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Abstract: With the rapid advancements in computer vision, using deep learning for strawberry
disease recognition has emerged as a new trend. However, traditional identification methods heavily
rely on manual discernment, consuming valuable time and imposing significant financial losses
on growers. To address these challenges, this paper presents BerryNet-Lite, a lightweight network
designed for precise strawberry disease identification. First, a comprehensive dataset, encompassing
various strawberry diseases at different maturity levels, is curated. Second, BerryNet-Lite is pro-
posed, utilizing transfer learning to expedite convergence through pre-training on extensive datasets.
Subsequently, we introduce expansion convolution into the receptive field expansion, promoting
more robust feature extraction and ensuring accurate recognition. Furthermore, we adopt the effi-
cient channel attention (ECA) as the attention mechanism module. Additionally, we incorporate a
multilayer perceptron (MLP) module to enhance the generalization capability and better capture the
abstract features. Finally, we present a novel classification head design approach which effectively
combines the ECA and MLP modules. Experimental results demonstrate that BerryNet-Lite achieves
an impressive accuracy of 99.45%. Compared to classic networks like ResNet34, VGG16, and AlexNet,
BerryNet-Lite showcases superiority across metrics, including loss value, accuracy, precision, F1-score,
and parameters. It holds significant promise for applications in strawberry disease identification.

Keywords: deep learning; strawberry disease identification; lightweight; BerryNet-Lite; attention
mechanism

1. Introduction

Strawberries are globally adored fruits, cherished for their vibrant color, distinctive
flavor, nutritional content, sweet taste, and versatility in culinary applications [1]. The
strawberry crop plays a vital role in the agricultural industry as it provides delicious and
nutritious fruits which are appreciated by people around the world. Nevertheless, the
susceptibility of strawberries to the environment and climate factors makes them highly
susceptible to a wide range of diseases. This poses significant challenges to the strawberry
industry and cultivation, as these diseases can lead to a reduced yield, lower quality of
fruits, and economic losses for farmers. Farmers can execute focused management tech-
niques, which ultimately result in enhanced crop health, increased production, and lower
economic losses. This is made possible by providing fast and precise disease identifica-
tion. In addition, the implementation of environmentally responsible disease management
strategies will contribute to the overall sustainability and environmental stewardship of
strawberry production. As a result, the detection of these diseases in a timely and accurate
manner is essential for the implementation of focused management strategies and the
guaranteeing of the long-term viability of strawberry production.
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The traditional methods for the identification of strawberry disease mainly depend
on manual observation and visual examination by trained professionals [2–4]. Despite its
familiar and widespread usage, cost-effectiveness, and suitability for experienced farmers
or agricultural professionals, these methods are limited to subjectivity and human error, are
time-consuming, and require expertise in disease recognition. With the advancements in ar-
tificial intelligence and computer vision, deep learning networks have become a promising
solution for strawberry disease recognition. They can learn complex patterns and features
from images, enabling accurate disease diagnosis [5]. However, the large and diverse
dataset for training, computationally intensive during training, and the high complexity of
the existing networks renders the efficient identification of strawberry diseases a formidable
task [6]. Therefore, it is necessary to identify and develop a suitable method for the adaptive
management of strawberry diseases.

Motivated by these challenges, in this paper, we propose BerryNet-Lite, a novel
lightweight network designed for the rapid and accurate identification of strawberry
diseases. We designed a lightweight model, rather than opting for a more complex, deep
network architecture based on several considerations: Firstly, BerryNet-Lite requires less
computational power, allowing them to run on devices without high computing capabilities,
such as mobile devices or remote monitoring systems in agricultural fields. This facilitates
broader deployment, especially in resource-limited environments. Secondly, although the
complexity of plant disease identification demands meticulous visual analysis, BerryNet-
Lite enhances processing speeds while maintaining accuracy through optimized network
structures and efficient convolution operations. Additionally, rapid processing is crucial
for real-time disease monitoring and timely intervention. Lastly, by employing advanced
technologies like dilated convolutions and efficient channel attention (ECA) mechanisms,
BerryNet-Lite effectively improves performance and generalization capabilities without
significantly increasing complexity. The strength of the proposed BerryNet-Lite framework
resides in its capability to provide immediate responses to strawberry diseases and pests,
thereby preventing their progression to more grievous stages. Our main contributions are
as follows:

(1) We have established a comprehensive synthetic dataset which covers the various
diseases of strawberries. We have carefully planned this dataset and provided a
multifunctional sample set for training and testing purposes.

(2) We designed the BerryNet-Lite framework, which combines migrant learning and ex-
pansion convolution, and finally forms a streamlined and efficient lightweight network.

(3) We innovatively combined efficient channel attention (ECA) modules with multi-layer
perception (MLP) to build a model of models. This method not only improves the
recognition performance of the network, but also provides greater adaptability in the
classification tasks.

(4) We conducted extensive and comprehensive experiments. These experiments finally
proved that BerryNet-Lite surpassed the existing most advanced methods on quanti-
tative and qualitative indicators.

The rest of the paper is organized as follows: Section 2 discusses related work; Section 3
introduces the materials and methods; Section 4 conducts experimental analysis; Section 5
is the discussion; and finally, Section 6 summarizes this article.

2. Related Work

The machine learning of strawberry diseases provides an automated, efficient ap-
proach to accurately identify and classify various diseases, reducing the reliance on human
resources and speeding up detection. This advancement enables agricultural producers
to implement timely prevention and treatment measures, minimizing losses and boosting
strawberry yield and quality. Significant advancements have already been achieved in
this field.
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Huang et al. [7] used computer vision to develop a machine learning method for the
early detection of anthracnose in strawberries. Feldmann et al. [8] created a mathematical
algorithm to classify strawberry shapes in digital images using an ordinal scale of primary
principal cluster numbers. Wu et al. [9] tapped into hyperspectral imaging to detect gray
mold on strawberry leaves, integrating spectral features, vegetation indices, and texture
features. Mahmud et al. [10] applied machine vision for identifying powdery mildew in
strawberry fields. While traditional machine vision methods have succeeded in disease
detection, their reliance on manually designed features specific to strawberry diseases leads
to unstable extraction and limited adaptability.

Deep learning offers a robust alternative. Li et al. [11] introduced the DAC-YOLOv4
model to detect infected strawberry leaves against complex backgrounds. Zhou [12]
utilized a Mask R-CNN technique for identifying bruises on strawberries under different
lighting conditions. Li et al. [13] proposed a transformer-based recognition method for
strawberry disease identification. Bhujel et al. [14] developed a semantic segmentation
model to detect and quantify grey mold in strawberries. Xiao et al. [15] designed a CNN-
based network for identifying diseases like leaf blight, grey mold, and powdery mildew.
Meanwhile, Dong et al. [16] explored an AlexNet-based method for strawberry disease
classification and identification. Lee et al. [17] established a data acquisition system to
amass a comprehensive dataset for training an integrated model to detect strawberry
diseases. Despite these advancements, knowledge gaps remain, often presented unclearly
in the literature without convincing argumentation.

Kim et al. [18] introduced a model for strawberry disease detection, suitable for
integration into automated robotic systems. Anagnostis et al. [19] used a convolutional
neural network to create a machine learning model for detecting leaf anthracnose disease.
Ma et al. [20] proposed a recognition algorithm for strawberry diseases based on deep
convolutional neural networks. Zhang et al. [21] designed the RTSD-Net model for real-
time strawberry detection under field conditions. Ilyas et al. [22] identified different
ripening stages of strawberries using deep learning. Yu et al. [23] developed a deep-
learning-based robot for automated strawberry cultivation. Afzaal et al. [24] proposed
a low-cost method for strawberry pest and disease detection using deep learning. Guo-
feng et al. [25] designed a rapid disease detection method during the strawberry planting
process using self-supervision. Kim et al. [26] developed a model for strawberry pest
classification and detection based on deep learning. Liao et al. [27] introduced a dual-
channel residual network with a multi-directional attention mechanism for detecting
strawberry leaf diseases.

Jaemyung et al. [28] introduced a deep-learning method for detecting strawberry
powdery mildew on leaves based on RGB images. Jiang et al. [29] utilized selected spectral
features to develop a machine learning-assisted method for the early detection of anthrac-
nose and gray mold diseases in strawberries using hyperspectral imaging. Justin et al. [30]
presented a 3D deep neural network for strawberry segmentation detection using modern
sensing technology. Zhou et al. [31] developed a robust structure based on Faster-RCNN
improvements for detecting strawberry quality. Liu et al. [32] introduced an early detection
discriminative model for strawberry anthracnose disease in indoor environments. Chen
et al. [33] proposed a real-time detection model for strawberry diseases based on YOLOv5
improvements. Hu et al. [34] utilized a class activation map to locate major lesion objects
and developed a lesion proposal convolutional neural network based on class attention.

In summary, significant progress has been made in strawberry disease recognition.
However, certain limitations still exist:

(1) The success of machine learning models largely depends on high-quality, well-
annotated datasets. Creating comprehensive datasets is crucial, yet many studies
lack access to such datasets and often rely on manually designed features specific to
particular diseases. This reliance leads to unstable feature extraction when conditions
change, such as variations in disease presentation or physiological changes in plants,
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thus limiting the robustness and scalability of the models. Training more adaptable
models requires a large amount of diverse data, which is a significant bottleneck.

(2) Although deep learning technologies offer a recognition method which does not
depend on manual feature design, these models typically require a large amount
of data for training. In many cases, acquiring a large-scale, well-annotated dataset
of strawberry disease images is challenging, limiting the training effectiveness and
ultimate performance of the models.

(3) Another issue with deep learning models is their high demand for computational
resources. The complexity of these models means that expensive hardware and con-
siderable computing time are required for training and execution, posing a substantial
barrier for resource-limited settings or implementing real-time recognition on mobile
devices.

(4) Existing methods have limited capabilities in real-time disease recognition. The rapid
identification of strawberry diseases is crucial for taking timely management measures
to reduce losses. However, due to the model processing speed or algorithm efficiency
issues, many technologies struggle to meet the needs for real-time or near-real-time
processing.

(5) Finally, both traditional and deep learning methods have limitations in their general-
ization capabilities. They may perform well on specific datasets, but their performance
will decline when applied to different environments or when encountering unseen
disease types. This issues of overfitting or insufficient generalization limits the models’
applicability and reliability. Therefore, constructing a lightweight network has become
a crucial breakthrough.

3. Materials and Methods
3.1. Data Sources

We employ a synthetic dataset comprising images of strawberry diseases, sourced
from both self-collection efforts and various publicly available datasets.

Our data collection and related experiments were conducted in a strawberry field
located in Xinxiang County, Henan Province, China (longitude: 113.895078, latitude:
35.231375). The actual area of the strawberry field is 5336 square meters. The experi-
ments and data collection were conducted with the permission and authorization of the
strawberry field owner. The work started on 5 March 2023, and ended around 27 December
of the same year. The experiments mainly focused on the Ventana variety grown in the
field. Manual photography was primarily used for data collection. Considering that some
contiguous areas had dense plantations and were susceptible to damage from trampling
during the concentrated ripening period, aerial photography using high-resolution imagery
from drones was employed as an auxiliary method. Our related work has resulted in the
creation of a comprehensive dataset on strawberry diseases. Interested readers can search
for files named “Strawberry-Disease-Dataset” on GitHub and download them.

Specifically, we utilize professional-grade equipment, including the Canon camera
(Canon Co., LTD. Chaoyang District, Beijing, China) and the DJIMini3 drone (Shenzhen DJI
Innovation Technology Co., LTD., Nanshan District, Shenzhen City, Guangdong Province,
China), to capture high-resolution images within a local strawberry orchard setting. Recog-
nizing the scarcity of such imagery, we complement our dataset by employing web crawler
techniques to gather additional images, as shown in Figure 1.
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The dataset comprises three prevalent diseases at various developmental stages: pow-
dery mildew, anthrax, and gray mold, as depicted in Figure 3.
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Figure 3. Strawberry disease species. Note: The columns from left to right represent the mature,
semi-ripe, and unripe stages under different disease conditions. From top to bottom, they depict
images at different maturation stages with no disease, powdery mildew, anthracnose, and gray mold,
respectively.

3.1.1. Attributes of the Dataset

Due to discernible variations in feature manifestations, we delineate the primary char-
acteristics of disease classification across different maturation stages, as shown in Table 1.

Table 1. Specific descriptions for the characterization of different diseases of strawberry.

Disease Category Feature Description

Healthy Overall normal appearance, uniform color, usually red
or normal color for the growth stage.

Powdery Mildew
White powdery appearance on the fruit surface,
accompanied by an uneven fruit color and covered with
a powdery substance.

Anthracnose Black spots on the fruit surface, spreading to cause fruit
rot, with colors ranging from dark brown to black.

Gray Mold Gray fuzzy spots on the fruit surface may lead to brown
soft rot, with a color ranging from gray-brown.
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3.1.2. Data Processing Methods

This paper employs data processing techniques to optimize the strawberry disease
dataset. Given the limited quantity of strawberry disease samples in real-world production
and the scarcity of corresponding public datasets, data augmentation techniques are utilized
to broaden the scope of the existing dataset. Specifically, this augmentation is accomplished
through two methods: inversion and rotation.

Image reversal involves horizontal and vertical strategies. Horizontal reversal treats
the image along the vertical axis, as shown in (1):

Ihorizontally(x, y, z) = I(xmax − x, y, z) (1)

where I represents the original image, (x, y, z) denotes the original coordinates of a particu-
lar point.

Vertical reversal disposes the image along the horizontal axis, as shown in (2):

Ivertically(x, y, z) = I(x, ymax − y, z) (2)

Image rotation allows for clockwise or counter-clockwise rotation, simulating different
image orientations. Rotation is typically represented by an angle to indicate the degree
of rotation. Image rotation includes counter-clockwise rotation and clockwise rotation, as
shown in (3):

IRotation(x, y, z) = I
(

x− xc cos(θ) + yc sin(θ)
cos(θ)

,
x− xc sin(θ)− yc cos(θ)

cos(θ)
, z
)

(3)

where (xc, yc, zc) are coordinates of the rotation center, with θ denoting the angle of rotation.
During the image capture process, variations in brightness and darkness are common

occurrences. Furthermore, public datasets often suffer from issues like unclear images and
a lack of distinctive data features. Consequently, we enhance image quality through three
approaches: contrast adjustment, chroma adjustment, and brightness adjustment. These
methods are aimed at improving the visual clarity of the images, rendering them more
suitable for analysis or further processing.

Contrast adjustment can enhance or reduce the brightness differences between differ-
ent regions, as shown in (4):

IContrast(x, y, z) = P + Scontrast × (I(x, y, z)− P) (4)

where P means the pixel value of the original image at the exact coordinates.
Chroma adjustment can enhance or reduce the color saturation of the image, playing a

role in adapting to color variations under different environments. It involves adjusting the
color components of each pixel in an image, as shown in (5):

IChroma(x, y, z) = I(x, y, z) + Scontrast × (I(x, y, z)− G(I(x, y))) (5)

where G(I(x, y)) is the grayscale value, indicating the brightness component at the exact
coordinates.

The brightness adjustment can adapt images to different lighting conditions. It in-
volves increasing or decreasing the brightness levels of all pixels in an image, as shown
in (6):

IBrightness(x, y, z) = I(x, y, z) + Sbrightness (6)

where S means the enhancement factor, which is utilized to adjust the strength of image
enhancement.

These techniques expand the disease dataset and widen the model’s recognition
capabilities. To illustrate the effects of enhancement, we selected strawberry images, as
depicted in Figure 4.
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We process the disease dataset by resizing images to 224 × 224 dimensions, allowing
the BerryNet-Lite model to more effectively discern image details and boost accuracy. We
also leverage the Torchvision library to augment the dataset [35–37]. Efforts are made
to normalize the classification data, balance sample distribution, minimize recognition
biases, improve generalization capabilities, and prevent network overfitting. After these
enhancements, the dataset is expanded to 7369 images, including 5895 in the training set
and 737 each in the test and validation sets, as detailed in Table 2.

Table 2. The classification data of strawberry diseases. “Original Data” represents the quantity of
unprocessed data for each classification, while “Split Data” represents the quantity of processed data
for each classification.

Classification Original Data Processed Data

Healthy 332 1874
Powdery Mildew 317 1849

Anthracnose 291 1778
Gray Mold 323 1868

All 1263 7369

3.2. Model of BerryNet-Lite
3.2.1. The Architecture of BerryNet-Lite

BerryNet-Lite is a lightweight neural network, integrating an inverse residual structure,
a linear bottleneck layer, and squeeze-and-excitation modules. The bottleneck architecture
comprises a 1 × 1 expand convolution layer, a 3 × 3 depthwise convolution layer, and
a 1 × 1 projection layer. We tailored the inverse residual structure for deep separable
convolution operations, enhancing efficiency. By positioning the final stage of the 1×1
expand layer outside the pooling layer, it allows the 1 × 1 layer to handle 1 × 1 feature
maps directly, boosting computational speed and minimizing latency. The architecture of
the network is shown in Figure 5.
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In our work, we selected BerryNet-Lite as the primary model for image recognition
using deep separable convolution (DSC), aiming for a balance between cost-effectiveness
and performance efficiency. DSC simplifies the convolution process into two sequential
operations, i.e., the depthwise convolution and pointwise convolution, optimizing the
computational requirements.

At the depthwise convolution stage, a convolution operation is executed on each
input channel using unique convolution kernels. Each input channel has a dedicated filter,
enabling independent convolution. The tensor output of DSC is shown in (7):

Yd(i, j, d) = ∑K
k=1 ∑K

l=1 X(i + k− 1, j + l − 1, d)×Wd(k, l, d) (7)

where X means the input feature map, Wd(k, l, d) is the weight at the k-th row, l-th column,
and d-th channel of the convolution kernel. The size of the kernel is K.

At the pointwise convolution phase, point-by-point convolution is applied to the
output, aiming to achieve the integration of channels. The output tensor of the point-by-
point convolution is shown in (8):

Yp(i, j, m) = ∑D
d=1 Yd(i, j, d)×Wp(d, m) (8)

where Wp(d, m) is the weight between the d and m channels of the point-by-point convolu-
tion kernel.

Ultimately, the output produced by DSC is identical to that of the pointwise convolu-
tion. The depthwise separable architecture endows BerryNet-Lite with a more streamlined
form, decreasing its complexity, diminishing the risk of overfitting, and enhancing its
ability to generalize. BerryNet-Lite utilizes a cross-entropy loss function to quantify the
discrepancy between its output and the true labels, as detailed in (9):

RCross−Entropy(y, y) = −∑I
i=1 yi × log(yi) (9)

where I is the number of categories in the dataset, and yi means the code of the true label
category. yi is the distribution probability of the label category.

RLoss is the average value of the loss function for each sample Rj, as shown in (10):

RLoss =
1
N ∑N

j=1 Rj(y, y) (10)

where N is the number of samples in the training set.
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We optimize the model by minimizing the cross-entropy loss function, integrating
regularization to constrain the parameters and curb the tendency towards overfitting. This
approach ensures that the prediction outcomes align more closely with reality, thereby
enhancing the precision.

3.2.2. Layers of BerryNet-Lite

BerryNet-Lite enhances accuracy by utilizing transfer learning, expanding its ca-
pability to generalize across a broader range and more effectively extract features after
processing through expanded convolution. This efficiency is achieved by upgrading the
3 × 3 convolution to a 5 × 5 convolution.

Input Layer: This layer normalizes data dimensions and processes the raw image for
initial feature extraction.

Convolutional Layer: The convolutional layers primarily consist of 3 × 3 depthwise
separable convolutions and 1 × 1 pointwise convolutions, with some layers using dilation
for enhanced feature extraction. Initially, a 224 × 224 image of strawberry disease is
processed to extract features using 3 × 3 dilated convolutions, resizing the image to
16 × 112 × 112 while increasing the channel count to 16. This downsizing improves the
model’s accuracy and reduces loss.

Pooling Layer: Pooling layers compress features to diminish the dimensions of the
feature matrix while retaining essential information and spatial structure, making the
model more efficient.

Fully Connected Layer: Here, features are learned comprehensively through fully
connected layers, transforming feature vectors effectively. Following a fully connected
layer which handles 1280 categories, a random dropout is applied to prevent overfitting.
An additional fully connected layer, designed for 4 classes, is then integrated to ensure
the nonlinear transformation of the model and facilitate specific disease classification. It
extracts crucial classification features, supporting subsequent decision-making.

Output Layer: This layer contains as many nodes as there are categories, with each
node corresponding to a classification. The SoftMax function is used to predict the proba-
bilities for each category, based on the feature distribution of the input, facilitating accurate
disease classification.

3.3. Transfer Learning and Dilated Convolution Processing

We utilized a transfer learning strategy to boost training speed, accelerate the conver-
gence process, and improve accuracy [38]. Transfer learning leverages the relationships
among different datasets and uses pre-trained parameters to train new data, effectively
decreasing the number of training steps, enlarging the dataset, reducing training dura-
tion, and preventing model overfitting [39]. The process of transfer learning is illustrated
in Figure 6.
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Initial training was conducted using the ImageNet dataset [40]. Subsequently, we
transferred the trained weights to BerryNet-Lite to enhance its generalization capabilities.
During the transfer learning phase, the MLP, ECA, and expanded convolutional layers
were frozen to preserve learned features.

To tackle semantic segmentation [41], dilated convolution was employed, mitigating
the information loss which typically accompanies subsampling and lower resolution. By
keeping the convolutional parameters constant, dilated convolution incorporates an addi-
tional parameter, known as the dilation rate, to expand the convolutional kernel’s receptive
field, as illustrated in (11):

ERi = ERi−1 + (k− 1)× S (11)

where k is the size of the convolutional kernel, and S is the stride.
BerryNet-Lite enlarges the receptive field by incorporating dilated convolutions and

augmenting the gaps within the convolutional kernel. Dilated convolution enables an
initial 3 × 3 convolutional kernel to have an expanded receptive field, such as 5 × 5 (with
a dilation rate of 2), thus avoiding down sampling [42]. Stacking multiple convolutional
kernels allows dilated convolution to offer multiscale information, considering the unique
receptive fields.

3.4. The Classification Head Design
3.4.1. Structure of the Classification Head

BerryNet-Lite methodically extracts features from simple to complex, with the con-
volutional layer identifying positional attributes of the image. After passing through the
fully connected layer, it is possible to extract both global upper and lower content. Our
proposed classification head design combines MLP and ECA to boost performance [43].
The MLP plays a role in identifying non-linear relationships within the channel attention
framework, whereas ECA ensures efficient channel interactions using fewer parameters and
less computational effort, thereby reducing the likelihood of overfitting. The classification
head design of BerryNet-Lite is depicted in Figure 7.
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BerryNet-Lite incorporates an MLP to boost recognition precision in complex classifi-
cations. The layer averages perceptions and captures the full distribution of input features,
revealing intricate details that could otherwise be overlooked. The non-linear activation
layer, utilizing the rectified linear unit (ReLU), enhances the representational power of
features. Thanks to the MLP’s relatively few parameters, the overall model size remains
manageable, thus improving recognition accuracy and the ability to generalize.

Additionally, it utilizes the ECA module, which includes an average pooling layer,
a 1 × 1 convolutional layer, and a sigmoid activation function [44]. This module adopts
a focused, local cross-channel interaction strategy to gather inter-channel interaction in-
sights [45]. By incorporating ECA, BerryNet-Lite effectively maintains dimensional in-
tegrity, boosting performance with a minimal increase in parameters.
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3.4.2. The Average Perception Learning Algorithm for MLP

BerryNet-Lite prioritizes a lightweight structure in contrast to traditional MLPs, which
are hindered by large parameter sizes and high computational complexity, challenging
efficient inference on resource-limited devices [46]. To overcome these limitations, we
introduce the average perception learning (APL) algorithm, designed to enhance MLP
efficiency by decreasing both the number of parameters and the computational load.

In the algorithm, it initializes the weight vector f , and the learning rate z in the
perception to 0. Subsequently, the training samples are randomly accessed in sequential
order. For each sample (xn, yn), f is used to predict the classification ŷn. The difference
between the expected sample and the actual sample is calculated yn − ŷn. If a classification
error occurs, f and z are updated based on the difference value, as shown in (12) and (13):

fi+1 = fi + z× (yn − ŷn)× xn (12)

zi+1 = zi + 1 (13)

After the updates are completed, the iteration count g is incremented by 1. If g reaches
the maximum iteration count gmax, the update loop terminates. Otherwise, it continues to
access the next sample, repeating the updating process. After the APL ends, to counteract
the impact of the random order, a final averaging is applied to the last weight vector f .

The final output yields the parameter F of the averaged perception model, as shown
in (14):

F =
f

gmax
=

fi + fi−1

g + 1
(14)

The APL algorithm iteratively refines the perception model by leveraging training
samples from the strawberry disease dataset [47]. Its objective is to progressively converge
upon and identify the most effective parameter settings, thereby reducing classification
errors. The pseudocode of is shown in Algorithm 1:

Algorithm 1. The APL algorithm

1:
Input : FIN =

{(
xg

i , yg
i

)}gmax

gi=1
; //input the training set, the maximum number of

generations is g
2: Initialize : fi = 0; zi = 0, gi = 0; //initialize weight vector
3: for (i = 0, i < gmax, i ++ )
4: FNew

IN ← RandOrder(FIN) ; //Randomly order the samples in training set F;
5:

{
xNew

i , yNew
i

}
← Extract

(
FNew

IN
)

; //Sample extraction
6: ŷg

i ← Predict
(
yNew

i
)

; //Predicting sample
7: if (gi < gmax ){
8: fi+1 = fi + zi ×

(
yg

i − ŷg
i

)
xg

i ; //Updating the weight vector

9: zi+1 = zi + 1; //Updating the learning rate
10: gi+1 = gi + 1; //Calculate the number of iterations
11: FNew

OUT =
fi+1
gi+1

; //Calculate the output result
12: else
13: continue;
14: endif
15: FOUT ← FNew

OUT ;
16: end for
17: Output : FOUT

3.4.3. The Feature Fusion Algorithm Based on ECA and MLP

ECA effectively enhances channel interactions, while MLP excels at identifying non-
linear relationships between channels. By integrating both, we transcend the constraints
of conventional feature fusion techniques, enabling a more thorough capture and use
of information from input data, thus augmenting the model’s ability to represent data.
BerryNet-Lite incorporates MLP to improve feature utilization and employs ECA to capture
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global correlations, targeting a significant boost in overall performance. The coefficients
employed by the MLP module are detailed in (15):

hMLP(x) = σ(W2 × R(W1 × x + b1) + b2) (15)

where x represents the input feature, W and b denotes the weight matrix and bias in terms
of the corresponding layer, and σ is the activation function. The coefficients utilized by the
ECA module are shown in (16):

hECA(x) = σ(β× φ(x) + υ) (16)

where β and φ are the learned vectors, while υ is the attention weight.
We use hMLP(x) and hECA(x) to represent the overall features extracted by MLP and

ECA, respectively. Since each feature interprets the same disease differently, some features
may pinpoint the disease accurately, while others might cause significant misinterpretations
or lead to unclear classification outcomes [48]. To address this, we implement a multi-layer
network fusion mechanism at the output end of each feature network, applying targeted
enhancement or suppression to each original output feature. Subsequently, dot product
fusion aggregates these features, enabling a collaborative process that boosts recognition
performance. The dual-feature fusion methodology comprises three key components:
weighted addition, dot product fusion, and multilayer feature output, detailed in (17):

hCov(x) =

(
m

∑
i=1

λihi
MLP(x) + 1

)
+

(
n

∑
j=1

µjh
j
ECA(x) + 1

)
(17)

Weighted addition introduces trainable weights, λ and µ, to each element of the fea-
tures. These weights are applied to the original outputs to either amplify or diminish the
model’s recognition abilities [49]. The weighted outputs are then combined to produce
a scalar value, which quantifies the neural network model’s effectiveness based on this
weighted multiplication. Dot product fusion executes a dot product operation on the aggre-
gated feature weights derived from the preceding step. This process leverages multiple sets
of dot product fusion results in the multilayer feature output as the ultimate fusion output.
The abundance of fusion result sets correlates directly with a more robust representation of
the recognition capacity. Within the dual-stream fusion framework [50], features extracted
through the multilayer perception and attention mechanisms are fed into the BerryNet-Lite
model. The feature fusion is conducted as specified in (17), subsequently linking to the fully
connected layer for the classification task. The procedure of the feature fusion algorithm is
shown in Algorithm 2:

Algorithm 2. Feature fusion algorithm

1: Input: Fi(x) //Strawberry disease data
2: for (i = 1; i ≤ n; i ++)
3: Qdisease[ ]← Frame(Fi(x))//Data set framing based on the disease
4: if (is-disease-recognized)
5: MLP(x)← σgraphic_anchor(Qdisease[ ]) //Mark the MLP module feature
6: ECA(x)← σ(channel×graphic)_anchor(Qdisease[ ]) //Mark the attention module feature
7: Identi f y(MLP(x)&ECA(x)) //Determine confidence graph, channel, frame
8: hMLP(x) ← MLP

(
Matrix

(
hi

MLP(x)

))
//MLP characteristic training

9: hECA(x) ← ECA
(

Matrix
(

hj
ECA(x)

))
//ECA feature training

10: CovMLP(x) ← hMLP(x) + 1 //MLP feature convolution processing
11: CovECA(x) ← hECA(x) + 1 //Attention channel feature convolution processing
12: hCov(t) = CovMLP(x) + CovECA(x)//Feature convolution fusion
13: else
14: continue
15: endif
16: end for
17: Output hCov(x)//Output fusion feature
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4. Results

We utilized Python 3.7 and CUDA 11.6 within the PyCharm 2022 to build our model,
operating on a 64-bit CentOS Linux 7 OS. The hardware setup included an Intel Xeon(R)
Gold 6248R CPU and a Tesla V100S PCIE 32 GB GPU. We extensively used the PyTorch
framework and the Torchvision library, along with other image processing tools. This
feature allowed for the real-time construction, modification, and debugging of our model,
facilitating the development of an efficient strawberry disease recognition system. The
specific parameter settings are detailed in Table 3.

Table 3. BerryNet-lite model parameter settings.

Parameter Name Value Parameter Name Value

Data_size 224 × 224 Dropout 0.2
Momentum 0.9 Loss Function Cross Entropy

Epoch 120 Depthwise Separable Layer 15
Learning Rate 0.001 Conv layer 18

Batch_size 8 Conv Kernel 3 × 3, 5 × 5
Height_stride 1 Feature Dimension 1024
Width_stride 1 Inverted Residual Block Activation Function H-Swish

Optimizer AdamW Hidden Layer Activation Function ReLU

4.1. Evaluation Indicators

On the strawberry disease dataset, we evaluated the performance of BerryNet-Lite
using metrics such as recall, precision, loss value, accuracy, and F1 score. The term “true
positive” (TP) refers to the count of samples where the actual positive instances are correctly
identified as positive. “False negative” (FN) signifies the instances where positive cases are
mistakenly classified as negative. “False positive” (FP) is used for instances where negative
cases are wrongly labeled as positive. “True negative” (TN) denotes the instances where
negative cases are accurately classified as negative.

Accuracy serves as a metric for gauging a classification model’s performance, indicating
the ratio of correctly predicted samples by the model to the overall sample count. This is
depicted in (18):

Accuracy =
TP + TN

TP + TN + FP + FN
(18)

Precision is a metric used to measure the accuracy of a classification model, reflecting
the percentage of samples correctly identified as positive out of all the samples predicted to
be positive by the model, as illustrated in (19):

Precision =
TP

TP + FP
(19)

Recall, also referred to as the Sensitivity or True Positive Rate, is a performance metric
for classification models. It quantifies the percentage of true positive samples accurately
identified by the model out of all actual positive cases, as detailed in (20):

Recall =
TP

TP + FN
(20)

The F1 Score is a metric which merges precision and recall, offering a comprehensive
evaluation of performance. It calculates the harmonic mean of precision and recall, serving
to evaluate the model’s positive predictive value alongside its capability to accurately
identify positive cases, as shown in (21):

F1 =
2Precision× Recall
Precision + Recall

(21)
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The value of the loss function primarily reflects the disparity between the number of
correctly identified samples and the total number of samples, as demonstrated in (22):

Loss =
−1
n
×∑ (α× log hα_hat + (1− α)× log(1− hα_hat)) (22)

where n denotes the total number of samples, hα_hat represents prediction for the positive
class, α denotes the ground truth, and log is the natural logarithm function.

4.2. Ablation Experiment

BerryNet-Lite consists of the basic network module (BerryNet), core components
such as ECA and MLP, and key technologies including transfer learning (TL) and dilated
convolution (DC). To assess the importance of each part of BerryNet-Lite, we conducted
ablation studies.

Through ablation experiments, the efficacy of BerryNet-Lite is further validated. Under
identical conditions, the enhanced modules are sequentially incorporated, and the values
of various metrics are utilized to demonstrate the performance at different improvement
stages. The results are shown in Figure 8.
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Figure 8. Improved network model of accuracy and loss. (a) Accuracy rate; (b) Loss value. “TL”
denotes transfer learning, “DC” signifies dilated convolution.

The experiments demonstrate that the introduction of transfer learning significantly
improved the model’s accuracy from 94.5% to 98.2% while reducing the loss value from
0.2441 to 0.1261. Following the incorporation of ECA, a notable acceleration in the con-
vergence speed was observed, along with a 0.46% increase in accuracy. Furthermore, the
application of dilated convolution boosted the model’s accuracy to 99.08%. Finally, through
the integration of the MLP module, it achieved a final accuracy of 99.45%, accompanied by
a reduction in the loss value to 0.0905. The results of ablation experiments are presented
in Table 4.

Table 4. Results of ablation experiments that presents the optimal training outcomes of the model
across different metrics.

Method Loss Accuracy
(%)

Precision
(%)

Recall
(%) F1 (%)

BerryNet 0.2441 94.47 92.70 95.98 94.30

BerryNet + TL 0.1261 98.16 96.51 93.09 94.76

BerryNet + TL + ECA 0.1458 98.62 97.37 93.96 95.64

BerryNet + TL + ECA + DC 0.1409 99.08 97.87 95.83 96.84

BerryNet + TL + ECA + DC
+ MLP (BerryNet-Lite) 0.0905 99.45 97.96 97.91 96.90
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In transfer learning, applying the method to a task different from the original one
introduces distinct features to the feature extractor of BerryNet, resulting in a decrease
in the recall rate. However, upon integrating ECA as an attention mechanism, the model
demonstrates a significant improvement in both accuracy and precision. Compared to
BerryNet, the accuracy and precision notably increase by 4.15% and 4.67%, respectively.
Subsequent methods, such as dilated convolution and the addition of an MLP, show a
certain degree of improvement in mitigating this phenomenon induced by transfer learning.

Finally, integrating all the improvement methods into BerryNet results in a decrease
of 0.1536 in the loss value and increases of 4.98%, 5.26%, 1.93%, and 2.6% in accuracy,
precision, recall, and F1 score, respectively. Thus, by combining the enhancements from
the aforementioned methods, the recognition performance of the BerryNet-Lite model for
strawberry disease has been optimized compared to the original model.

4.3. Generalization Experiment

To evaluate the generalization capability of the BerryNet-Lite model, we conducted a
comparative analysis of accuracy and loss rates across the training and testing sets of the
strawberry disease dataset. This experiment involved a dataset consisting of 506 images,
including 137 images of regular strawberries, 125 images of powdery mildew, 113 images
of anthracnose, and 131 images of gray mold. The training set, which accounted for
80% of the total dataset, comprised 406 images sourced from our self-constructed dataset.
The remaining 10% of the dataset, comprising 50 images, was utilized as the testing and
validation set. The results are shown in Figure 9.
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Figure 9. Comparison of the accuracy rate. (a) presents the line graph of the model’s performance on
the strawberry disease dataset after 120 iterations; (b) shows the line graph after 70 iterations on the
self-constructed dataset. “Train-Accuracy” represents the training set accuracy and “Val-Accuracy”
represents the validation set accuracy.

The curves of the training and validation sets demonstrate that the model swiftly
converges on the strawberry disease dataset with minimal fluctuations. In contrast, the
curve on the dataset constructed for this experiment exhibits more pronounced volatility
compared to the original dataset. Nevertheless, the accuracy of the BerryNet-Lite model
increases with the number of training iterations on both datasets. The loss values on both
training and testing sets are illustrated in Figure 10.
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Figure 10. Comparison of loss value. (a) depicts the line graph of the model’s performance on the
strawberry disease dataset after 120 iterations; (b) shows the line graph after 70 iterations on the
self-constructed dataset. “Train-Loss” represents the training set accuracy and “Val-Loss” represents
the validation set accuracy.

4.4. Classification Experiment

In this work, the gradient-weighted class activation mapping (Grad-CAM) technique
was applied, directing arbitrary target gradients into the final convolutional layer to gen-
erate a coarse localization map [51]. This map emphasizes crucial areas leveraged by the
model for predictions. Utilizing Grad-CAM, a feature attention visualization heatmap was
produced, vividly showcasing the feature extraction process and highlighting nuanced
details within image features. Figure 11 displays the resulting heatmap, offering a visual
insight into the model’s predictive focus.

Agriculture 2024, 14, x FOR PEER REVIEW 18 of 26 
 

 

details within image features. Figure 11 displays the resulting heatmap, offering a visual 
insight into the model’s predictive focus. 

(a) (b)

(c) (d)
 

Figure 11. Visual heat map of feature attention. (a) Healthy; (b) Powdery Mildew; (c) Anthracnose; 
(d) Gray Mold. 

Image analysis reveals that diseased portions of strawberries are characterized by 
darkness and emitted brightness, along with unusual colors that signify performance in 
specific areas. The intensity of focus on these regions is symbolized by the color red. Fol-
lowing the integration of the ECA mechanism, the BerryNet-Lite model shows increased 
attention to the features related to strawberry disease during the feature extraction process 
[52]. The visualization heatmap, produced through this technique, further supports effec-
tiveness in classifying and identifying strawberry diseases. 

This study conducts an independent verification of the model’s accuracy in classify-
ing strawberries into four categories: healthy, powdery mildew, anthracnose, and gray 
mold, utilizing the strawberry disease validation set. The Python code is used to produce 
the validation results. In the outcomes generated, “class” refers to the name of the specific 
disease classification, and “prob” indicates the accuracy of the refined model in each re-
spective classification. These validation outcomes offer vital insights into the model’s per-
formance and its ability to classify diseases, aiding in a more comprehensive evaluation 
and enhancement of the model. The specific results are illustrated in Figure 12. 

Figure 11. Visual heat map of feature attention. (a) Healthy; (b) Powdery Mildew; (c) Anthracnose;
(d) Gray Mold.

Image analysis reveals that diseased portions of strawberries are characterized by
darkness and emitted brightness, along with unusual colors that signify performance in spe-
cific areas. The intensity of focus on these regions is symbolized by the color red. Following
the integration of the ECA mechanism, the BerryNet-Lite model shows increased attention
to the features related to strawberry disease during the feature extraction process [52]. The
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visualization heatmap, produced through this technique, further supports effectiveness in
classifying and identifying strawberry diseases.

This study conducts an independent verification of the model’s accuracy in classifying
strawberries into four categories: healthy, powdery mildew, anthracnose, and gray mold,
utilizing the strawberry disease validation set. The Python code is used to produce the
validation results. In the outcomes generated, “class” refers to the name of the specific
disease classification, and “prob” indicates the accuracy of the refined model in each
respective classification. These validation outcomes offer vital insights into the model’s
performance and its ability to classify diseases, aiding in a more comprehensive evaluation
and enhancement of the model. The specific results are illustrated in Figure 12.
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4.5. Comparative Experiment

Comparative experiments are specifically designed to assess and compare the per-
formance of distinct models. In this paper, we utilize the strawberry disease dataset to
compute the performance of BerryNet-Lite model. We train both widely recognized models
and the BerryNet-Lite model across several measures to highlight the superior performance
of the proposed model.

To further establish BerryNet-Lite’s predominance, it is benchmarked against five other
models: AlexNet [53], VGG16 [54], ResNet34 [55], MobileNetV2 [56], and MobileNetV3 [57].
The reconfigurations of these parameters are delineated in Table 5.

AlexNet and VGG16 possess complex architectures with numerous convolutional
and fully connected layers, tailored for extensive image classification tasks. Conversely,
BerryNet-Lite is designed with a focus on lightweight structures, optimizing it for environ-
ments limited by computational resources. ResNet34 introduces a novel approach with its
residual blocks and skip connections, ensuring seamless information flow across layers—a
distinct difference from BerryNet-Lite’s application of depthwise separable convolution.
MobileNetV3 incorporates the SE attention mechanism, offering a contrast in feature ex-
traction efficiency to BerryNet-Lite’s implementation of the ECA attention mechanism.
MobileNetV2, a precursor to MobileNetV3, also adopts depthwise separable convolution,
but relies on ReLU for activation. Each model brings unique attributes to the table, demon-
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strating remarkable capabilities in various settings. The performance of these models, in
terms of accuracy and loss on the strawberry disease dataset, is illustrated in Figure 13.

Table 5. Comparison of network parameters.

Network Parameters Value

AlexNet

Hidden layer 3
Conv layer 5

Max-pooling layer 2
Conv kernel 3 × 3, 5 × 5, 11 × 11

Feature dimension 4096
LRN Layer 5

ResNet34

Hidden layers 28
Conv layer 34

Max-pooling layer 4
Conv kernel 1 × 1, 3 × 3, 7 × 7

Feature dimension 2048
Residual connections layer 2

VGG16

Hidden layers 3
Conv layer 16

Max-pooling layer 5
Conv kernel 3 × 3

Feature dimension 4096

MobileNetV2

Depthwise separable layer 20
Conv layer 30

Conv kernel 3 × 3
Feature dimension 1280

MobileNetV3

Depthwise separable layer 15
Conv layer 20

Conv kernel 3 × 3
Feature dimension 1024
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Figure 13. Comparison of accuracy rate and loss value. (a) Accuracy rate; (b) Loss value.

The graph above demonstrates that BerryNet-Lite consistently outperforms other
models on the strawberry disease dataset, achieving higher accuracy and lower loss values.
A thorough comparison of crucial metrics, including loss, accuracy, precision, F1 score, and
model parameters, is provided in a tabular format in Table 6.

The comparative data accentuates BerryNet-Lite’s pronounced advantage in terms
of parameter count, with only 2.87 million parameters, thereby underscoring the mer-
its of lightweight neural network design. Despite a slight dip in precision relative to
ResNet34 and a lower recall compared to MobileNetV2 and AlexNet, its F1 score surpasses
all other models assessed. This discrepancy highlights BerryNet-Lite’s superior overall
performance capability.
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Table 6. Comparison of Different Models. The table presents the optimal training outcomes of the
model across different metrics.

Method Loss Accuracy (%) Precision (%) Recall (%) F1 (%) Params

AlexNet 0.1511 98.35 94.55 98.08 96.28 14.59 M
ResNet34 0.1398 98.90 98.21 96.49 97.34 21.80 M
VGG16 0.2350 96.70 96.76 96.74 96.74 134.28 M

MobileNetV2 0.2065 97.25 92.16 97.92 94.95 3.47 M
MobileNetV3 0.2441 96.77 92.70 95.98 94.31 2.54 M
BerryNet-Lite 0.1261 99.45 97.96 97.91 97.93 2.87 M

In summary, BerryNet-Lite distinguishes itself through high accuracy, parameter effi-
ciency, and comprehensive performance excellence. Minor disparities in specific evaluation
metrics with other models do not significantly detract from its overarching efficacy in
strawberry disease detection. The following confusion matrix, resulting from disease
classification efforts, illustrates both the precision and the challenges in accurately iden-
tifying individual diseases by BerryNet-Lite, alongside comparisons with MobileNetV3,
MobileNetV2, ResNet34, VGG16, and AlexNet.

The confusion matrix, as depicted in Figure 14, outlines the recognition results, with
rows indicating predicted categories and columns showing actual categories. Diagonal
elements represent the likelihood of accurately identifying disease classifications, while
off-diagonal elements reflect the chances of misclassification. The confusion matrix demon-
strates that BerryNet-Lite achieves greater accuracy in identifying diverse disease classi-
fications compared to other models. This observation strongly supports the efficacy of
BerryNet-Lite in strawberry disease recognition.
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5. Discussion

This study introduces BerryNet-Lite, a convolutional neural network tailored for
the precise identification of strawberry diseases. Given the scarcity of publicly available
datasets for such specialized applications, we meticulously crafted a comprehensive dis-
ease dataset, covering various growth stages of strawberries for thorough experimental
validation. BerryNet-Lite minimizes the reliance on expensive computing resources with
its automated feature extraction and lightweight network design.

For the classification head design, ECA and MLP modules are integrated. These
modules significantly enhance the model’s ability to identify subtle differences in straw-
berry diseases, especially when dealing with visually similar symptoms. The ECA module
adjusts channel weights of convolutional layer outputs, enhancing the model’s focus on
key features in images. This channel-level attention mechanism enables the model to more
precisely pinpoint disease features, improving diagnostic accuracy even in visually similar
disease states. Additionally, the MLP module, as a fully connected network layer, performs
nonlinear transformations after feature fusion, enhancing the model’s learning capacity
from raw inputs to final outputs. This nonlinear processing of deep features is crucial for
distinguishing subtle differences between complex disease progression stages and similar
symptoms. Through the combination of ECA and MLP, the BerryNet-Lite model not only
improves overall accuracy in strawberry disease recognition, but also enhances its ability to
differentiate between disease types and stages which are visually challenging to distinguish.
This technological innovation provides robust support for achieving rapid and accurate
monitoring and management of strawberry diseases.

However, BerryNet-Lite also has limitations. For example, the training and testing
primarily rely on datasets collected from specific regions, potentially affecting its applica-
bility and effectiveness in different global regions. Additionally, while the model generally
exhibits good recognition ability for most strawberry diseases, further validation of its
performance is needed for identifying certain rare or specific disease stages.

6. Conclusions

This paper introduces BerryNet-Lite, a lightweight neural network for the precise iden-
tification of various strawberry diseases. Utilizing a comprehensive dataset encompassing
strawberries at different maturity levels and afflicted with a range of diseases, the model
employs transfer learning to accelerate convergence speed via pre-training and integrates
dilated convolution to enhance the accuracy of feature extraction. Additionally, it incorpo-
rates the efficient channel attention (ECA) mechanism to establish an attention module and
develops a multi-layer perception (MLP) algorithm to improve generalization capability
and capture the abstract features of diseases. A novel classification head design, combining
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ECA and MLP, has also been implemented. Extensive experiments have demonstrated the
efficiency and effectiveness of BerryNet-Lite in the domain of strawberry disease recogni-
tion, benefiting from its innovative approach which merges multiple perception modules,
dilated convolution, and lightweight attention mechanisms. This synergy reduces model
complexity while enhancing performance metrics such as accuracy, recall, and precision,
and lowering loss rates.

This paper provides a novel tool for the efficient recognition of strawberry diseases,
and opens new avenues for utilizing deep learning technology to improve disease iden-
tification in agriculture. Moving forward, BerryNet-Lite is set to be applied to a wider
range of crop diseases, aiding in the automation and intelligent management of agricultural
production. Future research should prioritize enhancing the resilience and adaptability of
disease recognition models under varying environmental conditions, lighting conditions,
and disease severities.
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APL Average Perception Learning
BN Batch Normalization
DSC Deep Separable Convolution
DW Depth-Wise
ECA Efficient Channel Attention
FN False Negative
FP False Positive
MLP Multi-Layer Perceptron
PW Point-Wise
TL Transfer Learning
TN True Negative
TP True Positive
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