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Abstract: Anthocyanins are precious industrial raw materials. Purple corn is rich in anthocyanins,
with large variation in their content between organs. It is imperative to find a rapid and non-
destructive method to determine the anthocyanin content in purple corn. To this end, a field
experiment with ten purple corn hybrids was conducted, collecting plant images using a digital
camera and determining the anthocyanin content of different organ types. The average values of
red (R), green (G) and blue (B) in the images were extracted. The color indices derived from RGB
arithmetic operations were applied in establishing a model for estimation of the anthocyanin content.
The results showed that the specific color index varied with the organ type in purple corn, i.e., ACCR

for the grains, BRT for the cobs, ACCB for the husks, R for the stems, ACCB for the sheaths and BRT for
the laminae, respectively. Linear models of the relationship between the color indices and anthocyanin
content for different organs were established with R2 falling in the range of 0.64–0.94. The predictive
accuracy of the linear models, assessed according to the NRMSE, was validated using a sample size
of 2:1. The average NRMSE value was 11.68% in the grains, 13.66% in the cobs, 8.90% in the husks,
27.20% in the stems, 7.90% in the sheaths and 15.83% in the laminae, respectively, all less than 30%,
indicating that the accuracy and stability of the model was trustworthy and reliable. In conclusion,
this study provided a new method for rapid, non-destructive prediction of anthocyanin-rich organs
in purple corn.

Keywords: purple corn; anthocyanin; digital photography; image analysis

1. Introduction

Anthocyanins are natural pigments with a wide range of colors and represent a major
subclass of polyphenols/flavonoids [1]. Such pigments are widely found in natural plants,
playing a critical role in alleviating the effect of biotic and abiotic stresses [2–6]. They are
also used widely in the food, pharmaceutical and cosmetics industries due to their natural,
non-toxic and antioxidant properties [7–10]. As reported, the global market of flavonoids
is valued at USD 1.06 billion by 2025, and anthocyanins account for the majority of this
share [11]. In the foreseeable future, the demand for anthocyanins in industry will continue
to grow [12,13].

The most common way to obtain anthocyanins is to extract them from different plant
sources, such as fruits and flowers, but the economic benefit of this is low since such
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materials are costly [14–16]. Extracting anthocyanins from agricultural by-products such
as fruit crops is considered to be a cost-effective method [17,18]. Among them, purple
corn (Zea mays L.) has attracted significant attention due to the abundance of anthocyanins
in its non-grain tissues, such as the cob, in addition to the grain [19,20]. Nevertheless,
the procedure of measuring anthocyanin content is cumbersome, as it involves isolating
and grinding plant tissues, then the chemical extraction of anthocyanins and analysis of
absorbance values or chromatography [14]. It is fairly tedious and costly if many samples
are considered in practice [21]. Hence, it is essential to find a simple, convenient method
for rapidly estimating the anthocyanin content in different organs in purple corn.

Digital images acquired using sensors such as RGB, multispectral, hyperspectral,
thermal infrared and LiDAR have been widely used in monitoring plant height, leaf area
indices and plant nutrients [22,23]; the detection of pests and disease [24,25] and the
prediction of crop yield [26]. Recently, studies have shown that the color parameters of
digital images acquired using RGB cameras can be used to predict the pigment content in
plant tissues, such as their content of chlorophyll and anthocyanins [27–29]. In addition, a
chlorophyll quantification system based on images from digital cameras such as smartphone
and digital single-lens cameras was developed to accurately quantify the chlorophyll
content of Chlamydomonas, quinoa and amaranth leaves in situ [30,31]. It has been
reported that the color indices of RGB channel values are significantly correlated with the
pigment content, indicating that modeling based on such relations is feasible [32–34].

To our knowledge, the anthocyanin content in plant tissues has been estimated using
digital images only in black rice [35], sugar maple [36] and some flowers from Spain,
including Borago officinalis L., Malva sylvestris L., Orchis italica Poir. and Silene littorea
Brot [28]. Thus far, there has been no report on purple corn plants. Within this context, we
carried out a field study with 10 purple corn hybrids to phenotype the anthocyanin content
of various types of organs. Thus, the aim of this study was to (i) examine the relationship
between the anthocyanin content in different organs and the color indices of visible light
images; (ii) determine the optimal color index for modeling different organs of purple corn
and (iii) evaluate the stability of the established predictive model.

2. Materials and Methods
2.1. Plant Materials and Sampling

Ten hybrids of purple corn were sown on 12 June 2022 at the experimental station
of Anhui Agricultural University, Hefei (31◦86′ N, 117◦25′ E, altitude = 27.05 m), Anhui
Province, China. We carried out a comparison with the findings in Wang et al. (2022)
on meteorological data from different locations in Huaibei Plain, Anhui Province, for
61 years [37]. Among them, the range of Tmax is 29.97–32.94 ◦C, while the range of Tmin
is 20.99–25.08 ◦C, and the range of Tmean is 25.04–28.59 ◦C. Our data are consistent with
the historical law of this region with similar climate attributes (see Figure S1 and Table S1).
Therefore, it can be considered a typical year.

The soil at the experimental field was a yellow brown type with medium fertility. The
planting density was 52,500 plants·ha−1, with 60 cm spacing between rows. A random
complete block design was adopted with 3 replicates for each variety. Fertilizer was applied
with a mixture of urea, calcium superphosphate and potassium sulfate, adding up to
60.0 kg·ha−1 of P2O5, 75.0 kg·ha−1 of K2O, 187.5 kg·ha−1 of pure nitrogen and one-third
nitrogen fertilizer as the base fertilizer, and the rest of the nitrogen fertilizer was applied
at the big-flare stage. Field management was carried out by following conventional field
cultivation techniques. Because previous studies found that anthocyanins are the main
cause of plant coloration [38,39], in order to obtain the maximum range of color variation,
we focused on the anthocyanin-rich organs of purple corn (Table 1). In this paper, purple
corn plants of different hybrids at vegetative stages (V12–VT) and reproductive stages
(R1–R4) in the experimental field were retrieved, and the organs rich in anthocyanins were
decomposed, photographed and numbered.
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Table 1. Information on various organs containing anthocyanins in 10 hybrids.

Variety Organ with Anthocyanins Growth Period

SGHN Grain, Cob, Husk, Stem, Sheath, Lamina 85 days
ZZN8 Grain, Cob, Husk, Stem, Sheath, Lamina 85 days
JHN3 Grain, Cob, Husk 85 days

HTN168 Grain, Cob, Husk 85 days
SD31 Grain, Cob, Husk 86 days

HTN520 Grain 80–85 days
TNBM508 Grain 85 days
TNHB509 Grain 85 days

JZXN Grain 80–85 days
HZHN1 Grain 90 days

2.2. Digital Image Acquisition and Preprocessing

The procedure for acquiring and standardizing the digital images is shown in Figure 1.
First, we used a Canon EOS M50 Mark II camera (Canon Corporation, Tokyo, Japan) equipped
with an EF-M 14–45 mm autofocus lens (transmitting wavelengths of 370–700 nm). This
camera has a 22.3 × 14.9 mm CMOS sensor (6000 × 4000 pixels) and shows full regulation of
exposure and metering, as recommended for unbiased data acquisition [40]. We manually
adjusted these settings for all the samples: a shutter speed of 1/40, a lens aperture of f/3.5,
ISO 100, and white balance fixed at 4500 k. The photos were underexposed by +1.7 to
prevent color “clipping” or saturation, and we used a uniform illuminance of 500 lx light for
illumination [41]. The images were taken in canon RAW format (CR3) because RAW files
of unprocessed images can be linearized using specialized software. For the acquisition of
images of each organ of the purple corn plants, each sample in this study was photographed
using a Calibrite ColorChecker Classic standard 24-color card (X-Rite Inc., Grand Rapids, MI,
USA). Due to the significant effect of different lighting on RGB channel color parameters,
the light conditions were standardized for different shooting environments [42,43]. First, a
profile was created with conversion from RAW into DNG format using ColorChecker Camera
Calibration (X-Rite Inc., Grand Rapids, MI, USA). Second, the constructed profile was selected
for color calibration using Adobe Lightroom Classic software (v11.5, Adobe, Inc., San Jose, CA,
USA). Finally, the non-experimental areas of the digital images were segmented and removed
using Abode Photoshop 2020 software (v23.5, Adobe, Inc., San Jose, CA, USA) to eliminate
their influence on the extraction of the color parameters. After this series of image processing
processes, color-calibrated images were obtained [44].
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Figure 1. Digital image acquisition and standardization process. (A) A picture of the X-Rite Col-
orChecker classic chart. (B) The camera used in the experiment. (C) The sample image acquisition.
(D) Creation of DNG format file in Colorchecker Camera Calibration. (E) Image calibration in
Lightroom. (F) The image before color calibration. (G) The image after color calibration.
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2.3. Image Analysis and Processing of the Color Data

RGB color channels are a natural color mode that can represent 16 million colors in
nature. Numerous color feature indices can be obtained using these channels. However, by
referring to the selection of color indices in similar studies, in this study, in addition to the
R, G and B parameters in the RGB channels, 11 indices commonly used in previous studies
on the relationship between pigment content and RGB were selected as alternatives, and
their calculation methods and the related literature are shown in Table 2.

Table 2. Color indices used to estimate anthocyanin content from digital image data.

Color Indices Formula Used for Digital Images References

Red:green ratio RGR = Nred/Ngreen [45]
Red:blue ratio RBR = Nred/Nblue [45]

Green:blue ratio GBR = Ngreen/Nblue [45]
Strength of red Sred = Ngreen/(Nred + Ngreen + Nblue) [46]

Strength of green Sgreen = Ngreen/(Nred + Ngreen + Nblue) [46]
Strength of blue Sblue = Ngreen/(Nred + Ngreen + Nblue) [46]

Brightness BRT =

√[(
Sblue2+Sgreen2+Sred2

)
/3

]
[28]

Chroma C = (Nred − Ngreen)/[(Nred + Ngreen + Nblue)/3] [28]
Anthocyanin content, chroma basic ACCB = (Nblue + Nred)/Ngreen [28]
Anthocyanin content, chroma ratio ACCR = Ngreen/[(Nblue + Nred)/2] [28]

Anthocyanin content, chroma difference ACCD = (Nblue + Nred)/2 − Ngreen [28]

2.4. Extraction and Quantification of Anthocyanin

To determine the anthocyanins in the different organs of purple corn, the solvent
extraction method mentioned by Tan and Bai et al. [47,48] was adopted and improved. The
extraction agent was a mixture of ethanol and hydrochloric acid (95% ethanol and 1.5 mol/L
hydrochloric acid, volume ratio of 85:15). The sample was placed in a 10 mL centrifuge tube,
heated in a water bath at 80 ◦C for 30 min and centrifuged at 10,000 r·min−1 for 10 min.
Then, the supernatant was taken, and this was repeated three times after combining the
extraction solution volume to 25 mL. After cooling, the OD value of the extracted solution
at 535 nm was determined using an ultraviolet spectrophotometer.

2.5. Establishment and Validation of the Model

Because our primary goal was to test whether the anthocyanin content could be
predicted from the values of the indices obtained from the digital images, we used least
squares linear regression to test this [49]. Preliminary graphic inspection showed that our
data were appropriate for a simple regression model [50]. As for the establishment of a
model of the anthocyanin content, this study adopted the isometric sampling method to
screen the modeling samples and the validation samples, conducting the isometric sampling
with a modeling:validation ratio = 2:1, and compared the coefficient of determination (R2)
of the fitting equation and the root mean square error (RMSE) to determine the optimal
image color indices and establish a prediction model. For validation of the prediction
model, we used the RMSE and the normalized root mean square error (NRMSE) for the
evaluation [51]. In general, an R2 value higher than 0.7 is considered indicative of a good
model that can explain a significant amount of variance, while a higher value indicates a
better model fit. A lower RMSE value indicates a better model fit because it measures the
deviation between the predicted value and the observed value and is sensitive to outliers
in the data [52,53]. The simulation is considered excellent with an NRMSE ≤ 10%, good if
it is 10–20%, fair if it is 20–30% and poor if it is >30% [54].

RMSE =

√
1
n
×

n

∑
i=1

(SIMi − OBSi)
2
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NRMSE =

√
1
n
×

n

∑
i=1

(SIMi − OBSi)
2 × 1

OBS
× 100%

where SIMi and OBSi represent the simulated and observed values, respectively, OBS
represents the observed mean value and n is the number of samples.

2.6. Statistical Analysis

Analysis of variance (ANOVA) was performed using SPSS software (v19.0, SPSS,
Inc., Chicago, IL, USA). The means were compared using Tukey’s LSD (least significant
difference) test at p < 0.05. Microsoft Excel software (v2021, Microsoft, Inc., Redmond,
WA, USA) was used to sort out the test data and produce graphs and tables. Origin
2019 software (v10.1.0.40, OriginLab, Inc., Northampton, MA, USA) and Adobe Illustrator
software (v26.5.0, Adobe, Inc., San Jose, CA, USA) were used for drawing.

3. Results
3.1. Anthocyanin Content of Various Organs in Purple Corn

The anthocyanin content of the specific types of organs across various hybrids is shown
in Table 3. There were significant differences (p < 0.05) in the grain anthocyanin content
among different hybrids, of which the highest anthocyanin content was 33.26 mg/100 g
in HTN520, while the lowest anthocyanin content was 7.11 mg/100 g in JZXN. Notably,
the anthocyanin content in HTN520 is 4.7 times greater than that in JZXN. This difference
is caused by hybrid genotypes, and breeding varieties rich in functional phytochemi-
cals such as anthocyanins is considered necessary and will be beneficial to the health of
consumers [55,56]. Further analyses uncovered differences in the anthocyanin contents of
the other organs. The anthocyanin content of the cob part ranged from 143.84 mg/100 g to
1334.10 mg/100 g. It is worth noting that the anthocyanin content in the cob was 188 times
higher than that in the grain. Similarly in the husk part, the anthocyanin content ranged
from 91.27 to 862.33 mg/100 g, which was slightly lower than that of the cob part but also
significantly higher than that of the grain part, by up to 121 times. In SGHN and ZZN8,
there were significant differences in the content of anthocyanins in the sheath parts, and
the anthocyanin content of the sheaths was also significantly higher than that of the grain
parts, but no significant differences were found for the sheath and lamina parts.

Table 3. Anthocyanin content of different organs in ten purple corn varieties.

Variety
Anthocyanin Content of Specific Organ Type (mg/100 g)

Grain Cob Husk Sheath Lamina Stem

SGHN 22.22 de 1183.12 d 862.33 a 201.23 a 37.40 a 17.02 a
ZZN8 24.39 cd 1334.10 a 650.48 b 126.10 b 39.45 a 12.25 a
JHN3 27.65 bc 292.74 c 336.46 c

HTN168 30.84 ab 295.22 c 205.73 d
SD31 19.94 ef 143.84 d 91.27 e

HTN520 33.26 a
TNBM508 16.24 f
TNHB509 7.29 g

JZXN 7.11 g
HZHN1 20.60 de

Note: Different lowercase letters within a column indicate significant differences (p < 0.05) in anthocyanin content
between different organs.

At present, the recovery of bioactive compounds from food by-products to obtain
higher returns has been widely studied [19,20,57]. According to the above analysis, the
cobs, husks and sheaths of purple corn contain a large amount of anthocyanin resources,
which can be used as good raw material for the industrial extraction of anthocyanins and
should be paid attention to in industrial production.
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3.2. Correlation Analysis of Anthocyanin Content and Color Indices in Purple Corn

A heat map of the correlation between the anthocyanin content and common color
indices is shown in Figure 2. In the visible light band, the anthocyanin content of specific
organ types in purple corn is mostly negatively correlated with their R, G and B values;
in particular, the transformed RGR, RBR, GBR, C, BRT, ACCB and ACCR values had a
highly significant correlation (p < 0.01). This is consistent with previous research results.
In general, the darker the color of plant tissue (the lower the RGB value), the higher the
pigment content [28,58,59]. In addition, of the 14 color indices, the color index most highly
correlation with the anthocyanin content varied according to the organ type. For example,
ACCR and RBR were determined for the grain, BRT and R for the cob, ACCB and ACCD for
the husk, R for the stem, ACCB for the sheath and BRT for the lamina.
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Figure 2. Visual heat map of the correlation between anthocyanin content and color indices in
different organs.

3.3. Fitting Robustness of the Relationships between Anthocyanin Content and the Color Indices

Modeling samples were used for linear fitting based on 14 color indices, respectively,
and the regression results are shown in Table 4. The color indices with the best goodness
of fit were as follows: ACCB (eight studied samples), ACCR (seven studied samples), BRT
(five studied samples), R (four studied samples), RBR (one studied sample) and ACCD (one
studied sample). This suggests that such indices can be used in indicating the anthocyanin
content. The optimal predictive model for anthocyanin content is shown in Figure 3. The
coefficient of determination (R2) for the fittings on the grain anthocyanin content (Figure 3A)
ranged from 0.71 to 0.94. The R2 of the predictive model for the cob anthocyanin content
(Figure 3B) ranged from 0.80 to 0.87. The model error for the grains was smaller than that
for the cobs, and the fitting effect for both parts was very good (R2 > 0.70). For the husks
(Figure 3C) and sheaths (Figure 3D), with heterogeneous pigmentation patterns, the R2
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ranged from 0.70 to 0.85 and from 0.64 to 0.76. In addition, the R2 for the stems (Figure 3E)
and laminae (Figure 3F) of SGHN and ZZN8 ranged from 0.71 to 0.75 and from 0.68 to
0.75, respectively. As a consequence, the fitting had good accuracy and was thus reliable.
Further evaluation and analysis of the regression models for different organs showed that
the best modeled color indices varied among different organs, and the high R2 values
(up to 0.94) indicated that the established predictive model had a good fit. Thus, it was
feasible to establish a model for the anthocyanin content of purple corn plants by relating
the anthocyanin content with the color parameters of visible light images of the purple
corn plants.
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Table 4. Coefficient of determination (R2) and statistical significance of the fitting between anthocyanin content and color index.

Indices R G B RGR RBR GBR Sred Sgreen Sblue C BRT ACCB ACCR ACCD

SGHN

Grain 0.10 0.27 * 0.09 0.70 ** 0.52 ** 0.30 * 0.71 ** 0.80 ** 0.45 ** 0.76 ** <0.01 0.77 ** 0.80 ** 0.76 **
Cob 0.87 ** 0.66 ** 0.76 ** 0.42 ** 0.49 ** <0.01 0.47 ** 0.34 ** 0.42 ** 0.43 ** 0.82 ** 0.34 0.34 0.73 **

Husk 0.05 0.15 0.10 0.57 ** 0.18 0.30 0.38 * 0.76 ** <0.01 0.56 ** 0.10 0.77 ** 0.76 ** 0.61 **
Stem 0.75 ** 0.54 * 0.71 ** 0.01 0.24 0.02 0.26 <0.01 0.15 0.02 0.71 ** <0.01 <0.01 <0.01

Sheath 0.14 <0.01 0.25 0.51 ** <0.01 0.58 ** 0.10 0.75 ** 0.19 0.48 ** 0.10 0.76 ** 0.75 ** 0.73 **
Lamina 0.71 ** 0.75 ** 0.72 ** 0.28 0.47 * 0.16 0.62 ** <0.01 0.31 * 0.27 0.75 ** <0.01 <0.01 <0.01

ZZN8

Grain 0.43 ** 0.72 ** 0.54 ** 0.55 ** 0.18 0.64 ** 0.51 ** 0.73 ** <0.01 0.64 ** 0.55 ** 0.63 ** 0.76 ** 0.52 **
Cob 0.84 ** 0.67 ** 0.70 ** <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.79 ** <0.01 <0.01 0.17

Husk <0.01 0.10 0.03 0.61 ** 0.36 ** 0.34 ** 0.51 ** 0.67 ** 0.08 0.60 ** 0.00 0.67 ** 0.67 ** 0.70 **
Stem 0.70 ** 0.64 ** 0.54 ** <0.01 0.18 0.32 * <0.01 0.11 0.40 * <0.01 0.67 ** 0.11 0.11 0.03

Sheath 0.02 0.05 <0.01 0.02 0.22 * 0.48 ** 0.06 0.63 ** 0.33 ** 0.01 0.00 0.64 ** 0.62 ** 0.55 **
Lamina 0.64 ** 0.67 ** 0.57 ** 0.19 0.03 <0.01 0.21 <0.01 <0.01 0.19 0.68 ** <0.01 <0.01 0.12

JHN3
Grain 0.09 <0.01 <0.01 0.22 0.12 0.05 0.12 0.79 ** 0.21 0.40 * <0.01 0.16 0.79 ** 0.65 **
Cob 0.84 ** 0.69 ** 0.47 ** <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.85 ** <0.01 <0.01 0.23

Husk 0.77 ** 0.81 ** 0.68 ** 0.80 ** 0.81 ** 0.72 ** 0.07 0.79 ** 0.84 ** 0.67 ** 0.78 ** 0.85 ** 0.73 ** 0.32 *

HTN168
Grain 0.02 0.36 * <0.01 0.42 ** 0.12 0.82 ** <0.01 0.82 ** 0.37 * 0.26 0.06 0.79 ** 0.83 ** 0.58 **
Cob 0.86 ** 0.85 ** 0.84 ** 0.35 ** 0.10 0.12 0.29 * 0.32 * <0.01 0.35 ** 0.86 ** 0.32 * 0.31 * 0.30 *

Husk 0.51 ** 0.57 ** 0.25 * 0.37 * 0.34 * 0.70 ** <0.01 0.67 ** 0.57 ** 0.34 * 0.49 ** 0.70 ** 0.66 ** 0.60 **

SD31
Grain 0.55 ** 0.58 ** 0.54 ** 0.87 ** 0.57 ** 0.48 ** 0.80 ** 0.90 ** 0.14 0.87 ** 0.56 ** 0.89 ** 0.90 ** 0.55 **
Cob 0.80 ** 0.75 ** 0.76 ** <0.01 0.04 <0.01 <0.01 <0.01 0.08 <0.01 0.80 ** <0.01 <0.01 0.30 *

Husk 0.20 0.29 * <0.01 0.23 * 0.51 ** 0.73 ** 0.10 0.70 ** 0.66 ** 0.20 * 0.13 0.73 ** 0.69 ** 0.58 **

HTN520 Grain 0.14 <0.01 <0.01 0.88 ** 0.71 ** <0.01 0.85 ** 0.88 ** 0.60 ** 0.70 ** <0.01 0.86 ** 0.88 ** 0.76 **

TNBM508 Grain 0.01 0.35 ** 0.02 0.56 ** <0.01 0.70 ** 0.34 ** 0.70 ** 0.34 ** 0.58 ** 0.11 0.67 ** 0.71 ** 0.60 **

TNHB509 Grain 0.65 ** 0.71 ** 0.56 ** 0.69 ** 0.08 0.46 ** 0.38 ** 0.94 ** <0.01 0.68 ** 0.65 ** 0.94 ** 0.94 ** 0.90 **

JZXN Grain 0.40 ** 0.64 ** 0.55 ** 0.86 ** 0.71 ** 0.42 ** 0.84 ** 0.86 ** 0.33 ** 0.87 ** 0.53 ** 0.87 ** 0.86 ** 0.54 **

HZHN1 Grain <0.01 <0.01 <0.01 0.15 0.84 ** 0.22 0.77 ** <0.01 0.61 ** 0.18 <0.01 <0.01 <0.01 <0.01

Note: The highest R2 for each species–tissue combination is highlighted in bold. Evaluation using Pearson’s correlation coefficients; * p < 0.05; ** p < 0.01.
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3.4. Model Validation with an Independent Dataset

The predicted and measured values for different organs from all the varieties are
presented (Figure 4). As a matter of fact, the samples were usually close to the 1:1 line. The
RMSE values from the statistical results for model validation are shown in Table 5. The root
mean square error (RMSE) was 0.31–6.85 mg/100 g in the grains, 16.55–36.59 mg/100 g
in the cobs, 16.08–29.99 mg/100 g in the husks, 10.98–14.96 mg/100 g in the sheaths,
3.33–4.11 mg/100 g in the stems and 6.18–6.46 mg/100 g in the laminae. Meanwhile, the
mean NRMSE values for the different organs were 11.68% for the grains, 13.66% for the
cobs, 8.90% for the husks, 27.20% for the stems, 7.90% for the sheaths and 15.83% for the
laminae. According to the model evaluation criteria mentioned above, it is not difficult to
see that the predictive model has excellent accuracy and stability for the sheath and husk
parts and also performs well for prediction of the anthocyanin content in the grains, cobs
and laminae, but in the stem part, the NRMSE is between 20 and 30%, and the performance
is not good.
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Table 5. Validation of predictive model for anthocyanin content based on color index.

Variety Organ Color Index
Validation

NRMSE (%) RMSE (mg/100 g)

SGHN Grain ACCR 15.05 3.51
ZZN8 Grain ACCR 16.19 4.44
JHN3 Grain ACCR 27.49 5.75
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Table 5. Cont.

Variety Organ Color Index
Validation

NRMSE (%) RMSE (mg/100 g)

HTN168 Grain ACCR 4.01 1.22
SD31 Grain ACCR 20.65 6.85

HTN520 Grain ACCR 6.35 2.25
TNBM508 Grain ACCR 4.25 0.77
TNHB509 Grain ACCR 5.04 0.42

JZXN Grain ACCB 4.14 0.31
HZHN1 Grain RBR 13.60 3.50
SGHN Cob R 3.03 33.00
ZZN8 Cob R 2.73 36.59
JHN3 Cob BRT 6.04 16.55

HTN168 Cob BRT 5.64 17.73
SD31 Cob BRT 23.55 18.68

SGHN Husk ACCB 3.33 29.99
ZZN8 Husk ACCD 3.84 26.02
JHN3 Husk ACCB 4.48 22.31

HTN168 Husk ACCB 6.22 16.08
SD31 Husk ACCB 26.62 24.13

SGHN Stalk R 24.35 4.11
ZZN8 Stalk R 30.06 3.33
SGHN Sheath ACCB 6.68 14.96
ZZN8 Sheath ACCB 9.11 10.98
SGHN Lamina BRT 16.18 6.18
ZZN8 Lamina BRT 15.48 6.46

4. Discussion
4.1. Anthocyanins for Industry Use

Anthocyanins are widely used in cosmetics and in food colorings in industry [60–63].
Numerous studies have shown that anthocyanins have very good medicinal value and
significant health effects, such as anti-cancer, anti-inflammation, anti-aging, anti-obesity
and protection of vision [64–68]. A a considerable supply of anthocyanins is required
for industry use. To date, anthocyanins have primarily been sourced from by-products
including the pomace and retentate of dark fruits and vegetables, such as black grapes,
blueberries and purple carrots [15,69–71]. Obtaining anthocyanins using this strategy is
relatively dear due to the high price of the raw materials, as well as the high costs of pro-
cessing their residues. In addition, the anthocyanins obtained this way are very limited,
as the material is left over after its primary use [15,18]. We found that the hybrids SGHN
and ZZN8 had a high anthocyanin content. This provided a rich supply of anthocyanins.
In particular, we also identified that the anthocyanin content of the cobs and husks
was much higher than that of the other types of organs (Table 3), providing specific
target organs for anthocyanin extraction [19,20,72]. Notably, purple corn is increasingly
consumed as a fresh vegetable in Asian countries because of the health-promoting prop-
erties of the anthocyanin pigments in its aleurone or pericarp [73–76], which means that
by-products such as its cobs and husk can be used as premium industrial raw materials
for anthocyanin extraction. It can also maximize the economic value of the purple corn
industry by utilizing by-product resources.

4.2. Modeling Robustness

ACCR was shown to be the best index for nine varieties of grains but not for HZHN1.
This unique abnormality could be due to the presence of white wax on the peel, thus
causing obscure images [30,77,78]. It has also been reported that other factors such as the
cell shape, cell wall thickness or pigment location may also alter the color perceived by
sensors [79], causing errors whist estimating the anthocyanin content from digital images.
It is worth noting that using ACCB for the husks of ZZN8 was not the best but it was still
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chosen since there was only a minor difference in the fitting effect between ACCD (R2 = 0.70)
and ACCB (R2 = 0.68). Hence, a unique color index that is suitable for a single organ was
proposed. A similar situation existed for the predictive model for the cob sections. As such,
the indices ACCR, BRT, ACCB, R, ACCB and BRT were recommended for the grains, cobs,
husks, stems, sheaths and laminae, respectively. The possible reason for this difference is
that the anthocyanin content of different organ types varies greatly, which makes various
organ surfaces show inconsistent colors. Despite the fact that digital photography may
also fail when the cells of the measured surface are irregular, because visible light images
can only capture two-dimensional planes of data [72,80,81]. But it is worth recognizing
that numerical images showed better predictive performance than spectral reflectance
images [28,82]. For example, digital images with spectrophotometer data were compared
to analyze the petal colors of eight species with variable pigmentation patterns [83], which
found that spectrophotometers may underestimate the variability in spectral signals when
the patterns are complex. This is because the spectrometer probe holder has a relatively
small sampling area, which may result in different spectral measurements depending on
whether it is incidentally oriented toward light or dark stripes or patches [83]. Though
this can be resolved by measuring the reflectance at multiple points, the time required for
analysis will undoubtedly add up. Overall, it is undeniable that our proposed method for
quantifying the content of anthocyanins in purple corn based on digital image representa-
tion has been proven to offer new opportunities to accurately quantify the concentration
of anthocyanins in different organs of purple corn [1,84,85]. The main advantages of this
method are its high efficiency and that it is completely non-invasive and applicable to plant
samples of any size and shape.

4.3. Model Application

Purple corn is regarded as having the darkest grains in the plant kingdom. An-
thocyanin is a multifunctional active substance in purple corn, which has potential
health-promoting properties [86–88]. It has been widely promoted as a health food and
has also attracted the attention of the food and drug industries [56,77,89]. The speed of
obtaining a new variety using traditional breeding methods is limited by the acquisition
of crop phenotypic data, particularly on tissue inclusions, so it is imperative to develop a
high-throughput plant phenotyping analysis. Non-destructive data collected via ground-
based and aerial HTP techniques are highly desirable for application in plant breeding
since they can be used to assess different traits in large-scale field trials [90–92]. RGB
cameras produce digital images, can mimic human visual perception and are available at
a low price and a high resolution on the market, and image analysis using free software
is simple and easy to learn and requires little training. Therefore, the RGB imaging
approach represents a valuable and practical tool for breeders [93,94]. By applying
predictive models, breeders and researchers can assess the anthocyanin content of a large
number of purple corn varieties more quickly. This method can save time and costs and
improve breeding efficiency in the development of more nutritious and commercially
valuable varieties of purple corn. Therefore, after the appropriate adjustments, such as
obtaining data from multiple locations and years, the model proposed in our study can
be extended to ground and UAV platforms, expanding the monitoring range [95–98].
Nowadays, RGB imaging obtained with the rapid development of smartphones has led
to the creation of applications with ever-increasing utility, such as the plant phenotyping
apps Canopeo (v2.0) [99], Plant Screen Mobile (v1.6) [100] and PhenoApp (v1.0) [101].
As technological innovation advances, a real-time and rapid anthocyanin content es-
timation platform may be developed. As a consequence, the non-destructive, rapid,
high-throughput evaluation of anthocyanin will have good potential to be applied to
breeding or cultivation in the anthocyanin industry.
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5. Conclusions

Purple corn has potential applications in industry due to its rich anthocyanin con-
tent. The anthocyanin content largely varied by organ type. This dissection of plants
into specific organs identified the cobs of purple corn as a vital source providing antho-
cyanins for industry use. Digital image technology based on a RGB camera represents
a rapid, non-destructive way to estimate plant tissue inclusions. A linear relationship
between the anthocyanin content and the color indices derived from the RGB images
was found for various types of organs, which was further used to establish a model for
the prediction of the anthocyanin content. The model was then testified to have achieved
good accuracy with its NRMSE in the range of 7.90–27.20%. However, considering the
power and ability of deep learning, in future work, we will obtain more data through
continuous observation to explore the application of deep learning to estimating the an-
thocyanin content in purple corn. Overall, this study provides a cheap imaging method
for rapid assays of anthocyanin content.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/agriculture14050744/s1, Figure S1: Meteorological data of purple corn
planting season (6.12 to 9.09) from 2021 to 2023; Table S1: Meteorological parameters of purple corn
growth period from 2021 to 2023.
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