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Abstract: Precision agriculture employs cutting-edge technologies to increase agricultural productiv-
ity while reducing adverse impacts on the environment. Precision agriculture is a farming approach
that uses advanced technology and data analysis to maximize crop yields, cut waste, and increase
productivity. It is a potential strategy for tackling some of the major issues confronting contemporary
agriculture, such as feeding a growing world population while reducing environmental effects. This
review article examines some of the latest recent advances in precision agriculture, including the
Internet of Things (IoT) and how to make use of big data. This review article aims to provide an
overview of the recent innovations, challenges, and future prospects of precision agriculture and
smart farming. It presents an analysis of the current state of precision agriculture, including the most
recent innovations in technology, such as drones, sensors, and machine learning. The article also
discusses some of the main challenges faced by precision agriculture, including data management,
technology adoption, and cost-effectiveness.

Keywords: precision farming; smart farming; agricultural technology; Internet of Things (IoT); big
data analytics; machine learning; artificial intelligence (AI)

1. Introduction

Precision agriculture (PA) is a management strategy for addressing geographical
and temporal variabilities in agricultural fields [1–3] that involves data and contempo-
rary technologies. With a forecasted human population of between 9 and 10 billion by
2050 [3–5], precision agriculture is becoming more and more important to contemporary
agricultural research. By 2050, the amount of food produced worldwide must grow by at
least 70% [1,5–7]. This is a difficult endeavor [4] because it puts further strain on already-
scarce resources and the environment [1–3]. Therefore, precision agriculture is essential
to maximize output while using fewer inputs of all sorts in more effective ways, reducing
adverse impacts on the environment, and assuring sustainability [2,3]. Precision farming
was born with the introduction of GPSs (global positioning systems), GISs (geographic in-
formation systems), yield monitors, and other data generators in all three crucial phases of
agricultural operations in the 1990s [2,8,9]. In precision agriculture, motorized equipment
was only used for performing agricultural processes [2,10], and the problem-recognizing
and decision-making steps were authorized by humans. The technological advancement
during the Third Industrial Revolution, known as Industry 3.0 [8], led precision agriculture
to digitalization by integrating information technologies and improved automation capa-
bilities in precision farming. As a result of this digitalization, “farm practices” with manual
tools moved to “agriculture” from animal traction, then to motorized mechanization, and
now to digital equipment [2].

Precision agriculture so far mainly consists of variable rate technologies (VRTs), elec-
tronic maps, yield monitors, and guidance farming systems [2,8]. Variable rate applications

Agriculture 2023, 13, 1593. https://doi.org/10.3390/agriculture13081593 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture13081593
https://doi.org/10.3390/agriculture13081593
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0002-9584-7807
https://orcid.org/0000-0003-4485-8810
https://orcid.org/0000-0003-3121-7600
https://orcid.org/0000-0003-1902-4611
https://doi.org/10.3390/agriculture13081593
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture13081593?type=check_update&version=2


Agriculture 2023, 13, 1593 2 of 26

were firstly demonstrated in northern Germany and Denmark in 1988 after global posi-
tioning systems (GPSs) were available for civil services [11]. GPS services were opened
for general use in U.S. farms in 1983 [2]. In the next decade, GPS technology facilitated
farmers to precisely locate and map their fields [10,12], empowering them to manage their
farmlands according to site-specific conditions and field variabilities. At the beginning
of the second millennium, yield monitors were developed, enabling farmers to monitor
crop yield in real-time via best matching [13]. Advancement of remote-sensing technology,
such as satellites, drones, ground-based sensors, and crews, authorized farmers to collect
high-resolution data on their fields, allowing them to make informed decisions about
crop management [3]. Precision agriculture is not only focused on crop farming but also
on other agricultural production systems: agronomics, livestock farming, aquaculture,
and agroforestry [2,3,9,14].

In the current status of precision agriculture, there are several issues, such as un-
sustainable resource utilization, long-term monoculture, intensive animal farming [8],
environmental compromises, uneven distribution of digitization [15], food safety issues,
inefficient agri-food supply chain [13,16], and lack of awareness of and inertia toward novel
changes. These issues prevent achieving efficiency, productivity, and sustainability from
agricultural production and escalate unintended impacts on ecosystems [17]. The fourth
industrial revolution, which is known as Industry 4.0, occurred in 2011 with the Internet of
Things (IoT), big data, artificial intelligence (AI), robotics, and blockchain technology [8,18].
In 2017, these advanced technologies were integrated into agriculture in order to over-
come the above-mentioned issues, transforming precision agriculture to Agriculture 4.0,
or smart farming [8,16]. With this transition, there is a growing focus on sustainability
in agriculture, with many farmers adopting precision agricultural technologies to reduce
the environmental impacts of farming and promote long-term sustainability. As a result,
agricultural-manufacturing processes and supply chains have become more autonomous
and intelligent [18], including the automation of various tasks such as planting, seeding,
harvesting, and soil sampling. This is making farming more efficient while reducing
labor costs.

Smart agriculture is an evolving field that leverages technological innovations to
transform traditional farming practices. The integration of digital technologies into agricul-
ture has opened up new opportunities and possibilities, revolutionizing the way farmers
manage their crops, resources, and operations. It is a rapidly evolving field that encom-
passes a wide array of approaches, applications, and impacts. The broader objective of
this review is to delve into the essential aspects of precision agriculture, exploring its key
components and highlighting its potential for sustainable farming practices. One of the
critical aspects of precision agriculture is data collection and acquisition planning, which
plays a fundamental role in optimizing farm management decisions. Through efficient data
gathering, farmers can make informed choices regarding crop health, resource allocation,
and yield optimization. Decision making and execution are also vital components of preci-
sion agriculture, where the integration of cutting-edge technologies is pivotal. Leveraging
machine vision technology, the Internet of Things (IoT), and artificial intelligence (AI) can
lead to enhanced precision and efficiency in agricultural processes, benefiting both farmers
and the environment. Throughout this review, successful precision agriculture proposals
and real-world implementations are analyzed to gain insights into their achievements and
challenges. By identifying future developments required in precision agriculture, we aim
to provide a comprehensive understanding of how this field can continually evolve to
support sustainable farming practices and address global food security challenges. The
amalgamation of scientific research and technological innovations holds great promise for
the future of precision agriculture and its positive impact on agriculture and society as
a whole.
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2. Precision Agriculture Approaches, Applications, and Impacts

Precision agriculture involves data-driven management decisions that improve re-
source use efficiency, resulting in reduced agricultural costs while lowering the environ-
mental impacts from agriculture [19]. Hence, data and data collection systems, decision
support tools, and data-driven equipment and input adjustments are major components
of precision agriculture [2], engaging in three key agricultural steps: diagnosis, decision
making, and performing [20], respectively. Before the integration of smart technologies,
ICT (information and communication technology) was incorporated into agricultural de-
vices and machinery to capture real data. Here, remote sensing, automated hardware and
software, telematics, drones, autonomous vehicles, GPSs, and robotic technologies were
incorporated into agricultural practices. As an example, the agro-tech company John Deere
introduced GPSs for tractors, expecting increased yield and decreased input wastage [19].
The previous status of precision agriculture before smart farming can be summarized
as follows.

2.1. Data Collection and Acquisition

Data, data collection, and decision support tools are important for the identification
and diagnosis of various aspects in agriculture. In precision agriculture, data on individual
fields and crops are gathered by observing, measuring, and sensing with different kinds of
sensors, yield and soil monitors, and remote-sensing tools, such as imaging from drones,
crews, aircraft, or satellites [1–3,13]. Thus, “sensing” is a fundamental management tool
of precision agriculture [3,13], which is observing detailed information and providing
data on climate conditions, soil conditions, fertilizer requirements, water availability, pest
and disease stresses, and other field parameters [3]. A range of sensors are used in preci-
sion agriculture. Biomass parameters are important in making decisions to monitor the
fertilization and caring for crops. Sensors for mass flow and moisture content are com-
ponents of yield monitors, together with a differential global positioning system (DGPS)
receiver. Properly calibrated yield monitors can generate accurate real-time information for
decision making, such as underperforming areas leading to site-specific crop fertilization
designs [13]. Precision livestock farming uses sensors and monitoring technology to collect
data on animal health and welfare, enabling farmers to make informed decisions about
feed, waste, and other inputs with improved efficiency and productivity. Colter position
sensors combined with ultrasonic soil surface sensors are employed in dynamic Colter
depth control systems [3].

Remote-sensing technologies, such as drones, crews, aircraft, satellites, and other
ground-based sensors, are used to collect data on crops and soil conditions [2,3]. Remote
sensing supports the identification of spatial patterns of signatures of plants that are co-
incidental with soil characteristics, as well as pest or disease stresses [11]. Imagery is one
kind of remote-sensing data that can reveal ground truthing [2,3,11]. Previously, aircraft
have been used not only for many farming imagery operations that generate data, but also
chemical- or fertilizer-spraying activities. Moreover, satellite images have been available for
farm management for many years. As an example, the US-LANDSAT satellites were avail-
able for this purpose in 1970 [2]. Unmanned aerial vehicles (UAVs) equipped with global
navigation satellite system (GNSS) technology have been recently employed for mapping,
gathering imagery data, land surveying, crop spraying, and livestock monitoring [2,3].
Geocoded sampling is a requisite component of precision agriculture and ground truthing
when spatial images are used for decision making [11]. Real-time and cost-effective remote
sensing, such as LASSIE (low-altitude stationary surveillance instrumental equipment),
are crucial in precision agriculture, as it enables continuous and automatic recoding of
real-time images of crops and soil with GIS reference [11]. This information can be used to
make informed decisions about crop management resource allocation [3].

Sensor data and other data associated with geospatial coordinates from a global
navigation satellite system (GNSS) provide information to create maps, especially yield
maps and soil maps for site-specific management decisions [2,3]. Yield maps are used
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to characterize field production quantitatively and qualitatively [21], which is crucial
to make management decisions. Analyzing variabilities depicted on maps enables the
identification of factors that influence productivity, facilitating the implementation of site-
specific field management strategies [3]. Soil maps offer valuable insights into the spatial
distribution of the physical and chemical properties within a given field [21], serving as
indispensable decision-making tools in precision agriculture [13]. This significance stems
from the fact that soil’s physical and chemical characteristics, such as water availability,
nutrient-holding capacity, bulk density, porosity, nutrient availability, and topography,
typically exert an influence on crop yield [21]. Weather and climate trends can also be
predicted using sensor data, which are important in all farming practices. Harvesting time
is an affecting factor of grain loss in paddy rice farming, which is also able to be monitored
with data observation [1].

2.2. Planning, Decision Making, and Execution

After creating decisions by analyzing gathered information, actions are performed
according to the decisions created using data-driven equipment. Most fields are not
homogenous in terms of soil and climate properties, as well as diseases [22]. Conventional
agriculture did not take this into account; therefore, rigorous use of limited resources and
excess use of chemicals and synthetic fertilizers resulted in unsustainable conventional
agricultural practices. This also drove lots of wastage, even in the amounts of resource
inputs and yield. Nonetheless, precision agriculture itself has proved that the application
of technologies to manage the spatial and temporal variabilities in agricultural fields is
possible to improve performance and environmental quality [9]. Variable rate technologies
in precision agriculture involve applying inputs such as fertilizers, water and seeds, and
crop protection chemicals (pesticides and weedicides) at varying rates, depending on the
specific needs of each area of a field [23]. In this approach, residual issues of chemicals, as
well as wastage of input resources, can be reduced. Also, net profit can be improved with
increased crop yield and reduced input costs, as farmers can use resources according to the
field requirements rather than full-coverage application in fields at uniform rates [2,24,25].

According to the identified heterogeneity of a field, amounts of water, fertilizer, her-
bicides, pesticides, and liming can be determined and applied. When considering the
irrigation practices in precision agriculture, technology-driven, more sustainable smart
irrigation systems are there to apply precise amounts of water at precise times. When
soil moisture sensor data give an estimation of a required amount of water, irrigation
systems can be diverted into variable rate irrigation to apply irrigation water until mois-
ture content returns to the ideal level [26]. Most of the time, these effective and efficient
water management systems are automatically controlled, increasing irrigation water use
efficiency (IWUE). Monteiro et al. in 2021 described the use of satellite LANDSAT data and
remote-sensing data to develop a feasible operational irrigation water model [3]. Likewise,
tillage depth can be determined via matching with variabilities of soil physical proper-
ties [27]. Chemical spraying and seeding are also performed according to variable rate
approaches. Previously, agricultural aircraft were used for chemical spraying, where a
pilot controlled the spray [23]. In the present, aircraft are employed with an auto-adjusting
ability for the application rate of chemicals based on a prescription map, whilst UAVs are
also used as fertilizer spreaders [3]. Precision seeding can control sowing depth, densities,
and distances effectively while saving seeds, time, and labor costs. Studies estimated that
precision seeding based on variable rate technologies was 10% to 30% more efficient than
conventional practices [3].

This site-specific management increases the number of correct decisions per unit area
per unit time related to net benefits [9] while supporting the conservation of agricultural
inputs and reducing costs together with environmental impacts [2,13,24]. Another man-
agement tool, grid sampling, also involves the division of fields into a grid and collecting
data at each intersection of the grid. This approach provides representative information
of the entire variation within a field [11], where such data are able to be used for site-
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specific management to optimize management practices precisely [7]. For small-scale
variabilities of soil and crop features, a local resource management (LRM) system was
developed with computer-aided farming (CAF), which translated information into variable
rate applications [11].

Thus far, humans have used digital tools to enhance diagnosis and decision making
while adding automated machines for precise performing [14]. The accelerating changes of
Industry 4.0 plus these digital technologies have granted the gradual automation of the
diagnosis and decision-making steps, limiting human involvement to only monitoring
(Figure 1) [6]. This revolution mostly targets optimal farming and variability management
in order to enhance production. However, fulfilling the food demand should not rely solely
on “more production”. At the same time, it should be consider “less wastage” of both the
inputs and outputs of agricultural production [3].
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3. Precision Agriculture: The Next Frontier for Sustainable Farming

In the present, we are in the early stage of a new agricultural revolution with data-
intensive approaches [2,6,16], which deploy machines at each and every step in agriculture
(Figure 1), namely diagnosis, decision making, and performing. Human power is only
involved in monitoring and maintaining [20]. Apart from the gradual modification of
agricultural practices by the three previous industrial revolutions, the ongoing fourth
industrial revolution is shaping the current status of agriculture, leading to Agriculture
4.0. This new discipline is characterized by data-driven management; new tool-based
production, sustainability, professionalization; and the reduced environmental footprint of
farming with modern smart technologies [24], such as robot technology (including drones),
big data, artificial intelligence, computer vision, 5G, cloud computing, the Internet of
Things, and blockchain technology [4,5,8,16]. This makes agricultural production systems
more autonomous and intelligent [18,28]. Therefore, the following involvements can be
identified as new trends and precision agriculture (Figure 2), where new capabilities are
introduced to smart farming.
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3.1. Big Data

Precision agriculture systems are highly related to data and information [5]. Gen-
erally, unstructured and vast amounts of data are used by big business industries, like
social-networking sites, to learn or predict customer behaviors accurately [4]. Similarly,
in precision agriculture, big data analytics are applied to understand data-intensive agri-
cultural processes for decision making [6], where analytic tools operate enormous data
sets [4]. These analytic tools consist of data mining, statistics, AI, predictive analytics,
neural language processing, etc. [4]. Big data science usually functions either with ML,
cloud computing, image processing, modeling and simulation, statistical analysis, NDVI
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vegetation indices, or GIS. These conjugations can discover correlations, patterns, and
trends from large quantities of data via capturing, storing, exchanging, analyzing, and
marketing features of this high-performance informatics technology [6]. These predictions
and recommendations assist farmers with handling the upcoming outcomes, risks, and
challenges in the agricultural industry [4]. Combining the data in agricultural production
processes creates traceability of product while increasing product quality, including safety
and taste. As customers are now aware of the ecological footprint of agri-products, the
above combination supports the increase in the demand for agricultural commodities [29],
adding high market value. Recent advancements of high-resolution remote sensing and
intelligent information and communication technologies, including social media (Facebook,
Twitter, Amazon, Instagram, etc.), have contributed to big data analytics in many sectors,
as well as in many stages in farming, including decision making, weather forecasting,
weather management, disaster management, smart management of resources, disease and
pest interruption, and harvesting time predictions [4,6,30]. Moreover, big data analytics
aid in implementing real-time forecasting in precision agriculture [4]. However, data
updating, device security, correctness of data, accuracy of data, availability of data, and
security elements, such as encryption, are still barriers when combining big data with
smart farming [31]. Invalid data can lead farmers to make costly, disruptive decisions
and actions [5].

3.2. Machine Vision Technology

Precise and accurate data and information are the driving components of precision
agriculture. Recently, image analysis has become a more reliable data source than man-
ual, labor-intensive, costly data-collecting methods [22,32]. Here, machines can read and
understand the real world through pixel images and produce accurate site-specific informa-
tion [31]. Machines with ‘eyes’ in agricultural activities are called machine vision (MV). This,
also known as agro-vision or the ‘eyes’ of robots, provides non-destructive, robust, rapid,
and steady methods to monitor cultivation processes. MV systems give machines their
vision and judgement capabilities in image processing and data extraction [10]. Although
MV technologies have already been applied successfully for crop species identification,
crop stress detection, crop seed quality assessment, weed detection, disease detection, etc.,
they are still at the prototype stage. Currently, emerging deep-learning (DL) techniques in
growing machine-learning (ML) technologies are integrated with MV applications in order
to develop intelligent robots for multispectral imagery analysis and real-time analysis in
field variable rate applications [10,25]. Commercial smartphones, which are ubiquitous
among the human population, are able to be used in monitoring crop health and stress
based on MV systems [33].

3.3. Internet of Things (IoT)

The IoT refers to a network of interconnected items and technologies [16]. The IoT
is one of the most important technological advancements in precision agriculture and
smart farming [5]. IoT architecture for agriculture, such as agricultural sensors with
ICT and UAV, collects data for precision agriculture [31]. Also, the burgeoning IoT and
mobile data are the core of the fourth industrial revolution [10]. Meanwhile, advancements
in communication technologies and wireless networks (5G, LoRaWAN, NB-IoT, Sigfox,
ZigBee, and Wi-Fi) have broadened the application of the IoT in diverse fields, such as
real-time remote control and high-throughput phenotyping, while giving better coverage,
bandwidth, connection density, and end-to-end latency (Table 1) [8]. When it consolidates
in agriculture together with cloud computing, it results in smart farming [6] for various
scopes of livestock monitoring, smart greenhouses, fishery management, and weather
tracking [8]. The IoT can be widely used in all areas of precision agriculture with the
development of sensors with independent intellectual property rights and the development
of smart devices, such as intelligent tractors, UAVs, and robots that can replace high levels
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of manual labor input, performing high-quality operations while adjusting to challenging
working conditions [31].

Table 1. Main specifications of prominent wireless technologies of fifth-generation communication
paradigm: [34–38].

Sigfox LoRaWAN NB-IoT Zigbee Wi-Fi 5G

Bandwidth Low bandwidth
Low to
moderate
bandwidth

Low to
moderate
bandwidth

Low to
moderate
bandwidth

High
bandwidth

Very high
bandwidth

Maximum
Data Rate Up to 100 bps Up to 27 kbps Up to 250 kbps Up to 250 kbps

From a few
Mbps to several
Gbps (varies
based on the
version)

High data rates
from several
hundred Mbps
to multi-Gbps

Payload
Length

Limited to
12 bytes per
message
(140 messages
per day)

Up to 51 bytes
per message
(varies
depending on
the region)

Up to
1600 bytes per
message (varies
depending on
the network
operator)

Up to 128 bytes
per message
(varies
depending on
the network
layer)

Up to several
kilobytes per
message (varies
based on the
version)

Supports large
payload sizes
ranging from
several
kilobytes to
several
megabytes

Coverage

Several
kilometers in
rural areas and
up to a few
hundred meters
in urban areas
from a Sigfox
base station

Varies from a
few kilometers
in urban area
and tens of
kilometers in
rural areas
depending on
antenna height
and line of sight

Wide area of
coverage up to
several
kilometers or
more from a
base station by
leveraging
existing cellular
infrastructure
(similar to
2G/3G cellular
networks)

Up to tens of
meters (can be
extended by
utilizing mesh
networking,
allowing
devices)

Limited to
indoor around
30–50 m or local
area
environments
(can be
extended)

A few hundred
meters to
several
kilometers from
a base station
(varies
depending on
the frequency
band and
deployment
strategy)

Cost

Relatively low
cost due to its
simple
infrastructure
requirements

Cost-effective
due to shared
infrastructure
and low-power
devices

Affordable due
to utilizing
existing cellular
infrastructure

Reasonably
priced,
especially for
small-scale
deployments

Cost-effective
for local area
networks, but
infrastructure
costs can vary

Higher
infrastructure
costs compared
to other
technologies

Advantages

Low power
consumption,
long-range
coverage,
low-cost
infrastructure

Long-range
coverage,
low power
consumption,
low-cost
infrastructure

Wide network
coverage,
secure,
supports voice
and mobility

Low power
consumption,
mesh
networking,
supports large
networks

High
bandwidth,
widespread
availability,
support for
various
applications

Very high
bandwidth,
ultra-low
latency,
massive device
connectivity,
high reliability

Disadvantages
Limited
bandwidth,
low data rate

Limited
bandwidth,
shared
spectrum,
higher latency

Higher power
consumption
compared to
other LPWAN
technologies

Limited range,
interference
from other
devices,
complex
network setup

High power
consumption,
shorter range,
limited
scalability

Higher
infrastructure
cost,
limited
coverage in
some areas,
higher power
consumption

Different IoT sensors for temperature, humidity, light intensity, pressure, CO2 lev-
els, insect infestations, foliage, sunlight intensities, and wind speed are there to collect
and receive data, which are then uploaded to cloud information support systems to man-
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age [4,13,16,28]. Those sensors can directly combine with agricultural robots, autonomous
platforms, machines, and weather stations for real-time monitoring [4]. With the IoT, UAVs
can respond promptly, leading to high-quality, high-resolution, and exceptionally reliable
observations through high-throughput 3D monitoring at different geographical areas. At
the same time, various kinds of agricultural sensor nodes, autonomous farm vehicles, and
mobile crowd sensing have been put forward based on the IoT for ground and undersurface
cognition [8]. Most IoT sensors in precision agriculture are in wireless frameworks [13] or
low-power wide-area networks [8] and, hence, can be used for on-site analysis [3], as well
as mass data transfer, without any interruptions [29,31]. Still, there are cost, operational,
technical, and data management difficulties in implementing the IoT in agricultural opera-
tions [13]. Designing low-cost, energy-efficient, wireless IoT technologies in autonomous
applications is affected by the following dependencies: data latency on power consump-
tion, data scalability on storage and processing cost, and data interoperability on cloud
compatibility to store and process various kinds of data [13].

Different IoT devices are coalesced as networks to achieve high-speed data exchang-
ing [4,30]. Therefore, the development of an IoT framework can also solve problems with
big data [31]. With more advancements, agricultural operations like protecting, controlling,
monitoring, and detecting can be extended using smart phones with the IoT [25]. As an
example, time-consuming cattle status monitoring has also benefited from the IoT, allowing
farmers to monitor the health and welfare of animals. Also, weed detection through MV
primarily consists of deep learning (DL) and image processing [16].

Edge computing enables affordable real-time data transmission in IoT precision agri-
culture, reducing data package size and alleviating strain on centralized cloud resources.
Internet and communication companies leverage their expertise to extend cloud service
capabilities to edge networks, shaping the edge computing landscape. Pioneers like Cisco
and Huawei have developed comprehensive frameworks and lightweight computing sys-
tems. The IoT connects objects through smart technologies, while research explores aerial
edge–IoT systems for improved convergence speed and task completion rates [39–42].

3.4. Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL)

AI has a key role in robotics and autonomous systems (RASs). The development of
AI in the IoT has contributed continuous data streams [31]. To make agricultural data into
meaningful information in decision-making data, mining techniques are required. Various
environmental data and farming historical records in big data are analyzed using AI, which
finds patterns that are hidden in big data [29]. These discoveries are important in the pest
identification, disease detection, yield prediction, and fertilizing plans [25,31] included in
agricultural decision support systems. AI has noteworthy potential to accommodate the
reduction of food wastage, the improvement of production hygiene, and the monitoring
of machines in many stages of agriculture, such as supply chain, agricultural production
pattern, and agricultural production process including soil, crop, and water management,
as well as disease and pest control [4,8]. Then, AI has the potential to overcome problems
in conventional farming [31].

Both ML and DL are subconcepts of AI (Figure 3) [10]. With ML, a computer learns
independently to improve the performance of AI, which goes through explicit feature
extraction [6]. ML focuses on the theory, performance, and properties of learning systems
and algorithms, as it is a high-performance informatics technology for quantifying and
understanding data-intensive farming processes [6]. On the other hand, DL can solve
problems with combinations of layers and nonlinear functions [10]. To address limitations
in the practical implementation of robots, mobile terminals, and intelligent devices in
modern agriculture, the integration of machine-learning algorithms has had significant
improvement. With machine-learning models, integration into mobile detection algorithms
has paved the way for innovative and more precise detection methods, overcoming certain
limitations faced by technology adaptation in plant factories, such as limited computer
power, insufficient storage capacity, complexities within the plant factory environment, and
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precision issues related to small target detection [25,43]. Furthermore, machine-learning
techniques can mitigate the need for large network sizes and improve the operational
speeds of these systems [43]. This advancement has wide-ranging applications, including
accurate fruit and pest detection, as well as the optimization and prediction of complex
conditions in plant tissue cultures and breeding processes [25,28,44]. Notably, a study
(referenced as study 13) successfully applied machine-learning models and artificial neural
multilayer regression models to enhance the in vitro regeneration of soybeans by tracking
simple, observable traits, such as shoot regeneration frequency and shoot length.
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Also, machine-learning algorithms are employed for data validation, enabling a deeper
understanding of dynamic agricultural conditions through data collected from various
elements of modern agriculture [6,44]. Despite these advancements, challenges remain
in terms of processing speed and the development of efficient information visualization
systems for farmers when dealing with big data [6]. Nonetheless, continued research in
the fields of big data, the IoT, machine learning, and deep learning holds great potential in
overcoming these roadblocks and providing accurate predictions of the dynamic nature
of agriculture while identifying new opportunities [1]. Supervised machine-learning
techniques, such as support vector machines, decision trees, k-means, random forests,
genetic algorithms, deep learning, and fuzzy logic, are several categories of machine-
learning models (Figure 3) that play a vital role in agricultural automation, augmenting
the intelligence of other technologies, such as smartphones, unmanned aerial vehicles,
unmanned ground vehicles, satellite systems, automated machines, agricultural robots,
and big data analytics [1,28,31].

Mobile applications have significantly diverted from these AI, ML, DL, and MV
technologies [10]. ML algorithms in big data are also critically essential because this
integration can learn from data to create decisions, data-based prospects, and predictions.
Due to the intricate input data requirements of machine learning (ML) and deep learning
(DL), the initial stage of adopting ML models in precision agriculture may encounter
significant obstacles in terms of the time and cost involved in gathering the necessary data
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from commercial farms [1,6,30]. However, with the continuous advancement of IoT sensors,
AI-based autonomous machines or robots together with cloud computing, edge computing,
and blockchain can support overcoming this difficulty during the transforming, storing,
and processing of data in the creation of ML models [27,36,41]. Accordingly, ML is able to be
used to solve diverse issues in agriculture related to yield prediction, crop quality, disease
detection, weed detection, species identification, animal welfare, livestock production,
water management, and soil management [6,45]. Common principles of ML techniques
are clustering, decision trees, instance-based models, regression, artificial and deep neural
networks, ensemble learning, support vector machines, and Bayesian models [6]. A study
proved that ML was a powerful tool for analyzing data to monitor inputs and outputs
aiming to optimize plant tissue culture protocols [44].

Smart farming is technology that relies on its implementation with the use of AI and
the IoT in cyber-physical farm management [28]. According to current applications, AI has
been involved in soil management, crop management, disease management, weed control,
etc. Examples are the fuzzy-logic-based soil risk characterization decision support system
(SRCDSS), management-oriented modeling (MOM), artificial neural networks (ANNs),
CALEX, PROLOG, computer vision systems, ANN-GIS, invasive weed optimization (IWO),
and support vector machines [4]. One key application of AI is a mobile expert system
where farmers can use their smartphones for disease diagnosis, species identification, and
soil health analysis with the help of mobile apps. In addition, AI is a real-time analyzer of
satellite images when the progress of farming is tracked with satellite imagery [24]. With AI
applications, precision agriculture now has a scientific background, which helps to make
precision agriculture more formalized to perform optimal agriculture outputs [29]. In the
future, AI may be improved to deal with the dynamic nature of agricultural microclimates,
as it is now facing difficulties finding a single standard solution for that heterogeneity.
The existing experience gap between AI researchers and farmers hinders the complete
understanding of agricultural problems and solutions. To eliminate this obstacle, the
knowledge of farmers, agricultural professionals, and AI researchers should be linked.
In spite of this, accessibility and privacy protection problems when working with huge
amounts of data should be addressed to deliver more skillful AI [8,16].

3.5. Guidance Systems

Guidance systems use GPS (global positioning system) technology to provide farmers
with real-time information about their equipment locations and herd-grazing locations,
enabling them to optimize field operations such as planting, harvesting, and herding [1,12].
The limited number of satellites, poor signal strengths, and lack of reliable connectivity
were overcome by introducing a GNSS (global navigation satellite system), which then re-
placed labor-intensive, time-consuming farm operations with more effective methods, such
as VRA [11,31]. Previously, agricultural inputs were performed manually, and during Agri-
culture 3.0, they were performed mechanically using digitalized machines [2]. With rapid
commercialization, agricultural machinery services have emerged that require efficient
management to prevent overuse or underuse issues. For the understanding of agricultural
machinery, GNSS plays a crucial role in optimizing effectivity and efficiency [46]. The
new trend of GNSS-enabled devices in the fully automated steering of tractions is saving
time, labor costs, and money [2]. Precision agricultural robots require high-resolution
navigation solutions [47]. Similarly, agricultural rovers and robots are effective only when
precisely guided in their actions [45]. Some studies introduced DL propagation models in
GNSS fused with inertial navigation data sets for precision agriculture [47]. One example
is electric seeders with optical fiber detection technology that were developed and tested
successfully [3]. The new development of software-based farm management solutions
for GIS encourage the automation of data collection and analysis of supervising, storing,
decision making, and farm management.
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3.6. Blockchain Technology

Blockchain is defined as a decentralized, distributed database that maintains a con-
tinuously growing list of ordered records or blocks, which was first used in cryptocur-
rency [15,48]. Blockchain offers data transparency, immutability, and reliability, which
improve the mutual trust between various parties in the supply chain [15]. As this technol-
ogy eliminates the obstacles of corporations, this was introduced to precision agriculture,
increasing the easiness of the integration of digital technologies into agriculture. This step
provides solutions to some technical challenges in smart farming, furnishing the remote
monitoring and controlling of farm equipment through the “IoT applied Greenhouse Moni-
toring System” [15,48]. One such challenge is an insufficient and insecure infrastructure for
data sharing. Another challenge is the delay of remote-sensing satellites in detecting the
variability of croplands. Therefore, as a solution for the above decentralization, anonymity,
and security problems in the IoT in smart farming, blockchain has been proposed, expect-
ing lightweight, distributed, decentralized, and transparent security and privacy [5,48].
Blockchain can assist with having a reliable, faster, and secure platform to monitor farm
operations, although it is still in its early stages of maturity [15,48]. As information can be
communicated securely in a distributed network [48], with the help of blockchain this can
improve the planning of schedules for various agricultural processes, such as irrigation
water sharing, energy consumption, the incorporation of machines and labors, and tasks
for robot coalitions and autonomous UAVs [15,28]. Especially in the food supply chain,
this is a crucial point because of food safety issues, as well as asymmetric and fragmented
information occurring related to the insufficient supply chain [1,8,10].

3.7. Robotics and Autonomous Systems

Most recently, autonomous farming has involved a high degree of the use of robotics,
sensors, drones, and remote sensing to perform various agricultural tasks, such as planting,
spraying, harvesting, and weeding, while reducing labor costs and improving efficient
decision making [3,45]. RASs are a combination of emerging modern technologies that have
key applications in both agricultural production processes and production patterns. Mobile
robots equipped with various sensors, actuators, and ML algorithms are key enablers to
automatically handle variability and uncertainty in farming practices [47]. Key applications
of RAS in agricultural patterns are in plant factories, 3D food printing, and biodiverse
farming, whereas autonomous farming, aerial monitoring, and automated husbandry
have become new applications in agricultural production processes [8]. However, agricul-
tural RASs are required to be improved to fulfill efficient work with accurate guidance,
autonomous navigation, and accurate detection of dynamic agricultural environments
(changing appearances, growth stages, weather conditions, object overlapping, etc.). Intelli-
gent actions, such as robot-assisted plant phenotyping, fruit counting, fruit harvesting, fruit
counting, leaf peeling, selective spraying, and 3D mapping, are demonstrated and currently
employed applications of RASs [8]. Auto-steered agricultural vehicles are also used in
many field operations [3], such as tilling, planting, chemical applications, and harvesting.
These machines, like harvesters, sprayers, tractors, planters, and mechanical weed controls,
use guidance systems either with light bars [13] or a GNSS [2,20]. These guidance systems
visualize the positions of equipment to prevent skips and overlaps, which is important in
variable rate applications.

3.8. Artificial Satellites, Unmanned Aerial Vehicles (UAVs), and Unmanned Ground
Vehicles (UGVs)

Artificial satellites, such as American Landsat satellites, the European Sentinel-2 Sys-
tem, the RapidEye constellation satellite system, the GeoEye-1 system, and WorldView-3,
for remote sensing help to generate remotely accessible data in multispectral forms [8].
The establishment of these intelligent remote-sensing satellites has provided full coverage
for collecting agricultural information [8,31,49]. More recently, ubiquitous and affordable
technologies such as drones, crews, and aircraft have allowed images to be captured closer
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to the ground and at a higher frequency, increasing detail and functionality [45]. UGVs ac-
quire high-resolution data for weed identification and control, selective pesticide spraying,
soil analysis, and crop scouting, while scouting robots accomplish specific targets [49] such
as mechanical weeding (Oz robot), spraying (GUSS autonomous sprayer), fertilizing, map-
ping, and seeding (RowBot system), as well as vineyard management (VineRobots) [4,50].
Information, including imagery data generated by satellites, UAVs, and UGVs, is the
paramount thing in precision agriculture, as it supports vegetation patch identification,
weed recognition, pest attack detection, observation of environmental stresses, and accurate
classification in VRT [18,45]. Not only that, in other agricultural disciplines, such as aqua-
culture, agroforestry, and forestry, imagery data play a considerable role because they can
cover large areas when gathering information, and these data are reproducible [20]. Data
from satellites, UAVs, and UGVs are supported by detailed ground survey data processed
with ML and DL algorithms in order to make them usable and meaningful information [18].

For example, in forestry, determining forest densities is labor-intensive and time-
consuming, although it is an important parameter when combatting climate change. Re-
cently, data of tree type distribution could be achieved over a wide area of forest with the
help of hyperspectral images and NDVI and RGB images from UAVs such as Sentinel-
2 [13,16]. Likewise, in remote sensing satellites and drones play a big role in monitoring
deforestation and obtaining accurate coverage of vegetative types and classification of
tree species and are more effective than other UAV or LiDAR data [14,34]. Although there
are limitations, drone and remotely piloted aircraft usage is dramatically increasing while
providing precise information for precision agriculture through hyperspectral sensors,
multispectral cameras, and other novel technologies [14]. This is a cost-effective, promising
method for monitoring large-scale farms or crop lands [4], as well as forest areas [14].

3.9. High-throughput Phenotyping

High-throughput phenotyping has emerged as a promising approach to enhance
precision agriculture by allowing the rapid and accurate measurement of plant traits [51]
quantitatively and qualitatively [22,52]. Accurate and high-throughput plant phenotyping
is important for accelerating crop breeding [52]. This technique uses advanced technologies
such as remote sensing [40,42], spectral imaging [41], and robotics [53] to collect large
amounts of data on plant characteristics, such as growth rate, yield, disease resistance, and
morphology [51,54,55]. By collecting and analyzing these data, farmers can gain insights
into how their crops are performing and make more informed decisions about things like
fertilization, irrigation, harvesting, and pest management [22,54]. High-throughput pheno-
typing can also help breeders to develop new crop varieties that are better adapted to local
growing conditions and can produce higher yields (Figure 4) [51]. A full range of visible
and near-infrared hyperspectral data enables ML techniques such as LSR (least squares
regression) to predict specific biochemical and physicochemical traits beyond simple vege-
tative indices [56]. ML-based precision agriculture systems have AI background [52,54],
and therefore, when detecting diseases, pests, nutrient deficiency, and weeds, stressed
responses are detected using high-quality images generated with UGV or UAV remote
sensing, hyperspectral imaging, and satellite imaging to support high-throughput pheno-
typing [57]. Ultimately, high-throughput phenotyping has the potential to revolutionize
agriculture by enabling more the precise, real-time, and efficient monitoring of farming
practices that can improve crop productivity, reduce environmental impacts, and increase
food security [54].
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The traditional methods of plant breeding have limitations in terms of time, cost, and
accuracy. HTP, on the other hand, uses nondestructive and rapid methods to gather data on
a large number of plants, allowing breeders to identify traits of interest more efficiently [58].
A study by Yang et al. (2017) [59] described using high-throughput phenotyping (HTP)
and quantitative trait locus (QTL) mapping to investigate the genetic architecture of maize
plant growth. The authors collected data on various traits related to plant growth, such
as plant height, leaf area, and biomass, using HTP techniques, such as imaging and spec-
troscopy [59]. Unmanned aerial systems (UASs) have brought about a revolutionary change
in field high-throughput phenotyping by providing a platform for different sensors to col-
lect remote-sensing data in field-scale trials. These sensors include regular RGB cameras,
multispectral-imaging cameras, hyperspectral-imaging cameras, thermal-imaging sensors,
and light detection and ranging (LiDAR) sensors that enable the nondestructive estimation
of plant traits, such as yield, biomass, height, and leaf area index. This is a significant
advancement in agriculture, allowing for the high-throughput phenotyping of crops. In
comparison to ground-based sensors, UASs increase the frequency and throughput for
phenotyping, while being cost-effective and providing high-resolution images as compared
to satellite-based techniques. The phenotypic traits can be used to select crops with high
yield and strong stress resistance, such as disease and salt resistance, ultimately leading to
improved production [60].

As technology advances, the future of high-throughput phenotyping (HTP) appears
promising. Multiple HTP technologies, such as drones, sensors, and artificial intelligence,
can be integrated to facilitate more efficient and accurate phenotyping, which can aid
breeders in identifying desirable traits and making better selections. HTP can also be
used for precision agriculture, where farmers can leverage data generated using HTP
technologies to make informed decisions on inputs such as fertilizers, pesticides, and water
to increase efficiency, reduce waste, and improve yield. HTP can also play a crucial role
in climate change research by identifying crop varieties that can better adapt to changing
climate conditions, thereby ensuring food security. Lastly, HTP can be used in developing
countries to enhance food security and improve crop productivity, but it requires the
development of affordable and accessible HTP technologies that can be easily adopted by
farmers in those countries [56,58,59].

3.10. Telematics

Broadband connectivity is required when addressing challenges in the adoption, cost,
and environment of smart technologies. Inadequate connectivity leads to inefficiencies,
impacting machine downtime, human error, and real-time information availability. Limited
connectivity not only affects profitability but also hampers the adoption of real-time-reliant
precision agriculture. Producers with adequate connectivity are expected to be more effi-
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cient, highlighting the importance of connectivity in agriculture [61]. The transformative
potential of 5G and beyond mobile networks in driving business and societal change is
being recognized. Considering environmental concerns and climate change, the role of
mobile networks in fostering sustainability and innovation is questioned. Sectors like smart
agriculture, forestry, biodiversity monitoring, and water management are crucial for sus-
tainable resource utilization. Evaluating the capabilities of 5G and 6G networks, including
current and future support, is essential for identifying use cases and the requirements in
these domains [34]. As an example, a study in Thailand designed telematics-equipped
tractors to assist farmers in efficiently managing their machinery, optimizing performance
and enhancing overall productivity. In addition to improved management capabilities,
these tractors offered features such as theft prevention, effective maintenance monitoring,
and machine operation tracking [62].

4. Studies of Successful Precision Agriculture Proposals and Implementations

The article [63] reviewed advancements in automated fruit-harvesting robots for
sweet peppers and apples, highlighting the successful implementation of a sweet-pepper-
harvesting robot called ‘Harvey’, which effectively addressed detection, grasp selection,
and manipulation challenges. Similarly, the apple-harvesting robot utilized a picking
manipulator and a catching manipulator, along with machine vision and prioritization algo-
rithms, for efficient harvesting. The article emphasized interdisciplinary collaboration for
further advancements in automated harvesting systems and the importance of intelligent
systems like deep learning and crop management software for enhancing productivity and
sustainability in modern agriculture. Field trials were conducted with Harvey for sweet
peppers in Australia, while robotic picking systems for apples were tested in a Washing-
ton orchard in the U.S. [64,65]. Israel has successfully implemented autonomous robotic
technology in their crop fields, paving the way for the commercial use of AI harvesters.
Tevel Aerobotics Technologies developed an autonomous fruit-picking system that utilized
flying robots tethered to an autonomous vehicle, enabling accurate fruit picking, extended
work hours, and additional tasks like tree thinning and pruning. This system addressed
labor shortages, reduced fruit production costs by approximately 30%, provided real-time
updates to farmers via a mobile app, and aimed to tackle challenges faced by the agriculture
industry. Tevel plans to introduce its innovative solution to the global market, catering to
fruit farmers worldwide and contributing to the growing agricultural robotics sector [66].

Senapathy et al. introduced the IoTSNA-CR model from their study, which leveraged
IoT technology to classify soil nutrients and provide crop recommendations, aiming to
optimize fertilizer usage and maximize productivity for farmers. The implementation of
AI harvesters in Israel showcases the potential of artificial intelligence, machine learning,
cloud services, sensors, and automation for delivering real-time information and support
to farmers. The proposed IoTSNA-CR model incorporated IoT sensors, cloud storage,
machine-learning techniques, and an optimized algorithm (MSVM-DAG-FFO) to achieve
high accuracy in soil analysis. The model allowed farmers to maintain soil information in
the cloud, reducing costs and improving productivity. Experimental validation confirmed
the effectiveness of the model for crop prediction and soil health maintenance, emphasizing
the importance of real-time data collection and expanding data sets and regular application
use for informed decision making and soil quality enhancement [49]. The use of unmanned
aerial systems (UASs) and unmanned ground vehicles (UGVs) in precision agriculture for
inspecting insect traps in olive groves was proposed by [49], with a cooperative robot archi-
tecture using UAS and UGV systems evaluating vision-based navigation algorithms and
augmented reality tags for return and landing. The results demonstrated the feasibility of
the architecture for automating inspections and improving pest control policies. Challenges
remain in addressing real-world conditions and optimizing image capture. Future work
includes real-world scenarios and long-term mission capabilities of UAS vehicles [49].

Two studies from University Tenaga National, Malaysia, present autonomous and
robotic machineries to deal with fertilizer and pesticide spraying. The authors of [67]
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presented a low-cost agricultural robot for fertilizer and pesticide spraying, crop monitoring,
and pest detection. The prototype system operated autonomously, reducing labor costs,
although productivity slightly lagged behind human workers. An autonomous organic
fertilizer mixer was developed in [68] based on IoT technology to reduce labor costs and
enhance efficiency. The improved mixer allowed remote monitoring, updates, and alerts,
aiming to further streamline the organic fertilizer-mixing process. A harvesting robot
system for cherry tomatoes in greenhouses was developed by the Beijing Research Center
of Intelligent Equipment for Agriculture. This new harvesting robot system for cherry
tomatoes was designed featuring a railed-type vehicle, a visual servo unit, a manipulator,
and picking end-effectors. Field tests demonstrated an average picking time of 12 s per
bunch of tomatoes with a success rate of 83% [69]. Also, X. Jin et al. [70] designed a small-
sized vegetable seed electric seeder with power drive and optical fiber detection technology,
providing high efficiency and precision by monitoring sowing conditions in real-time for
different seed sizes (Table 2).

The Cooperative Heterogeneous Robots for Autonomous Insects Trap Monitoring
System experiment in Portugal proposed a cooperative UAS and UGV system for olive
grove inspection that verified the feasibility and robustness of the multiple-cooperative
robot architecture in an olive inspection scenario [49]. Russian researchers Filipe et al. [7]
proposed an approach for dynamic robot coalition that combined fuzzy coalition games
and smart contracts to form a dynamic and trusted coalition. It enabled the collection
and dissemination of information from robot sensors in a shared space. Integration of the
IoT with blockchain allows the continuous tracking of food in precision agriculture tasks,
ensuring transparency and verification at each stage. Precision agriculture is a strategy that
uses advanced technologies, like sensors, remote sensing, and data analytics, to improve
agricultural management decisions and increase productivity, profitability, and sustainabil-
ity. Machine-learning models have been integrated with IoT sensors to develop intelligent
sensors for generating of big amount of data. In the study of Smolka et al. [71], a microchip
capillary electrophoresis sensor was used for soil nutrient analysis, demonstrating its gen-
eral sensitivity to ions in liquids, particularly NO3, NH4, K, and PO4. The sensor exhibited
strong linearity and detected important plant nutrients, which could contribute to future
developments in digital agriculture. Insufficient power infrastructure is one obstacle in
adapting novel technologies in agricultural fields. Researchers successfully developed an
IoT-based solar-energy-powered smart farm irrigation system in the United Arab Emirates
that harvested renewable energy for smart farm irrigation [72]. This study outcome paved
the way to developing three operation modes that are available for farmers’ use.

VRT is a major constituent in precision agriculture that deploys field maps, GPSs, and
GNSSs to establish the precision of input applications. A study of a data fusion method
for yield and soil sensor maps [21] evaluated fusion results on fields, highlighting their
usefulness in decision support for drainage, irrigation, and variable yield goals. It un-
covered hidden areas of lost yield potential using soil sensing, EC, pH, organic matter,
and topography data fusion. Researchers in Beijing, China, developed a new method
using image segmentation and pixel-level visual features to accurately classify field and
road areas in GNSS recordings of agricultural machinery, surpassing existing methods
and demonstrating a superior performance for high-frequency GNSS trajectories [46]. A
multisensor data fusion approach was used by Whattoff et al. for creating variable depth
tillage zones [27]. Variable depth tillage (VDT) reduced costs, labor, and fuel consumption.
A multisensor data fusion approach was developed to map soil properties for VDT imple-
mentation, showing the depth of tillage needed in different areas. This approach proved
useful in guiding VDT operations for efficient soil management.

One study in Germany integrated computer-aided farming, an IoT-based pH sensor,
and VRT for effective VR liming, and the lime requirement was successfully determined
in situ by establishing a buffer curve [11]. A field evaluation of a VR aerial application
was conducted in the study of Martin and Yang [23] utilizing prescription maps for aerial
glyphosate applications with variable rate nozzles. Accurate spray deposition within 20 feet
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of the target was confirmed using multispectral imagery, boosting confidence in variable
rate application and encouraging adoption. Italian authors Corbari et al. [73] explored the
integration of a satellite-driven soil–water balance model and meteorological forecasts to
enable precision smart irrigation. It discussed model performance and emphasized the
importance of using consistent data for the calibration and validation of soil hydrological
parameters [73]. The short communication of Jang et al. [22], “Spatial Dependence Analysis
as a Tool to Detect the Hidden Heterogeneity in a Kenaf Field”, presented high-throughput
phenotyping as having potential in precision agriculture. This study demonstrated its
application for revealing field heterogeneity and suggested its use for better analysis and
management in plant breeding and precision agriculture. In [57], Kim et al. emphasized
the importance of evaluating drought effects during the vegetative stages of soybean,
indicating the potential of using phenotypic traits as selection indicators for breeding
drought-resistant soybean cultivars, especially considering the escalating crop damage
caused by drought and global warming.

Another study asserted precision agricultural applications in agroforestry. Tree species
identification and classification is important when combatting climate change, as well as
monitoring ecosystem health 17. Researchers used images from SENTINEL-2 to propose
methods to determine tree type distribution in a wide forest area using UAV images [14,17].
They effectively distinguished evergreen, deciduous trees, and grassland areas, aiding in
forest planning and preparing for climate change impacts. Ma et al. [14] used a random
forest classifier with satellite images to improve texture feature separation among tree
species. The overall classification achieved 86.49% accuracy and a 0.83 Kappa coefficient,
although altitude, slope, and aspect influenced tree distribution. These outcomes were
important in species classification and biodiversity monitoring, as well as in informing
inventory estimation [14].

An evaluation of soybean wildfire prediction via hyperspectral transmission imag-
ing was performed with Python, which detected bacterial wildfire in soybean leaves
where different varieties exhibited distinct spectral signatures. This allowed the precise
detection and differentiation of healthy and diseased plants effectively with high accu-
racy (97.19% and 95.69%) in early disease detection, confirming its usefulness in soybean
plant monitoring [32].

Aasim et al. [44] focused on establishing the efficient and reproducible in vitro re-
generation of common beans through a combined approach of in vitro regeneration and
machine-learning algorithms. ML models, particularly ANN algorithms, were used for
prediction and optimization. The ML and ANN models demonstrated superior perfor-
mances, proving their efficacy in analyzing and optimizing complex conditions in plant
tissue culture protocols for breeding purposes.

A computer vision and deep-learning-enabled weed detection model for precision
agriculture was proposed in [25] integrating computer vision, DL, the IoT and a smartphone.
The proposed CVDL-WDC technique combined multiscale object detection and ELM-based
weed classification. The results showed improved outcomes over recent approaches, and
future extensions included integration with IoT and smartphones.

At the same time, a novel procedure involving machine learning and UAV-based
imagery was developed to accurately identify crops and weeds, offering potential integra-
tion into autonomous weed management systems and contributing to improved precision
agriculture practices with reduced resource consumption [45].

At Sairam Institute of Technology in India, a flood detection system based on the
IoT, big data, and a convolutional deep neural network (CDNN) was developed [30].
The CDNN algorithm demonstrated superior accuracy, achieving an impressive accu-
racy of 93.23%, a sensitivity of 91.43%, a specificity of 91.56%, a precision of 92.23%,
a recall of 90.36%, and an F-score of 91.28% with a data set of 500. The flood detec-
tion system outperformed existing methods and holds potential for further enhancement
through the integration of IoT devices and advanced algorithms, ensuring improved flood
detection capabilities.
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In order to alleviate the strain on agri-food production, the introduction of alternative
nutrient sources can be explored, particularly through the utilization of cultured meat and
3D-printed meat as substitutes for traditional animal meats, thus reducing the demand on
animal husbandry. In China, the production of lab-grown meat using muscle stem cells
necessitated edible 3D scaffolds created through electrohydrodynamic (EHD) printing,
showcasing the significant potential of prolamin scaffolds for cultivating cultured meat [74].
Similarly, the construction of 3D-printed meat analogs from plant-based proteins has been
conducted, improving the printing performance of soy protein- and gluten-based pastes
facilitated by rice protein. This study examined the rheological properties and printing
performances of edible inks made from soy protein isolate (SPI), wheat gluten (WG),
and rice protein (RP). Increasing the proportion of rice protein improved the 3D-printing
performance, holding potential for the 3D printing of plant-based foods and constructing
meat analogs simulating real meat properties [75].

Several studies have shown why the adaption rate of these studies is slow, and
one case study conducted in Chumphon Province, Thailand, by Kasetsart University
examined the adoption of smart farming technology among durian farmers, highlighting
that factors such as age, occupation, access to extension services, and farm size influenced
technology adoption, with younger farmers having larger farms being more inclined to
adopt technology, resulting in decreased labor and fertilizer expenses, which emphasized
the importance of providing continuous training and promoting extension services for
sustainable adoption [76].

Table 2. Studies of successful precision agriculture proposals and implementations.

Exploration Location Technology Used References

Usage of Smart Contracts with FCG for
Dynamic Robot Coalition Formation in
Precision Farming

St. Petersburg, Russia
IoT, agricultural robotics,
blockchain technology with
hyperledger fabric platform

[7]

A mobile lab-on-a-chip device for on-site soil
nutrient analysis

Vienna University of Technology,
Vienna, Austria

Micro-chip capillary
electrophoresis sensor device [71]

Development and test of an electric precision
seeder for small-sized vegetable seeds

Henan University of Science and
Technology, Luoyang, China

Optical fiber
detection technology [70]

Smart irrigation forecast using satellite
LANDSAT data and
meteo-hydrological modeling

Politecnico di Milano, Milan, Italy IoT sensors [73]

IoT solar-energy-powered smart farm
irrigation system

American University of Sharjah,
Sharjah, United Arab Emirates

Chip controller with built-in
WiFi connectivity, IoT [77]

Autonomous fertilizer mixer through the
Internet of Things (IoT)

University Tenaga Nasional,
Selangor Darul Ehsan, Malaysia IoT [68]

Design and development of a robot for
spraying fertilizers and pesticides
for agriculture

University Tenaga Nasional,
Selangor Darul Ehsan, Malaysia Agricultural robots [67]

25 years of Precision Agriculture in
Germany—A retrospective

Federal Research Institute for
Cultivated Plants,
Bundesallee, Braunschweig

Computer-aided farming,
IoT-based pH sensor, VRT [11]

Field Evaluation of a Variable Rate Aerial
Application System

United States Department of
Agriculture, Texas, USA

UAVs, VRT,
high-resolution camera [23]

A harvesting robot system for cherry
tomatoes in greenhouses

Beijing Research Center of
Intelligent Equipment for
Agriculture, Beijing, China

Agricultural robots [69]

Characterization of Tree Composition using
Images from SENTINEL-2: A Case Study
with Semiyang oreum

Republic of Korea SENTINEL-2 satellite, image
analysis, remote sensing, [17]
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Table 2. Cont.

Exploration Location Technology Used References

Innovation in the Breeding of Common
Beans Through a Combined Approach of
in vitro Regeneration and Machine-Learning
Algorithm Citation

Sivas, Turkey ML and ANN models [44]

3D-Printed Prolamin Scaffolds for Cell-Based
Meat Cultures Suzhou, Jiansu, China

3D-printing technology,
high-precision
microstructures for
biomedical applications

[74]

Construction of 3D-printed meat analogs
from plant-based proteins: Improving the
printing performance of soy protein- and
gluten-based pastes facilitated by rice protein

Nanchang, China 3D-printing technology [75]

Tree Species Classification Based on
Sentinel-2 Imagery and Random Forest
Classifier in the Eastern Regions of the
Qilian Mountains

Qilian Mountains, China SENTINEL-2 images [14]

Detection of flood disaster system based on
IoT, big data, and convolutional deep
neural network

Sairam Institute of
Technology, India

CDNN classifier, ANN, DL,
deep-learning neural
network (DNN)

[30]

A multisensor data fusion approach for
creating variable depth tillage zones Newbury, UK VRT [27]

A Data Fusion Method for Yield and Soil
Sensor Maps

Veris Technologies Inc.,
Kansas, USA

IoT, GPS, soil data maps, yield
data maps [21]

Computer Vision and Deep-learning-enabled
Weed Detection Model for
Precision Agriculture

Computer vision, DL,
IoT, smartphone [25]

Short Communication: Spatial Dependence
Analysis as a Tool to Detect the Hidden
Heterogeneity in a Kenaf Field

Jeju National University
kenaf-breeding field, Jeju,
Republic of Korea

LISA analysis [22]

Evaluation of Soybean Wildfire Prediction
via Hyperspectral Imaging

Kyungpook National University,
Daegu, Republic of Korea

Hyperspectral transmission
imagery, multispectral
camera, Python

[32]

Field road classification for GNSS recordings
of agricultural machinery using pixel-level
visual features

Beijing, China GNSS [46]

A New Procedure for Combining UAV-Based
Imagery and Machine Learning in Precision
Agriculture

Alma Mater Studiorum
University of Bologna,
Bologna, Italy

UAV, GIS, ML [45]

Cooperative Heterogeneous Robots for
Autonomous Insects Trap Monitoring System
in a Precision Agriculture Scenario

Campus de Santa Apolónia,
Bragança, Portugal UAV [49]

Drought Stress Restoration Frequencies of
Phenotypic Indicators in Early Vegetative
Stages of Soybean (Glycine max L.)

Rural Development
Administration,
LemnaTec, Germany

RGB images, Python [57]

Durian Farmer Adoption of Smart-Farming
Technology: A Case Study of
Chumphon Province

Kasetsart University,
Bangkok, Thailand IoT, UAV [76]

5. Barriers to Adapting New Technologies in Precision Agriculture

High-tech technologies from the fourth industrial revolution have the potential to
revolutionize the agriculture industry, enabling more efficient and sustainable practices
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while improving productivity and reducing resource wastage. The adaptation of these
intelligent, advanced technologies in precision agriculture is still in its early stages, and
as such, there exist several barriers (Table 3) that must be addressed to facilitate the
transformation of precision agriculture. However, it is essential to carefully consider the
specific requirements, challenges, and implementation considerations for each technology
in the context of the agricultural operation at hand.

A lack of interdisciplinary skills is one of the major roadblocks, as big data engineers,
data analysts, and data scientists do not have an agricultural background. On the other
hand, farmers with long experience and practical knowledge are not educated enough to
handle high technology like artificial intelligence [8]. The production and development
costs of high-tech applications and the capital for establishing them in real-world agriculture
are also high [78]. This high cost of the production and implementation of advanced
technologies may render them inaccessible to small-scale farmers, who may lack the
financial resources to invest in such technologies [79].

Furthermore, the unavailability of affordable technologies for small-scale farmers may
create a digital divide, where only large-scale, educated farmers may be able to benefit from
such technologies [20,80]. In the unequal distribution of resources in the world, it is difficult
for certain groups to reach for such new technological inventions. The implementation
of precision agriculture trends in many developing agricultural countries has become a
difficult task due to lack of necessary funds, lack of confidence in the technologies, lack of
proper infrastructure, lack of necessary resources, etc. [8,76,78,81]. Additionally, the lack of
sufficient energy in rural areas hinders the use of new technologies, even as science strives
to develop wireless power transfer methods and ambient or on-site energy-generating
methods [8]. Furthermore, low digital literacy and unequal accessibility to digital tech-
nologies in rural areas, coupled with connectivity issues, pose significant challenges in
establishing sustainable intelligent technologies in agricultural processes [20,79,82].

Limited computer power, storage capacity, and processing speed and high energy
consumption by batteries are some technical obstacles in precision agricultural adapta-
tions [43], especially when dealing with big data. In addition, collecting and analyzing
data from agricultural operations may raise concerns about data privacy and security [4].
These data are heterogenous and, when transferring and storing vast amounts, software
platforms from private companies are needed. This reveals some ownership controversies
of data [78]. Blockchain interoperability, privacy problems, data leakage, cyber terrorism,
and some nonrepudiation issues associated with big data are still difficulties in precision
agriculture [5,8,78,83], thereby causing farmers to be reluctant to share their data with
third-party service providers [4,16]. In many areas where agriculture is practiced, reli-
able internet connectivity, which is essential for collecting, transmitting, and analyzing
data, may not be readily available [7] and, thus, may affect the absorption capacities of
novel technologies [80].

The implementation of trending technologies requires technical expertise that may
be unavailable in some regions, leading to job displacement and unemployment as new
technologies increase the demand for highly skilled laborers while decreasing opportunities
for nonskilled workers. This has implications for both small-scale and family commercial
farmers [8,9,20,79]. To effectively use these technologies, farmers and service providers
may need training. However, different technologies may not be compatible with each other
or with existing agricultural machinery and equipment, which could limit the adoption
of advanced technologies in precision agriculture [2,8,84]. Furthermore, the presence of
bias and discrimination intertwined with information technology, education, risk-taking
attitudes, and western power structures constitute formidable obstacles, hindering the
equitable dissemination and advancement of smart-farming technologies, particularly
within developing nations [80,85]. This highlights the need for policies on data sharing that
cater to both the public and farming industries and are sufficient to ensure data security [20].
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Table 3. Advantages, limitations, and main applications of advanced technologies in precision
agriculture.

Advantages Limitations Main Applications

Big Data
Data-driven insights
Resource optimization
Enhanced decision making [1,78]

Robust data management
infrastructure
Data privacy and security
considerations
Challenges in integrating
heterogeneous data sources [8,78]

Crop yield forecasting
Disease and pest management
Precision agriculture
Predictive analytics
Farm management systems [1,6,8]

Machine Vision Technologies

Automated image capture and analysis
Enhanced efficiency
Reduction of reliance on manual labor
Precise monitoring of plant health

Dependence on high-quality images
Challenges in image interpretation
under varying lighting and
environmental conditions

Crop monitoring
Disease detection
Quality assessment
Plant phenotyping
Weed detection
Yield estimation [8]

IoTs (Internet of Things)

Real-time monitoring
Facilitation of data-driven decision making
Optimization of resource usage Early
detection of issues [78]

Requires reliable network
infrastructure
Data management and integration
challenges
Maintenance of hardware [8,16]

Precision agriculture
Smart irrigation systems
Livestock monitoring
Environmental sensing
Fishery management
Remote farm management [8,13,16,78]

Artificial Intelligence (AI)

Automation and predictive analytics of
decision support systems
Enhancment of crop management, disease
detection, and yield optimization [16,85]

Requires large data sets
Computational resources
Challenges in explainability and
interpretability of AI models

Crop yield prediction
Disease detection
Pest management
Image recognition
Mobile expert systems
Anomaly detection [8,85]

Machine Learning (ML)

Enables pattern recognition
Predictive modeling
Data analysis
Assists in crop disease diagnosis, yield
prediction, and recommendation
systems [6,14]

Requires labeled training data, model
training, and optimization Potential
bias in algorithmic decision
making [6,28]

Crop disease diagnosis
Yield prediction
Soil analysis
Yield optimization
Breeding optimization
Farm management systems [6,28,44]

Deep Learning

Complex pattern recognition
Analysis of large data sets
Suitable for image and signal processing
tasks, disease detection, and plant
phenotyping [25,31]

Requires substantial computational
resources
Large labeled data sets
Potential overfitting with limited
data [31,86]

Plant disease detection
Plant classification
Object recognition
Plant phenotyping
Image-based analysis [25,31,86]

Guidance Systems

Precise navigation and operation of
agricultural machinery
Reduces overlaps and optimizes resource
usage [47]

Requires accurate positioning systems
Potential dependency on external
signals
Challenges in complex terrains [78]

Precision agriculture
Automated field operations
Autonomous machinery
Variable rate application [34,47]

Blockchain Technologies

Provides transparency, traceability, and
secure data sharing in the agricultural
supply chain
Enables trust, verification, and fair
transactions

Scalability challenges
Energy consumption
Integration complexity

Supply chain management
Food traceability
Quality assurance
Fair trade [8,16]

Robotics and
Autonomous Systems

Enables automation, precision tasks, and
labor reduction
Assists in autonomous field operations,
weeding, harvesting, and data
collection [63,78]

Cost of implementation
Limited adaptability to changing field
conditions
Detection accuracy and technical
challenges in complex
environments [8,63]

Automated harvesting
Weeding
Field monitoring
Planting
Labor-intensive operations [8,34,63]

UAVs (Unmanned
Aerial Vehicles)

Remote sensing
Aerial imaging
Monitoring of large agricultural areas
Provides timely data collection
Improved field management
Cost-effective crop assessment [34,78,86]

Restricted flight regulations
Limited payload capacity Challenges
in data analysis and interpretation
Expensive and break easily [14,34]

Crop monitoring
Mapping
Aerial imaging
Precision agriculture
Disease detection [8,34,76]

Unmanned Ground Vehicles

Ground-level monitoring
Data collection
Field operations in various terrains
Assists in precision spraying, mapping,
and soil sampling

Limited mobility in challenging
environments
Dependence on stable terrain
conditions

Precision spraying
Soil sampling
Field mapping
Data collection [49,78,86]

High-Throughput Phenotyping

Facilitates rapid and non-destructive
measurement of plant traits and
characteristics
Enhances breeding programs, genetic
analysis, and crop improvement [56]

Cost of high-throughput phenotyping
platforms
Challenges in data interpretation
Standardization of measurement
protocols

Plant breeding
Crop improvement
Stress tolerance assessment
Genetic analysis
Trait selection [56,71]

Telematics

Enables real-time monitoring, tracking,
and data collection from vehicles
Enhances fleet management, route
optimization, and driver safety

Requires reliable connectivity
Potential data security concerns
Challenges in integrating with
existing vehicle systems

Fleet tracking
Logistics management
Fuel efficiency analysis
Predictive maintenance
Driver behavior monitoring [2]
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6. Future Developments Required

In recent years, the agricultural sector has recognized the potential benefits of adopting
new digital technologies. However, the slow rate of adaptation can be attributed to several
roadblocks and uncertainties associated with these advancements. Despite the challenges,
there is a growing demand for organic foods [78], leading to a shift from sustainable
agriculture to smart organic farming. To capitalize on this emerging opportunity, certain
steps need to be taken.

One crucial aspect is bridging the gap between expertise personnel and farmers. Pro-
viding better education, along with vocational training on novel technological applications,
can empower farmers to make effective use of new technologies [20,78]. Governments can
play a significant role by creating physical, economic, legal, and social infrastructure that
supports the establishment of precision agriculture. Investments in energy infrastructure
and communication infrastructure, internet connectivity, service markets, consultancy
services, and credit markets can instill trust and willingness among farmers to embrace
these technologies [2,20,81].

To further enhance precision agriculture, addressing the lack of professional agri-
cultural sensors is paramount. The design of high-quality, high-resolution, and reliable
sensors powered by the IoT that are specifically tailored for the agricultural production
environment and the monitoring of plant and animal physiological signs is essential [8].
Moreover, integrating wireless power transfer options can eliminate the need for frequent
battery replacements. However, special attention should be given to enabling underground
or underwater transmission capabilities [8]. At the same time, on-site energy generation
with renewable solar power or biogas energy can be considered comparatively to long
distance energy transfer [77]. Although capital investment is high for establishment, it is
more profitable than grid power.

Cross-technology communication is another crucial aspect that needs to be addressed.
Machine vision for animal monitoring, the development of smart phone applications for the
real-time tracking of spatial and temporal variations, and the utilization of 6G mobile net-
works are promising avenues for generating valuable data and informed decisions [34,83].
Additionally, the emergence of new agricultural systems such as smart hydroponics with
the IoT and advancements in breeding technologies with DL and ML technologies con-
tribute to the overall progress of precision agriculture.

Future advancements in precision agricultural technologies hold great promise for
the agricultural sector. Overcoming the existing roadblocks and uncertainties is essential
to unlocking the full potential of these technologies. By focusing on education, infras-
tructure development, sensor technology, communication systems, and novel agricultural
approaches, we can pave the way for a more efficient, sustainable, and productive future
in agriculture.

7. Conclusions

Precision agriculture, now part of Agriculture 4.0, harnesses the power of digitalization
for improved farming management. The integration of Industry 4.0 technologies has led to
notable trends, such as drones, GPS technology, data analytics, and artificial intelligence,
enabling informed decision making in farming practices. Despite these advancements,
achieving a fully integrated agricultural management system that comprehensively ad-
dresses the complexities of the field requires further studies and innovations. Crucially,
the development of adaptive and predictive information systems that effectively integrate
diverse data sources is essential for ensuring sustainable and intelligent precision agri-
culture. While precision agriculture offers numerous benefits, it also poses challenges for
its widespread adoption. The initial investment in technology, concerns related to data
privacy, and compatibility issues with existing farming systems can be significant barriers
for small-scale farmers. Moreover, the scalability and adaptability of these technologies to
different farming conditions may limit their applicability in certain regions. Overcoming
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these challenges necessitates the implementation of education and training programs to
equip farmers with the necessary skills to leverage these technologies effectively.

This review paper serves as a valuable resource for farmers and companies seeking
to adopt Industry 4.0 technologies in agriculture. By providing insights into IoT devices,
automation systems, data analytics, and precision-farming techniques, this paper fos-
ters awareness and understanding of the opportunities and challenges in smart farming.
Armed with this knowledge, companies can make informed decisions regarding technology
investments and strategic planning while promoting sustainable farming practices and
collaboration within the industry. By embracing Industry 4.0 technologies, farmers and
companies can enhance their agricultural operations, optimize resource utilization, and
contribute to the collective progress toward smart farming’s promising future.
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