3 and Paenibacillus sp. Q6 Cotton
(Gossypium sp.)

Increased root length, shoot and
root fresh and dry weight, and

root/shoot ratio

Selected strains are potential
candidates for promoting cotton

growth under alkaline conditions
Ahmad et al. [164]
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Table 1. Cont.

Microorganism/Consortia Crop Mechanism of Action Highlights Reference

Enterobacter sp. Eggplant
(Solanum melongena)

Eggplant recruited Enterobacter PSBs
during fruiting stages

The rhizosphere bacterial
community was susceptible to

farming strategies and was largely
shaped during the plant

development stages

Li et al. [165]

Achromobacter, Agrobacterium, Bacillus,
Burkholderia, Erwinia, Flavobacterium,

Micrococcus, Pseudomonas, and Rhizobia

Maize
(Zea mays)

Improved growth, its P
concentration, and uptake

PSB inoculation may nullify the
negative effects of liming (such as

decreased maize growth and P
uptake, and increased post-harvest

soil salinity and calcification) on
plant growth and P availability

Adnan et al. [166]

Citrobacter amalonaticus M16 +/or
Bacillus safensis M44

Maize
(Zea mays)

Increased the length of the root and
sprout, also the underground and
aboveground biomass. Enhanced

plant amino acids, metabolites, and
other molecules

This study supplies a theoretical
basis for the application of PSB in

sustainable agriculture
Shen et al. [167]

Bacillus sp. ACD-9 Maize
(Zea mays)

Improve growth (9%) and
phosphorus uptake (15%) and

decrease the accumulation (70%)
and toxic effects of

herbicide acetochlor

The strain may be useful in the
degradation of acetochlor in soil
and the promotion of the growth
and phosphorus uptake of maize

Li et al. [168]

Bacillus sp. RZ2MS9 and Burkholderia
ambifaria RZ2MS16

Maize (Zea mays) and Soybean
(Glycine max)

Increases in root and shoots dry
weight of both plants when

compared to non-inoculated control

The PSB isolated of guarana
(Paullinia cupana) a tropical plant

shows the ability to endophytically
colonize plants of

agricultural interest

Batista et al. [169]

Bacillus velezensis Ag75 Maize (Zea mays) and Soybean
(Glycine max)

Increased maize and soybean yield
by 18% and 27%, respectively, while

also being a biocontrol agent.

The bacterium has multifunctional
traits for promoting plant growth

and makes it possible to reduce the
demand for phosphate fertilization

Mosela et al. [170]
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Table 1. Cont.

Microorganism/Consortia Crop Mechanism of Action Highlights Reference

Enterobacter sp J49 and Serratia sp. S119
Maize (Zea mays),

Soybean (Glycine max) and Peanut
(Arachis hypogaea)

Promote plant growth and P tissue
uptake and increased the

phosphate-solubilizing ability of the
rhizosphere. Root exudates of the
plants showed to produce changes

in the pectinase and cellulase
activities of the strains

The strains analyzed constitute
potential sources for the formulation

of biofertilizers for application in
agricultural soils with low P content

Lucero et al. [171]

Penicillium guanacastense JP-NJ2 Masson pine
(Pinus massoniana)

Extracellular metabolites and fungal
suspension from the strain

promoted the shoot lengths by 60%
and 98%, respectively, while root

crown diameters increased
by 28% and 47%

The strain might be used to improve
soil fertility in nurseries and

forestry practice
Qiao et al. [172]

Bacillus megaterium UFMG50, Klebsiella
variicola UFMG51, Pantoea ananatis

UFMG54, Microbacterium sp. UFMG61,
Pseudomonas sp. UFMG81 and

Ochrobactrum
pseudogrignonense CNPMS2088

Millet
(Pennisetum glaucum)

Increased P both in soil and in the
plant. Organic acids and the

production of phytohormones are
among the mechanisms

of plant growth

RP and the isolates described here
are used as adjuvants to a
P-fertilization strategy in

tropical soils.

Silva et al. [21]

Pseudomonas spp. Mung bean
(Vigna radiata)

Increased seed yield, 1000-grain
weight, biological yield, shoot and
root P concentration, and uptake

PSB inoculation with
less P fertilization Bilal et al. [4]

Bacillus megaterium MF 589715,
Staphylococcus haemolyticus MF 589716,

and Bacillus licheniformis MF 589720

Mung bean
(Vigna radiata)

Isolated PSBs from earthworm gut
is capable of plant growth

promotion and metal resistance

Integrated use of earthworms and
associated bacteria as the powerful

biofertilizer in the sustainable
crop production

Biswas et al. [173]

Burkholderia cepacia strains 5.5, 2EJ5 and
ATCC 35254, Burkholderia uboniae,

Gluconacetobacter diazotrophicus PAl 5

Mung bean
(Vigna radiata)

The PSB improved root and shoot
lengths, and seedling vigor

Bacterial strains could potentially be
included in bio-fertilizer

formulations for crop growth on
acid soils

Tang et al. [174]

Pseudomonas sp.
+/or

Serratia sp.

Onion
(Allium cepa)

Consortium increases the seeds
germination rates (90% of evaluated)

and plant’s total dry weight

Consortium application twice a
week for two months favored onion

total dry weight increase in
comparison with controls

Blanco-Vargas et al. [8]
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Table 1. Cont.

Microorganism/Consortia Crop Mechanism of Action Highlights Reference

Providencia rettgeri TPM23 Peanut
(Arachis hypogaea)

Combined application of RP and
PSB increased plant length, biomass,
and uptake of NPK. Decrease of soil

Na+, Cl-, and pH. Also increased
soil beneficial enzymes and

microbial diversity

The combination of PSB and RP
might be a low-cost and

environmentally safe strategy to
remediate the problem of low

nutrient availability in saline soils.

Jiang et al. [175]

Bacillus pumilus Potato
(Solanum tuberosum)

In vitro increased root (68%) and
stems (79%) length. Also, duplicate

the fresh weight of plants

Growth promotion under in vitro
conditions is a step forward in the

use of innocuous bacterial
strain biofertilizer

Yañez-Ocampo et al. [176]

Bacillus licheniformis QA1 and Enterobacter
asburiae QF11

Quinoa
(Chenopodium quinoa)

The strains significantly improve
germination rate and seedling

height and weight. Also reduces
Na+ uptake under saline conditions

Isolation of potential biofertilizers
PSB strains from the rhizosphere of

quinoa from Moroccan soil
Mahdi et al. [177]

Bacillus sp. LTAD-52, LRCP-2, LRCP-3,
LRCP-4, Serratia sp. LRCP-29, Pantoea sp.

LRCP-17 and Arthrobacter sp. LRCP-11

Rapeseed
(Brassica napus)

Increased significantly plant growth
and crop yield (from 21% to 40%),

reaching values like or even higher
than the fertilized control

Extend the knowledge of the
diversity of bacteria associated with
rapeseed plants. Contributes to the

development of
biotechnological strategies

Valetti et al. [178]

Enterobacter ludwigii GAK2 Rice
(Oryza sativa)

Enhanced plant fresh, shoot and
root weight, plant height, and

chlorophyll content

The strain solubilizes the silicate
and phosphate in the soil and

thereby promotes the growth of
plants in

cadmium-contaminated soil

Adhikari et al. [179]

Acinetobacter sp. RC04
+

Sinorhizobium sp. RC02

Safflower
(Carthamus tinctorious)

Improved seed germination and,
when co-inoculated, improved

seedling growth

Reveal the potential of Acinetobacter
sp. and Sinorhizobium sp. as

biofertilizer agents.
Zhang et al. [180]

Trichoderma spp. Soybean
(Glycine max)

Increased soybean growth from 2%
to 41% as well as in the efficiency of

P uptake-up to 141%

Reveal the potential of Trichoderma
spp. from the Amazon biome as a

promising biofertilizer agent.
Bononi et al. [181]
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Table 1. Cont.

Microorganism/Consortia Crop Mechanism of Action Highlights Reference

Acinetobacter pittii Soybean (Glycine max)
Promoted plant growth. Increased
activities of phosphatase, phytase,

and indole acetic acid

A. pittii promotes inorganic and
organic P use and increases the

function of P-cycling-related
enzymes of the rhizosphere

bacterial community.

He and Wan [182]

Klebsiella variicola
+

Rhizophagus intraradices

Sunchoke
(Helianthus tuberosus)

Increased plant growth and tuber
inulin content

Dual inoculation may be a
promising strategy to both reduce
expensive synthetic fertilizers and

enhance insulin production

Nacoon et al. [183]

Klebsiella variicola
+/or

Rhizophagus intraradices

Sunchoke
(Helianthus tuberosus)

In 2016 (year) the consortium
improved the growth and

production of the plant more than
the inoculation of AMF or PSB
alone. In 2017 showed that the

inoculation of AMF alone played a
more significant role in enhancing

plant growth and production

Different years of sunchoke
plantation could result in distinct
levels of plant response and PSB

and AMF status in soil

Nacoon et al. [184]

Bacillus aryabhattai JX285
+/or

Pseudomonas auricularis HN038

Tea-Oil Camellia
(Camellia oleifera)

Improved plant growth,
photosynthetic ability, the N and P

content of the leaves, and the
available N, P, and K content of

rhizosphere soil

The inoculation effect of mixed PSB
strains was better than that

of single strains
Wu et al. [185]

Arthrobacter sp. and Bacillus sp. Tomato
(Solanum lycopersicum)

Enhanced plant growth in
P-deficient and salt-affected soils by

47–115%. The PGPB effect was
increased in higher salt

stress conditions

Selected bacteria solubilize
phosphate in the presence of high

salt concentrations, promoting plant
growth even under combined P and

salt stresses

Tchakounté et al. [186]

Methylobacterium sp. PS and Caballeronia
sp. EK

Tomato
(Solanum lycopersicum)

In acid sulfate soils treated with
each bacterial strain led to 38% to

60% increased germination
(52 days), a 2–3-fold increased

number of leaves (52 days), and
19–45% increased soil tATP levels

(50 days)

Strains of PSB described have the
potential for use as biofertilizers

that promote vegetation growth in
acid sulfate soils

Kim et al. [187]
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Table 1. Cont.

Microorganism/Consortia Crop Mechanism of Action Highlights Reference

Pseudomonas fluorescens PSB1 and PSB11,
P. koreensis PSB18

+/or
Rhizoglomus irregulare

(One PSB + AMF consortium)

Tomato
(Solanum lycopersicum)

PSB and AMF increased the plant
biomass. Also, PSB increased

hyphal length and colonization

Plants inoculated with the
combination of fungus and bacteria

had significantly higher plant
biomass compared to

single inoculations

Sharma et al. [188]

Burkholderia gladioli
+/or

Pseudomonas sp.
+/or

Bacillus subtilis

Tomato
(Solanum lycopersicum) and

Fenugreek
(Trigonella foenum-graecum)

Seed germination, plant height, and
weight significantly increased

Reveals the strains and consortium
ability to solubilize insoluble
inorganic and organic P into

absorbable form for plant

Kumar et al. [189]

Paenibacillus beijingensis BJ-18
+

Paenibacillus sp. B1
Wheat (Triticum aestivum)

Increase plant biomass, improve plant
nutrition and rhizosphere soil
physicochemical properties

PSB and diazotrophic bacteria can
improve the sustainability

of agriculture.
Li et al. [25]

Consortium 1 (Enterobacter spp. ZW9,
ZW32, and Ochrobactrum sp. SSR).

Consortium 2 (Pantoea sp. S1, Enterobacter
sp. D1, and Ochrobactrum sp. SSR).

Consortium 3 (Ochrobactrum sp. SSR,
Pseudomonas sp. TJA, and Bacillus sp. TAYB)

Wheat (Triticum aestivum)

Alleviation of P stress through
induced sequential production of

root exudates, modification of root
architecture, and mitigation of
oxidative damage by induced

activities of antioxidant enzymes

P-solubilizing bacteria employed
beneficial impact on

morpho-physiological attributes of
inoculated plants

Yahya et al. [190]

Bacillus sp. MWT-14 Wheat (Triticum aestivum)
Increased number of productive

tillers, 1000-grain weight,
grains per spike

Combined use of Bio-organic P and
PSB can increase the soil fertility, crop

growth, and productivity of wheat
Tahir et al.[191]

Streptomyces alboviridis P18, Streptomyces
griseorubens BC3, Streptomyces griseorubens

BC10, and Nocardiopsis alba BC11
Wheat (Triticum aestivum)

Improved root length (2–24%), root
volume (42–72%), root dry weight

(47–162%), shoot length (9–24%) and
shoot dry weight (3–66%)

Significant ability to solubilize mica
and RPs under the in vitro

condition. BC10 and BC11 are
promising candidates for the

implementation of
efficient biofertilization

Boubekri et al. [192]

Bacillus sp. Wild mint (Mentha arvensis) Increased in the plant growth
parameters, oil yield, and P uptake

PS Bacillus enhanced the menthol
content of M. arvensis Prakash and Arora, [193]

AMF: Arbuscular mycorrhizal fungi, PSB: phosphate-solubilizing bacteria, PGP: plant growth promotion, PGPB: plant growth promoting bacteria, RP: rock phosphate, NPK: nitrogen–
phosphorus–potassium fertilizer, when the microorganisms listed are separated by commas (,), the different species were inoculated individually. The +/or signs indicate their
application in a consortium or individually.
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The examples cited in Table 1 show the versatility of PSMs as growth promoters.
In general, it is possible to observe that the inoculation of microorganisms favors plant
development at all stages of the plant, favoring germination, accumulation of biomass in
roots and shoots, increasing the concentration of chlorophylls, increasing crop productiv-
ity, reducing biotic and abiotic stress, and increasing the availability and assimilation of
nutrients.

Furthermore, studies have strongly shown the use of PSMs as bioinoculants, either
in isolated formulations or in consortia. The activity of microorganisms makes it possible
to reduce the use of chemical fertilizers, both when applied together and when applied
together with phosphate rocks. Microorganisms also benefit from improving soil qual-
ity, benefiting the dynamics of the rhizosphere of plants, enabling the solubilization of
phosphate in acidic and alkaline soils, and degrading xenobiotic compounds.

Figure 8 shows the information presented in topic 4 “Phosphate-solubilizing microor-
ganisms” and Table 1. A total of 55 articles were reviewed.
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Figure 8. (A) Primary cultures were inoculated with phosphate-solubilizing microorganisms. (B) The
main microbial genera studied for phosphate solubilization. To compress the graph, only the genres
that were present in more than one work were selected.

We gathered 48 studies that used plants to verify the ability of PSM to promote growth.
Among them, 26 different crops were studied, of which maize (n = 8), soybean (n = 6), and
wheat (n = 4) were the main research focuses (Figure 8A).

Among these microorganisms, 41 different genera were studied. Among these, the
genera Bacillus (n = 22), Pseudomonas (n = 10), and Enterobacter (n = 9) were the most
studied, and possibly those that demonstrated the best potential for the development of
bioinoculants (Figure 8B).

6. Market and Agricultural Practices with Phosphate-Solubilizing Microorganisms

Production of biological inoculants is the main way to explore the potential of PSM
in agriculture. Forecasts say that the biofertilizer market will register a compound annual
growth rate of almost 14% until 2023. In 2016, the global market size of biofertilizers reached
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USD 1106.4 million and is projected to grow at the rate of 14% to reach USD 3124.5 million
by the end of 2024 [194].

In general, for a microorganism to be selected as a bioinoculant, it must be multifunc-
tional, present several mechanisms of growth promotion, and be a generalist, interacting
with several cultures [195]. The work by Owen et al. [196] and Mącik et al. [197] lists several
commercial bioinoculants, the microorganisms that compose them, and their modes of
action.

Bioinoculants can be used in several ways. As seen throughout the text, the main
method of using it is directly in the soil, favoring the release of the P part that is inaccessible
to plants. Moreover, the inoculants can be applied together with phosphate rocks [21,45],
in the treatment of wastewater [198], and in fermenting animal detritus [199], these being
external sources of P.

As shown in Table 1, the potential for some microorganisms to release P from the
soil and promote plant growth is unequivocal. However, unlike what occurs with some
N-fixing symbionts, such as those from the genera Rhizobium and Bradyrhizobium, the
amount of P made available by PSM does not seem to be well regulated by plants. As a
consequence, and allied to the fact that P is not in the air as N, PSM does not supply P
in amounts corresponding to high levels of productivity of crops. For this reason, often
capitalized farmers choose to apply high doses of phosphate fertilizers instead of applying
or managing PSM in the soil. After all, using only PSM these farmers will not be able to
reach yields comparable to the use of synthetic fertilizers, and by applying high doses
of phosphate fertilizers the action of PSM tends to be minimized, as is the case with
arbuscular mycorrhizal fungi. Thus, if the prices of synthetic phosphate fertilizers are not
counterproductive at the current level of use, or there is a wide rupture in the productivity
paradigm, with a greater appreciation of sustainability over productivity, inoculation with
PSM will remain a market niche.

7. Conclusions

In this study, we examined how microorganisms make up a highly viable resource
for improving soil and plant nutrition, especially phosphate solubilization. Constant
global awareness of the perpetuity of natural resources and their rationalization for future
generations is necessary.

Additionally, it is essential to conduct research on the development of innovative tech-
nologies for phosphate-solubilizing microorganisms. It is necessary to further understand
the nutrient availability mechanisms, and how the process can be perfected under different
soils and abiotic conditions. Likewise, the development of innovative technologies can
help in the identification, isolation, and prospecting of new microorganisms.

Finally, the use of microorganisms as biological inoculants is a viable, sustainable,
and promising alternative for the agriculture of the future, agriculture with greater socio-
biodiversity and less use of non-renewable resources external to farmers’ properties. The
formulation of new bioinoculants, if they are accessible and appropriated by farmers, will
help both in agriculture and in socio-economic development.
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