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Abstract: An automatic system for cantaloupe flower pollination in greenhouses is proposed to
meet the requirements of automatic pollination. The system consists of a mobile platform, robotic
manipulator, and camera that reaches the flowers to detect and recognise their external features. The
main task of the vision system is to detect the position and orientation of the flower in Cartesian
coordinates, allowing the manipulator to reach the pose and perform pollination. A comprehensive
method to ensure the accuracy of the pollination process is proposed that accurately determines the
position and orientation of cantaloupe flowers in real environments. The vision system is used to
capture images, detect the flower, and recognise its state according to its external features, such as size,
colour, and shape, thereby providing appropriate nozzle access during pollination. The proposed
approach begins with a segmentation method designed to precisely locate and segment the target
cantaloupe flowers. Subsequently, a mathematical model is used to determine the key points that
are important for establishing the growth orientation of each flower. Finally, an inverse-projection
method is employed to convert the position of the flower from a two-dimensional (2D) image into
a three-dimensional (3D) space, providing the necessary position for the pollination robot. The
experimental process is conducted in a laboratory and proves the efficacy of the cantaloupe flower
segmentation method, yielding precision, recall, and F1 scores of 87.91%, 90.76%, and 89.31%, respec-
tively. Furthermore, the accuracy of the growth-orientation prediction method reaches approximately
86.7%. Notably, positional errors in 3D space predominantly fall within the allowable range, resulting
in a successful pollination rate of up to 83.1%.

Keywords: pollinating automation; computer vision; flower segmentation; flower model; smart
agriculture; Vietnam agriculture

1. Introduction

Currently, Vietnamese farmers are eager to integrate modern technologies into agricul-
tural production. In particular, cantaloupe cultivation in greenhouses has become popular
because cantaloupe flowers (Cucumis melo) are dioecious and incapable of self-pollination.
Consequently, the robotic pollination of cantaloupes is essential for enhancing yield and
improving fruit quality. Cantaloupe flowers typically rely on natural factors for pollina-
tion, such as wind and insects. However, these methods are fraught with uncertainty.
In particular, inadequate pollination may be caused by poor weather or a lack of insects
in greenhouses, leading to misshapen and undersized cantaloupes [1]. Hence, artificial
pollination techniques, such as pollen spraying, pollen brushing, and pollen guns, have
been employed to overcome the challenges associated with natural pollination methods.
Although these methods have demonstrated greater efficiency than natural methods [2],
their applicability is reduced when addressing the pollination needs of large cantaloupe
farms because of their labour-intensive and time-consuming nature. Currently, rising
labour costs due to an ageing population have increased difficulties in pollination, which
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pose a significant challenge for cantaloupe pollination. To address these issues, experts and
scientists have proposed automated pollination using robots to increase pollination success
rates and fruiting efficiency [3]. This method ensures uniform pollination and more effec-
tive pollen utilisation [4]. The automatic pollination system involves two primary tasks:
using computer vision with a camera to detect and locate flowers on cantaloupe plants, and
manipulating a robotic arm to a suitable position for pollination without affecting trees,
flowers, or other robotic systems.

The authors have previously studied various flower pollination methods, such as using
drones, and concluded that robotic bees cannot fully replace biodiversity [5]. Moreover,
the use of drones as bee substitutes increases pollination costs and lowers efficiency. One
study proposed a robotic pollination system that utilised a pre-train model for the highly
accurate detection of kiwifruit flowers and buds [6]. This study achieved a detection speed
of 38.64 ms/image, and the recognised image size was 4608 × 3456 px. However, this study
focused solely on detecting flowers and buds and did not consider the pose of the flowers.
Another study employed automatic kiwifruit pollination consisting of a wheeled platform,
manipulator, and binocular camera system capable of capturing images of kiwifruit flowers
and determining their positions [7]. A manipulator was used for pollination, and the
location and direction of the flowers were determined based on the centres of gravity of
the pistil and flower contour. Furthermore, Gao et al. [8] presented a novel pollinator
that employed preferential flower selection and precise targeting. A manipulator was
placed on a mobile platform with a tracking drive, and the flower identification process
utilised an RGB-D camera vision system. The robotic system incorporated a three-degrees-
of-freedom manipulator and tracking mobile platform. Natural pollination in greenhouses
faces challenges because insects cannot access them. Therefore, artificial pollination that
relies on robots and artificial intelligence (AI) is gaining traction. Light detection and
ranging (LiDAR) technology has been employed for odometry and mapping to generate
a three-dimensional (3D) point-cloud map [9]. The experimental dataset was collected
in real time using LiDAR, inertial measurement units, and wheel odometry. Notably,
these experiments were conducted in greenhouses and outdoor farms, yielding highly
accurate results. In another study, a pollination system for tomatoes utilised robots and
drones, leveraging a convolutional neural network (CNN) algorithm for flower-shape
recognition [10]. The image analysis algorithm was tested in a tomato greenhouse and
achieved an accuracy rate of at least 70%. A novel kiwifruit pollinating robot that offers
enhanced efficiency, reliability, and cost-effectiveness has also been introduced [11]. This
robot featured a mobile platform, a manipulator equipped with a novel air-assisted sprayer,
and a vision system utilising a CNN algorithm. This system successfully recognised
flowers and conducted pollination with an accuracy of 79.5%. A CNN model is proposed
to detect the fruit in reference [12]. Furthermore, the Mask R-CNN model was employed
to identify king flowers in apple orchards for pollination [13]. This model was based
on a king flower segmentation algorithm for locating the king flower within a flower
cluster, achieving accuracy in the range of 65.6% to 98.7% based on the flower’s stage of
development. Another study focused on designing an autonomous robotic navigation
system for orchard harvesting by employing the master–slave mode [14]. This system
consisted of two parts: an orchard transport robot as the master, and a picking robot as the
slave. Given its outdoor use, the system was equipped with a global navigation satellite
system in addition to the same sensor systems found in other harvesting robots. Current
research on greenhouse automation focuses on moving platforms, manipulators, vision
systems, and end effectors. For example, a 3D image-based tomato-harvesting system
was proposed that utilised deep-learning algorithms to detect features in the Cartesian
coordinate system [15]. A robotic system for harvesting sweet pepper fruits, known as
SWEEPER, was developed, researched, and evaluated in a greenhouse setting [16]. This
system consisted of a six-degrees-of-freedom robotic arm with a specially designed end
effector and RGB-D camera system that was mounted on an autonomous cart. This robotic
system was evaluated as being highly effective for harvesting sweet pepper fruits.
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Cantaloupe is also known as rock or sweet melon and can typically weigh in the
range of 0.5 to 5 kg. Cantaloupe is often used as a fresh fruit or dessert with ice cream or
custard. In addition, its seeds can be consumed as snacks. The cantaloupe plant is usually
grown at cool temperatures (22 ◦C to 33 ◦C) and high humidity (60% to 70%). However,
the temperature in southern Vietnam is often hot and dry, so plants are often grown in
greenhouses. The culturing temperature of a cantaloupe plant should not exceed 33 ◦C
because the flowers fall off and fruit quality is poor. Cantaloupe plants have male and
female flowers. In nature, pollination is usually carried out by insects or wind, but natural
pollination activities are difficult to conduct in greenhouses. Therefore, pollination is often
performed manually. However, this activity requires a large amount of manpower and
meticulous operation. Therefore, the purpose of this study was to investigate the automatic
pollination process. It should be noted that this study did not focus on presenting the
structure of the robot. Instead, the goal of this study was to provide a method for identifying
the position and developmental orientation of the flowers. The pollinating robotic system
designed in this study consisted of a mobile platform, manipulator, visual identification
system, and a central controller for the pollination spray, as shown in Figure 1. The
pollinating robot system was equipped with a pan-tilt camera system that was attached to
a mobile platform. The mobile platform moved based on the differential transmission, was
made of aluminium, and included one passive and two active wheels. The platform carried
the vision system and manipulator to the appropriate positions. The central controller
controlled, analysed, and synthesised the data that was obtained from the vision system,
sensor parameters of the arm, and moving platform based on a universal asynchronous
receiver-transceiver. The flowers were randomly located and oriented in space. Therefore,
the manipulator must be flexible so that it can direct the nozzle in its workspace. The
manipulator had six degrees of freedom, including six rotational movements, to reach the
positions and orientations required for flower pollination. The nozzle was fitted with a
pollination system specifically designed for cantaloupe flowers.
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Figure 1. Schematic of designed pollinating robotic system.

Currently, research laboratories and companies have conducted many studies on
pollinator robots. Studies have also focused on determining the position and orientation
of flowers. However, flower orientation is based on pistil characteristics. In the authors’
previous studies, mathematical modelling helped determine the position and orientation
of many different flowers, independent of the biological and geometrical properties of the
pistil. The objective and main contribution of this study was to create a comprehensive
method for determining the position and orientation of flowers, which is important for
accurate pollination, optimal use of pollen, and cost reduction. This study presents a
cantaloupe pollination robot that captures the pollination targets and performs efficient
pollination. Simultaneously, a strong foundation is established for integrated innovation
research on intelligent cantaloupe pollination devices in later stages. In addition to the
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benefits and contributions of this study, it can also be applied to other automated pollination
processes for fruits and vegetables, allowing for more effective use of pollen in other
automated pollination operations.

The remainder of this paper is organised as follows. The proposed methodology and
a diagram of the proposed method are presented in Section 2. The position modelling and
orientation of flowers based on algorithms, including flower segmentation, flower position
determination, and key points used to predict flower growth orientation are presented in
Section 3. The depth estimation methods and reverse-projection techniques for determining
the positions of objects in 3D space from two-dimensional (2D) images are provided in
Section 4. The experiments are presented in Section 5, and the conclusions of this study are
provided in Section 6.

2. Proposed Methodology

Greenhouse environments used for planting are typically unstructured. Achieving
successful pollination of flowers without any collisions or interactions with neighbouring
flowers presents a significant challenge for robotic pollination. This study introduces a
pollination method for determining the position and orientation of flowers that is based
on images obtained using a vision system. For robots, implementing inverse kinematics
is crucial for controlling the pollen nozzle with precision and ensuring that it reaches the
required position and direction for effective pollination. The images provided by the vision
system are 2D; however, robot control requires 3D control, specifically in the Cartesian
space. Cantaloupe flowers are scattered irregularly in space, with many being obscured
by fruits, leaves, and other flowers. Therefore, determining the precise 3D positions of
these flowers is essential for successful pollination. Additionally, the orientation of each
flower significantly influences the accuracy and efficiency of the pollination process. The
nozzle must approach the pistil of the flower at an optimal distance during pollination.
Thus, determining the orientation of the flower aids the robot in identifying the pistil of
the target flower and understanding its growth orientation. Consequently, determining
the position and orientation of the flowers plays a pivotal role in planning the optimal
end-effector trajectory.

The procedure for determining the position and orientation of cantaloupe flowers is
illustrated in Figure 2. Initially, the system camera captures two images, denoted as the
ith and (i + 1)th images. These images are used to construct a depth map to determine the
distance of the object from the camera. The depth map relies primarily on the ith image,
which is considered the baseline image. Subsequently, a mathematical camera model is
used to calculate the distance to the target object. Concurrently, the ith image undergoes
segmentation using the proposed thresholding method to identify regions containing
cantaloupe flowers. This stage also involves determining the key points of the flower that
are required to ascertain the growth orientation of the flowers, such as the pistil and centre
of gravity points. Subsequently, the acquired 2D information is transformed into 3D data
within the camera-coordinate system using a mathematical model of the reverse-projection
method. Ultimately, this process yields information regarding the position and growth
orientation of the cantaloupe flowers, which serve as inputs for the controller to control the
robot’s actuators that are responsible for pollinating the flowers.
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3. Modelling Position and Orientation of Flowers

This Section presents the image-processing techniques and mathematical methods
used to determine the position and orientation of flowers within an image frame. It is
necessary to define two reference points within the image frame to accurately ascertain the
growth orientation of a cantaloupe flower. Cantaloupe flowers typically exhibit a round
shape and are found growing on leaf axils. These flowers typically feature five yellow or
pale yellow petals, with the colour of the pistil consistently darker than that of the petals.
The petals are normally evenly arranged around the central pistil when viewed directly.
Therefore, the shape of the petals will be unevenly arranged when the orientation of the
flower changes. A method for determining the position and orientation of cantaloupe
flowers within the image frame was proposed by leveraging their biological characteristics.

3.1. Cantaloupe Flower Instance Segmentation Based on a Multi-Level Thresholding Algorithm
3.1.1. Two-Level Thresholding

The implementation of cantaloupe flower segmentation is difficult in garden envi-
ronments because of the influence of various factors, such as lighting conditions, varied
colour and density distributions, environmental noise, and distortion. In addition to the
difficulties caused by environmental factors, it is necessary to ensure the implementation of
an algorithm with low computational resource consumption for applications in pollinating
robots. Therefore, a method using multiple thresholds was proposed and implemented to
address these conditions.

Two-level thresholding involves determining two different thresholds in the input
image that are used to divide the image into parts based on similar properties. In this
case, objects in an image that have close intensities and a large difference in the frequency
transition at the contours probably belong to the same cluster. The intensity gradient
between nearby pixels is a useful statistical parameter for estimating these features. Thus, a
gradient image Mg(x, y) was created by calculating the difference in intensity between each
pixel from the original image and the reference pixel value λa. Although this reference pixel
value λa can be effective as a threshold in basic binary segmentation cases, it is insufficient
in more sophisticated segmentation cases because it ignores the higher-frequency gradients
(e.g., edges) of the elements in the image. The arithmetic mean value of the gradient
image λg was calculated and the reference pixel value λa in the image was then adjusted
to integrate the gradient information into the obtained threshold. The corresponding
calculations are expressed as Equations (1)–(3).

λa =
1

W × H

W

∑
x=0

H

∑
y=0

M(x, y) (1)

Mg = M(x, y)− λa (2)

λg =
1

W × H

W

∑
x=0

H

∑
y=0

(M(x, y)− λa) (3)

Two thresholds µ1 and µ2 were formed to divide the image into three groups k1, k2, and
k3 because λg was smaller than λa. In addition, the edges or border gradients that marked the
object boundary could have various intensity levels in Mg(x, y) depending on their distance
from λa. The first threshold µ1 is a minus offset from the reference point value λa, while the
second threshold µ2 is an additional offset from the reference point λa with a value of λg. As
a result, the thresholds and groups can be determined utilising (4) and (5).{

µ1 = γa − γg
µ2 = γa + γg

(4)
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k1, i f 0 ≤ M ≤ µ1
k2, i f µ1 < M ≤ µ2
k3, i f µ2 < M ≤ L − 1

(5)

where L denotes the intensity levels.

3.1.2. Global Thresholding

When a single threshold needs to be used, the suggested two-level threshold can be
enhanced to provide image binarisation. The probability density function of the pixel value
distribution of a greyscale image is used to accomplish this. Only one of the thresholds
obtained in the two-level threshold (µ1 or µ2) can be utilised to split the pixels into two
groups. The probability density function was used to determine the offset value from
the reference point, which resulted in greater information acquisition after the image was
divided into two groups. The cumulative total of the probability density function of pixels
between the reference point value λa and the two points µ1 and µ2 can be calculated if µ2
and µ2 are rounded up to the closest integer. The probability density function Pi(ni) can be
determined if ni is defined as the frequency of a pixel having i intensity in an image M(x, y)
of size W × H, which is expressed as (6). The two cumulative totals were compared to
determine the global threshold T and implement image binarisation using T as (7).

Pi(ni) =
ni

WH
(6)

T =

µ1, i f
λa
∑

i=µ1

Pi(ni) <
µ1

∑
i=λa

Pi(ni)

µ2, otherwise
(7)

An illustration of an image that has been binarised using the proposed global thresh-
olding method is shown in Figure 3.
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3.2. Determine the Key Points and Growth Orientation of the Flower in the Image Frame

An arrow was formed that connected the two key points of the cantaloupe flower (the
point on the pistil of the female flower and point at the centre of gravity) that served as an
indicator of the flower’s growth orientation. Initially, image-processing techniques were
employed to determine the pistil point of the female flower (point A). This determination
was based on the inherent biological properties of the cantaloupe flower, in which the
colour of the stigma consistently appears darker than that of the petals. Subsequently, an
ellipse was fitted to the petal contour, with its centre serving as the centre of gravity of the
petal contour (point B), as illustrated in Figure 4. The arrow connecting points A and B
provided an approximate representation of the growth orientation of the cantaloupe flower.
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Figure 4. Model of the cantaloupe flower.

The following process is executed to obtain the pistil point of the female flower. First,
the flower instance segmentation of each image (as discussed in Section 3.1) must be
completed. Second, an ROI is created for each image consisting of a contour of the petals.
Third, the original colour image is transformed into a greyscale image. The Gaussian
blur algorithm is applied during this step to reduce noise in the greyscale image [17].
At this stage, an adaptive threshold is calculated based on the segmented binary and
greyscale images to isolate the pistil region of the flower. Employing certain morphological
techniques is crucial for enhancing detection accuracy owing to the consistent biological
characteristics of all cantaloupe flowers, where the colour of the stigma is always darker
than that of the petals. Fourth, the erosion and dilation method is immediately applied to
the binary image after thresholding, resulting in a refined binary image that exclusively
represents the pistil region of the female flower [18]. Finally, the centre of the circular
contours within this binary image is identified as the first key point (referred to as point A).
An illustration of the process of locating points on a pistil is illustrated in Figure 5.
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Figure 5. Method to determine key points on a cantaloupe flower.

Obtaining a point on the pistil is important for determining the orientation of flower
growth. The growth orientation of the flower can be determined after establishing the
second point (point B, the centre of gravity) based on the arrow connecting the two obtained
points. Based on the biology of cantaloupe flowers, the shape distribution of each flower is
primarily circular or elliptical. Accordingly, an ellipse was approximated that aligned with
the flower shape. The centre of the ellipse corresponds to the second point belonging to the
arrow, which indicates the orientation of the flower’s development.

Several steps were performed to determine the centre of gravity. First, the extracted
cantaloupe flower image was segmented to obtain a binary image representing the char-
acteristics of each flower. Second, morphological processing techniques were applied to
remove noise from the binary images. Third, bounding recognition was implemented to
extract the features of the petal area from the binary image. Lastly, the contour areas of the
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petals were detected and an ellipse was fitted to each contour. The problem solved in this
Section is expressed as follows.

A set of 2D points S = {pi}n
i=1 is obtained, where pi = (xi, yi). A set of curves

C(k) is parameterised by the vector k. Then, curve C(k) is determined to be the best
fit on the point dataset when finding the minimum k value, at which point the error
function ε2(k) = ∑n

i=1 δ(C(k), pi) reaches its global minimum. Here, δ(C(k), pi) denotes
the measured distance from k points p to curve C(k). The centre of the curve C(k) is also
the flower’s centre of gravity. The proposed approximate mean square (AMS) method was
used to solve this problem [19]. An ellipse with a basic set of K = (x2, xy, y2, x, y, 1) has a
set of AT = (Axx, Axy, Ayy, Ax, Ay, A0) coefficients.

The AMS method applies a condition AT(DT
x Dx + DT

y Dy)A = 1 to limit the fit to the
elliptical curves, where the matrix Dx, Dy is the partial derivative of the matrix D with
respect to x and y. The matrix formed in rows is applied to each point in the point set, which
is expressed as (8). The AMS method optimises the following cost function to achieve the
minimum value that is calculated in (9).

D(i, :) =
{

x2
i , xiyi, y2

i , xi, yi, 1
}

(8)

ε2 =
AT DT DA

AT(DT
x Dx + DT

y Dy)AT (9)

Accordingly, the obtained curve was the best-fit curve for the 2D set of points. The
result of this process is shown in Figure 6a. An arrow was formed based on the two
points found in the flower image, representing the growth orientation of the flower. The
orientation of this arrow is the direction from the point on the pistil to the centre of the
fitted ellipse. The results of orientation determination are shown in Figure 6b. In these
figures, the green circle is an ellipse fitting the flower. The red dot marks the pistil, while
the red line shows the ellipse’s major and minor axes.
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growth orientation of flowers.

3.3. Position of the Cantaloupe Flower in Cartesian Space

Camera parameter estimation is crucial for determining the relationship between
a 3D point in the real world and its corresponding coordinates in an image frame. To
project a 3D object onto an image frame, the world coordinate system of the point must
first be converted to the camera coordinate system using an extrinsic matrix (rotation and
translation matrices). Subsequently, the point is projected onto the image plane using the
intrinsic matrix of the camera (focal length and distortion coefficients). The conversion of
the camera coordinate system is shown in Figure 7.
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The process of estimating the camera parameters or camera calibration is outlined
as follows. Initially, the world coordinate system for a 3D object is established using che-
querboards of a known size. The camera is then used to capture multiple images of the
chequerboard from various angles. Subsequently, a set of test images with a chequerboard
pattern must be inserted after the camera is linked to the computer. To ensure that the test
images match the calibrator criteria, the calibration method finds the corners of the chequer-
board using the cv.findChessboardCorners function in OpenCV to identify the coordinates
of the corresponding 3D points in the image frame. Finally, the camera parameters are
determined based on the cv.calibrateCamera function using real 3D and 2D point coordi-
nates. The intrinsic parameters of the camera are obtained after completing the camera
calibration process, as listed in Table 1. Calculations are established to create a linear model
to find the position of the 3D flower in the real world. However, the distortion coefficient
parameters have nonlinear properties. Therefore, image transformation to remove this
distortion was performed independently based on an OpenCV algorithm after completing
the calibration process.

Table 1. Parameters of the calibrated camera.

Parameters Values

Intrinsic matrix
833.42 0 316.25

0 833.73 241.62
0 0 1


Distortion coefficients [0.01436 −0.17403 −0.08447 −0.06694 0.12799]

Principle Point
[
316.25 241.62

]
Focal Length

[
833.42 833.73

]
A projection method was implemented to determine the position of flowers in 3D

space from 2D images. In this Section, the position of the flower in the camera coordinate
system (point Pc) is obtained from the position of the flower in the image frame (point pi)
using the 2D to 3D inverse-projection method. The focus in this study was on modelling
the position of the cantaloupe flower relative to the camera’s position. In addition, the
extrinsic matrix parameters [R|t] were considered as [I|0] to convert the world coordinate
system to the camera coordinate system. First, the forward projection method calculates
the position of point pi = (a,b) in the image frame from point Pc = (x,y,z) in the camera
coordinate system in 3D space, which is expressed as (10).

pi = K[R|t] ∗ Pc (10)

where K represents the intrinsic matrix and R and t represent the rotational and translational
elements of the extrinsic matrix, respectively. Pc denotes the point of the camera frame
in the 3D space and pi denotes the coordinate of the corresponding point Pc in the 2D
image frame.
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Matrix [R|t] can be written as [I|0] because this calculation converts the image from
the camera frame to the image frame. Consequently, Equation (8) can be rewritten as (11).

ε

a
b
1

 =

 fx 0 cx
0 fy cy
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0




x
y
z
1

 (11)

The coordinates x, y, and z denote the 3D position of a point within the camera
coordinate system. This information helps to locate objects in 3D space. In addition, a and
b represent the 2D coordinates of a point in the image frame, typically measured in pixels.
The intrinsic parameter matrix K was obtained using the camera calibration process. The
focal length of the camera is denoted as f. The focal lengths along the x and y axes (fx and
fy, respectively) and principal point coordinates (cx, cy, respectively) represent the centre of
the image in pixels, where e is the scaling factor. After the algebraic transformations, the
following equation can be obtained from Equation (12).εa

εb
ε

 =

 fxx + y + cxz
fyy + cyz

z

 (12)

Subsequently, Equation (10) can be rewritten as Equation (13).

ε = z (13)

To convert the images from 2D to 3D, Equation (8) can be rewritten as (14).

ε

a
b
1

 = K[R|t]


x
y
z
1

 (14)

The conversion is only performed between the camera coordinate system and image
frame. Therefore, the transformation matrix [R|t] is written as [I|0]. By applying algebraic
operations, Equation (14) can be rewritten as (15).x

y
z

 = εK−1

a
b
1

 (15)

From Equations (11) and (13), the position of a point in the 3D space in the camera
coordinate system is based on the position of the pixel in the image frame. This is calculated
using (16). x

y
z

 = zK−1

a
b
1

 (16)

In Equation (14), the position of any pixel in the image frame can be obtained using
3D information regarding its position in the camera coordinate system when the matrix
intrinsic K and depth z are determined. The z-depth value was determined based on the
method presented in the Section below.

4. Depth Estimation Based on Multi-View

A method was proposed to obtain the position of the flower in 3D space that helped
the robot successfully pollinate. A depth-estimation approach based on multi-view obser-
vations was used to obtain 3D information about an object in the 3D space [20]. A camera
was used to capture two images from different angles using the triangulation concept, and
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the depth information was recovered by computing the disparity between the image pairs.
The optical centre positions of the two images indexed as i and i + 1 are denoted as Ol and
Or, respectively, as illustrated in Figure 8. Ol-XlYlZl and Or-XrYrZr denote the coordinate
systems of the image frames indexed as I and i + 1, respectively. The baseline distance d
represents the horizontal separation between the optical centres when capturing images
at the ith and (i + 1)th positions. In the image frames indexed as i and i + 1, the projected
point values of P(X, Y, Z) are denoted as pl(xl, yl) and pr(xr, yr), respectively. The projection
model in the OXZ plane is shown in Figure 8. The following can be calculated based on the
properties of similar triangles.

z
f
=

x
xl

(17)

z
f
=

x − d
xr

(18)
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The following can be calculated from Equations (17) and (18), it is presented by (19).

x
xl

=
x − d

xr
(19)

Performing some transformations on Equation (19) results in Equation (20). However,
considering Equations (17) and (20) results in (21).

d
xl − xr

=
x
xl

(20)

z = f (
d

xl − xr
) (21)

The xl − xr denotes the disparity value according to Equation (21), which is the
displacement of point P at the projection point with respect to the plane of the images
indexed at i and i + 1. Therefore, when the parameters d and f and the coordinates of point
P in each image plane are determined, the depth z of that point is obtained. Therefore, it
is important to calculate the positions of points pl(xl, yl) and pr(xr, yr) in each respective
image frame for the images indexed at I and i + 1, respectively, to obtain information about
the depth of point P in 3D space. Calculating the disparity xl − xr of a pixel in the ith
image compared to that of the (i + 1)th image is necessary to determine the z-depth of
that pixel in practice. Hence, the census transformation method was used to calculate
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and build a disparity map [21]. A traditional local approach called the census transform
determined the matching cost by converting the greyscale values of the pixels into bit
strings. To accomplish this, the grey values of each pixel were compared to the grey value
of the window’s central pixel. This was achieved when both the window dimensions were
odd numbers (u and v). Following this comparison, the Boolean result was converted into
a bit string, which was eventually transformed into the census transformation value of the
central pixel. The calculation for this process is expressed as (22).

C(x, y) =
u′

⊗
i=−u′

v′
⊗

j=−v′
ξ(M(x, y), M(x + i, y + j)) (22)

where u′ and v′ represent the maximum integers that do not exceed half the values of u and
v, respectively, and ⊗ denotes a bitwise connection operation. M(x, y) denotes the greyscale
value of the image at the point to be matched, specifically at coordinates (x, y). (x + i, y + j)
represents the greyscale values of neighbouring points within the local area centred around
the point to be matched. The ξ operation is expressed as (23).

ξ(M(x, y), M(x + i, y + j)) =
{

1, i f M(x, y) ≤ M(x + i, y + j)
0, otherwise

(23)

After applying the census transformation, the pixel values within the window are
replaced with a binary bit string composed of zeroes and ones. The sorting of these bit
strings depends solely on the values of the central and neighbouring pixels within the window.
The ultimate cost calculation was performed using these bit strings in the left Cl(x, y) and
right Cr(x − d, y) images using the Hamming distance, which is expressed as (24).

C(x, y, d) = Hamming(Cl(x, y), Cr(x − d, y)) (24)

The Hamming distance quantifies the dissimilarity between two distinct bit strings.
It is computed by performing an ‘exclusive or’ operation on the two-bit strings, and
subsequently tallying the number of bits that differ from one in the result. A larger
Hamming distance indicates a lower matching accuracy for the corresponding bit pixels.
The census transformation and Hamming distance for the 3 × 3 windows are shown in
Figure 9. The disparity map generated using this algorithm is shown in Figure 10. Therefore,
the depth can be determined relative to the camera object based on the disparity value
obtained for any pixel in the ith image. The z-depth is the final value used to determine the
3D position of the flower in the real world in the camera’s coordinate frame.
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5. Experiments and Discussions
5.1. Verify the Efficiency of the Cantaloupe Flower Segmentation Process

The experiments were conducted on cantaloupe plants in a greenhouse at the UEH
University laboratory. A dataset was collected that included 89 images of the greenhouse
cantaloupe flowers captured with different shooting angles and brightness to facilitate the
experimental process. The developed system used the proposed algorithm to determine
the position and orientation of flowers in a greenhouse. The first part of the experiment
evaluated the segmentation efficiency for cantaloupe flowers. Performance metrics, such
as precision, recall, and F1-score were used to assess the effectiveness of the proposed
thresholding approach. The metrics were computed for binarization using true positive
(TP), false positive (FP), true negative (TN), and false negative (FN) attributes. In contrast
to background pixels that are logical zeros, foreground pixels with logical zeros were
considered positive. Precision is the percentage of TP pixels out of all the positive pixels
present in the predicted binary image. Precision provides a probabilistic measurement
of the number of positively predicted pixels. Recall is the percentage of positive pixels
in the ground-truth image that are TP pixels. The harmonic mean between the recall
and precision is known as the F1-score. The precision, recall, and F1 calculations are,
respectively, expressed as (25)–(27).

precision =
TP

TP + FP
(25)

recall =
TP

TP + FN
(26)

F1 − score = 2 × precision × recall
precsion + recall

(27)

The flower segmentation performance of the Otsu [22] and proposed methods are
listed in Table 2. Cases 1–4 in Table 2 represent typical images from the test dataset
that was composed of 89 images. Visually, the proposed model outperformed the classic
Otsu method. In specific cases, such as Case 3 where the image was less affected by
environmental factors, the performance of the classic method was similar to that of the
proposed method. However, the Otsu method exhibited poor results for images that were
significantly affected by lighting conditions and noise. In contrast, the proposed method
could separate the border of the flower area and filter out noise in the resulting image,
which created favourable conditions for the following process. The flower segmentation
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process in the test set was evaluated, and the results are listed in Table 3. The values in this
Table are the average values of all 89 cases. The precision, recall, and F1-score values of the
Otsu method were 75.23%, 79.61%, and 77.36%, whereas those of the proposed method were
87.91%, 90.76%, and 89.31%, respectively. These results proved that the proposed method
was superior to the Otsu method. In this experiment, the proposed method produced nearly
90% accurate results even when the environmental conditions were changed. Therefore, it
is feasible to apply the proposed technique to a greenhouse environment.

Table 2. Examples of segmentation results from the proposed and Otsu methods.

Case Original Otsu Method Proposed Method

1
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Otsu 0.7523 0.7961 0.7736 

Proposed Method 0.8791 0.9076 0.8931 
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of error segmentation cases are listed in Table 4. Specifically, Case 1 demonstrates two 

flowers that are fused together. Here, the proposed approach was unable to segment them 

and considered them as part of the same flower. Case 2 demonstrates changes in lighting 

conditions that resulted in an image with varying light and dark areas, which led to a poor 

Agriculture 2024, 14, 746 15 of 21 

significantly affected by lighting conditions and noise. In contrast, the proposed method 

could separate the border of the flower area and filter out noise in the resulting image, which 

created favourable conditions for the following process. The flower segmentation process in 

the test set was evaluated, and the results are listed in Table 3. The values in this Table are 

the average values of all 89 cases. The precision, recall, and F1-score values of the Otsu 

method were 75.23%, 79.61%, and 77.36%, whereas those of the proposed method were 

87.91%, 90.76%, and 89.31%, respectively. These results proved that the proposed method 

was superior to the Otsu method. In this experiment, the proposed method produced nearly 

90% accurate results even when the environmental conditions were changed. Therefore, it 

is feasible to apply the proposed technique to a greenhouse environment. 

Table 2. Examples of segmentation results from the proposed and Otsu methods. 

Case Original Otsu Method Proposed Method 

1 

2 

3 

4 

Table 3. Results on the segmentation accuracy of the proposed method. 

Method Precision Recall F1-Score 

Otsu 0.7523 0.7961 0.7736 

Proposed Method 0.8791 0.9076 0.8931 

During the cantaloupe flower segmentation process, there are instances where flower 

segmentation may be missed or the binary image may contain excessive noise. Examples 

of error segmentation cases are listed in Table 4. Specifically, Case 1 demonstrates two 

flowers that are fused together. Here, the proposed approach was unable to segment them 

and considered them as part of the same flower. Case 2 demonstrates changes in lighting 

conditions that resulted in an image with varying light and dark areas, which led to a poor 

Agriculture 2024, 14, 746 15 of 21 

significantly affected by lighting conditions and noise. In contrast, the proposed method 

could separate the border of the flower area and filter out noise in the resulting image, which 

created favourable conditions for the following process. The flower segmentation process in 

the test set was evaluated, and the results are listed in Table 3. The values in this Table are 

the average values of all 89 cases. The precision, recall, and F1-score values of the Otsu 

method were 75.23%, 79.61%, and 77.36%, whereas those of the proposed method were 

87.91%, 90.76%, and 89.31%, respectively. These results proved that the proposed method 

was superior to the Otsu method. In this experiment, the proposed method produced nearly 

90% accurate results even when the environmental conditions were changed. Therefore, it 

is feasible to apply the proposed technique to a greenhouse environment. 

Table 2. Examples of segmentation results from the proposed and Otsu methods. 

Case Original Otsu Method Proposed Method 

1 

2 

3 

4 

Table 3. Results on the segmentation accuracy of the proposed method. 

Method Precision Recall F1-Score 

Otsu 0.7523 0.7961 0.7736 

Proposed Method 0.8791 0.9076 0.8931 

During the cantaloupe flower segmentation process, there are instances where flower 

segmentation may be missed or the binary image may contain excessive noise. Examples 

of error segmentation cases are listed in Table 4. Specifically, Case 1 demonstrates two 

flowers that are fused together. Here, the proposed approach was unable to segment them 

and considered them as part of the same flower. Case 2 demonstrates changes in lighting 

conditions that resulted in an image with varying light and dark areas, which led to a poor 

2

Agriculture 2024, 14, 746 15 of 21 

significantly affected by lighting conditions and noise. In contrast, the proposed method 

could separate the border of the flower area and filter out noise in the resulting image, which 

created favourable conditions for the following process. The flower segmentation process in 

the test set was evaluated, and the results are listed in Table 3. The values in this Table are 

the average values of all 89 cases. The precision, recall, and F1-score values of the Otsu 

method were 75.23%, 79.61%, and 77.36%, whereas those of the proposed method were 

87.91%, 90.76%, and 89.31%, respectively. These results proved that the proposed method 

was superior to the Otsu method. In this experiment, the proposed method produced nearly 

90% accurate results even when the environmental conditions were changed. Therefore, it 

is feasible to apply the proposed technique to a greenhouse environment. 

Table 2. Examples of segmentation results from the proposed and Otsu methods. 

Case Original Otsu Method Proposed Method 

1 

2 

3 

4 

Table 3. Results on the segmentation accuracy of the proposed method. 

Method Precision Recall F1-Score 

Otsu 0.7523 0.7961 0.7736 

Proposed Method 0.8791 0.9076 0.8931 

During the cantaloupe flower segmentation process, there are instances where flower 

segmentation may be missed or the binary image may contain excessive noise. Examples 

of error segmentation cases are listed in Table 4. Specifically, Case 1 demonstrates two 

flowers that are fused together. Here, the proposed approach was unable to segment them 

and considered them as part of the same flower. Case 2 demonstrates changes in lighting 

conditions that resulted in an image with varying light and dark areas, which led to a poor 

Agriculture 2024, 14, 746 15 of 21 

significantly affected by lighting conditions and noise. In contrast, the proposed method 

could separate the border of the flower area and filter out noise in the resulting image, which 

created favourable conditions for the following process. The flower segmentation process in 

the test set was evaluated, and the results are listed in Table 3. The values in this Table are 

the average values of all 89 cases. The precision, recall, and F1-score values of the Otsu 

method were 75.23%, 79.61%, and 77.36%, whereas those of the proposed method were 

87.91%, 90.76%, and 89.31%, respectively. These results proved that the proposed method 

was superior to the Otsu method. In this experiment, the proposed method produced nearly 

90% accurate results even when the environmental conditions were changed. Therefore, it 

is feasible to apply the proposed technique to a greenhouse environment. 

Table 2. Examples of segmentation results from the proposed and Otsu methods. 

Case Original Otsu Method Proposed Method 

1 

2 

3 

4 

Table 3. Results on the segmentation accuracy of the proposed method. 

Method Precision Recall F1-Score 

Otsu 0.7523 0.7961 0.7736 

Proposed Method 0.8791 0.9076 0.8931 

During the cantaloupe flower segmentation process, there are instances where flower 

segmentation may be missed or the binary image may contain excessive noise. Examples 

of error segmentation cases are listed in Table 4. Specifically, Case 1 demonstrates two 

flowers that are fused together. Here, the proposed approach was unable to segment them 

and considered them as part of the same flower. Case 2 demonstrates changes in lighting 

conditions that resulted in an image with varying light and dark areas, which led to a poor 

Agriculture 2024, 14, 746 15 of 21 

significantly affected by lighting conditions and noise. In contrast, the proposed method 

could separate the border of the flower area and filter out noise in the resulting image, which 

created favourable conditions for the following process. The flower segmentation process in 

the test set was evaluated, and the results are listed in Table 3. The values in this Table are 

the average values of all 89 cases. The precision, recall, and F1-score values of the Otsu 

method were 75.23%, 79.61%, and 77.36%, whereas those of the proposed method were 

87.91%, 90.76%, and 89.31%, respectively. These results proved that the proposed method 

was superior to the Otsu method. In this experiment, the proposed method produced nearly 

90% accurate results even when the environmental conditions were changed. Therefore, it 

is feasible to apply the proposed technique to a greenhouse environment. 

Table 2. Examples of segmentation results from the proposed and Otsu methods. 

Case Original Otsu Method Proposed Method 

1 

2 

3 

4 

Table 3. Results on the segmentation accuracy of the proposed method. 

Method Precision Recall F1-Score 

Otsu 0.7523 0.7961 0.7736 

Proposed Method 0.8791 0.9076 0.8931 

During the cantaloupe flower segmentation process, there are instances where flower 

segmentation may be missed or the binary image may contain excessive noise. Examples 

of error segmentation cases are listed in Table 4. Specifically, Case 1 demonstrates two 

flowers that are fused together. Here, the proposed approach was unable to segment them 

and considered them as part of the same flower. Case 2 demonstrates changes in lighting 

conditions that resulted in an image with varying light and dark areas, which led to a poor 

3

Agriculture 2024, 14, 746 15 of 21 

significantly affected by lighting conditions and noise. In contrast, the proposed method 

could separate the border of the flower area and filter out noise in the resulting image, which 

created favourable conditions for the following process. The flower segmentation process in 

the test set was evaluated, and the results are listed in Table 3. The values in this Table are 

the average values of all 89 cases. The precision, recall, and F1-score values of the Otsu 

method were 75.23%, 79.61%, and 77.36%, whereas those of the proposed method were 

87.91%, 90.76%, and 89.31%, respectively. These results proved that the proposed method 

was superior to the Otsu method. In this experiment, the proposed method produced nearly 

90% accurate results even when the environmental conditions were changed. Therefore, it 

is feasible to apply the proposed technique to a greenhouse environment. 

Table 2. Examples of segmentation results from the proposed and Otsu methods. 

Case Original Otsu Method Proposed Method 

1 

2 

3 

4 

Table 3. Results on the segmentation accuracy of the proposed method. 

Method Precision Recall F1-Score 

Otsu 0.7523 0.7961 0.7736 

Proposed Method 0.8791 0.9076 0.8931 

During the cantaloupe flower segmentation process, there are instances where flower 

segmentation may be missed or the binary image may contain excessive noise. Examples 

of error segmentation cases are listed in Table 4. Specifically, Case 1 demonstrates two 

flowers that are fused together. Here, the proposed approach was unable to segment them 

and considered them as part of the same flower. Case 2 demonstrates changes in lighting 

conditions that resulted in an image with varying light and dark areas, which led to a poor 

Agriculture 2024, 14, 746 15 of 21 

significantly affected by lighting conditions and noise. In contrast, the proposed method 

could separate the border of the flower area and filter out noise in the resulting image, which 

created favourable conditions for the following process. The flower segmentation process in 

the test set was evaluated, and the results are listed in Table 3. The values in this Table are 

the average values of all 89 cases. The precision, recall, and F1-score values of the Otsu 

method were 75.23%, 79.61%, and 77.36%, whereas those of the proposed method were 

87.91%, 90.76%, and 89.31%, respectively. These results proved that the proposed method 

was superior to the Otsu method. In this experiment, the proposed method produced nearly 

90% accurate results even when the environmental conditions were changed. Therefore, it 

is feasible to apply the proposed technique to a greenhouse environment. 

Table 2. Examples of segmentation results from the proposed and Otsu methods. 

Case Original Otsu Method Proposed Method 

1 

2 

3 

4 

Table 3. Results on the segmentation accuracy of the proposed method. 

Method Precision Recall F1-Score 

Otsu 0.7523 0.7961 0.7736 

Proposed Method 0.8791 0.9076 0.8931 

During the cantaloupe flower segmentation process, there are instances where flower 

segmentation may be missed or the binary image may contain excessive noise. Examples 

of error segmentation cases are listed in Table 4. Specifically, Case 1 demonstrates two 

flowers that are fused together. Here, the proposed approach was unable to segment them 

and considered them as part of the same flower. Case 2 demonstrates changes in lighting 

conditions that resulted in an image with varying light and dark areas, which led to a poor 

Agriculture 2024, 14, 746 15 of 21 

significantly affected by lighting conditions and noise. In contrast, the proposed method 

could separate the border of the flower area and filter out noise in the resulting image, which 

created favourable conditions for the following process. The flower segmentation process in 

the test set was evaluated, and the results are listed in Table 3. The values in this Table are 

the average values of all 89 cases. The precision, recall, and F1-score values of the Otsu 

method were 75.23%, 79.61%, and 77.36%, whereas those of the proposed method were 

87.91%, 90.76%, and 89.31%, respectively. These results proved that the proposed method 

was superior to the Otsu method. In this experiment, the proposed method produced nearly 

90% accurate results even when the environmental conditions were changed. Therefore, it 

is feasible to apply the proposed technique to a greenhouse environment. 

Table 2. Examples of segmentation results from the proposed and Otsu methods. 

Case Original Otsu Method Proposed Method 

1 

2 

3 

4 

Table 3. Results on the segmentation accuracy of the proposed method. 

Method Precision Recall F1-Score 

Otsu 0.7523 0.7961 0.7736 

Proposed Method 0.8791 0.9076 0.8931 

During the cantaloupe flower segmentation process, there are instances where flower 

segmentation may be missed or the binary image may contain excessive noise. Examples 

of error segmentation cases are listed in Table 4. Specifically, Case 1 demonstrates two 

flowers that are fused together. Here, the proposed approach was unable to segment them 

and considered them as part of the same flower. Case 2 demonstrates changes in lighting 

conditions that resulted in an image with varying light and dark areas, which led to a poor 

4

Agriculture 2024, 14, 746 15 of 21 

significantly affected by lighting conditions and noise. In contrast, the proposed method 

could separate the border of the flower area and filter out noise in the resulting image, which 

created favourable conditions for the following process. The flower segmentation process in 

the test set was evaluated, and the results are listed in Table 3. The values in this Table are 

the average values of all 89 cases. The precision, recall, and F1-score values of the Otsu 

method were 75.23%, 79.61%, and 77.36%, whereas those of the proposed method were 

87.91%, 90.76%, and 89.31%, respectively. These results proved that the proposed method 

was superior to the Otsu method. In this experiment, the proposed method produced nearly 

90% accurate results even when the environmental conditions were changed. Therefore, it 

is feasible to apply the proposed technique to a greenhouse environment. 

Table 2. Examples of segmentation results from the proposed and Otsu methods. 

Case Original Otsu Method Proposed Method 

1 

2 

3 

4 

Table 3. Results on the segmentation accuracy of the proposed method. 

Method Precision Recall F1-Score 

Otsu 0.7523 0.7961 0.7736 

Proposed Method 0.8791 0.9076 0.8931 

During the cantaloupe flower segmentation process, there are instances where flower 

segmentation may be missed or the binary image may contain excessive noise. Examples 

of error segmentation cases are listed in Table 4. Specifically, Case 1 demonstrates two 

flowers that are fused together. Here, the proposed approach was unable to segment them 

and considered them as part of the same flower. Case 2 demonstrates changes in lighting 

conditions that resulted in an image with varying light and dark areas, which led to a poor 

Agriculture 2024, 14, 746 15 of 21 

significantly affected by lighting conditions and noise. In contrast, the proposed method 

could separate the border of the flower area and filter out noise in the resulting image, which 

created favourable conditions for the following process. The flower segmentation process in 

the test set was evaluated, and the results are listed in Table 3. The values in this Table are 

the average values of all 89 cases. The precision, recall, and F1-score values of the Otsu 

method were 75.23%, 79.61%, and 77.36%, whereas those of the proposed method were 

87.91%, 90.76%, and 89.31%, respectively. These results proved that the proposed method 

was superior to the Otsu method. In this experiment, the proposed method produced nearly 

90% accurate results even when the environmental conditions were changed. Therefore, it 

is feasible to apply the proposed technique to a greenhouse environment. 

Table 2. Examples of segmentation results from the proposed and Otsu methods. 

Case Original Otsu Method Proposed Method 

1 

2 

3 

4 

Table 3. Results on the segmentation accuracy of the proposed method. 

Method Precision Recall F1-Score 

Otsu 0.7523 0.7961 0.7736 

Proposed Method 0.8791 0.9076 0.8931 

During the cantaloupe flower segmentation process, there are instances where flower 

segmentation may be missed or the binary image may contain excessive noise. Examples 

of error segmentation cases are listed in Table 4. Specifically, Case 1 demonstrates two 

flowers that are fused together. Here, the proposed approach was unable to segment them 

and considered them as part of the same flower. Case 2 demonstrates changes in lighting 

conditions that resulted in an image with varying light and dark areas, which led to a poor 

Agriculture 2024, 14, 746 15 of 21 

significantly affected by lighting conditions and noise. In contrast, the proposed method 

could separate the border of the flower area and filter out noise in the resulting image, which 

created favourable conditions for the following process. The flower segmentation process in 

the test set was evaluated, and the results are listed in Table 3. The values in this Table are 

the average values of all 89 cases. The precision, recall, and F1-score values of the Otsu 

method were 75.23%, 79.61%, and 77.36%, whereas those of the proposed method were 

87.91%, 90.76%, and 89.31%, respectively. These results proved that the proposed method 

was superior to the Otsu method. In this experiment, the proposed method produced nearly 

90% accurate results even when the environmental conditions were changed. Therefore, it 

is feasible to apply the proposed technique to a greenhouse environment. 

Table 2. Examples of segmentation results from the proposed and Otsu methods. 

Case Original Otsu Method Proposed Method 

1 

2 

3 

4 

Table 3. Results on the segmentation accuracy of the proposed method. 

Method Precision Recall F1-Score 

Otsu 0.7523 0.7961 0.7736 

Proposed Method 0.8791 0.9076 0.8931 

During the cantaloupe flower segmentation process, there are instances where flower 

segmentation may be missed or the binary image may contain excessive noise. Examples 

of error segmentation cases are listed in Table 4. Specifically, Case 1 demonstrates two 

flowers that are fused together. Here, the proposed approach was unable to segment them 

and considered them as part of the same flower. Case 2 demonstrates changes in lighting 

conditions that resulted in an image with varying light and dark areas, which led to a poor 

Table 3. Results on the segmentation accuracy of the proposed method.

Method Precision Recall F1-Score

Otsu 0.7523 0.7961 0.7736
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During the cantaloupe flower segmentation process, there are instances where flower
segmentation may be missed or the binary image may contain excessive noise. Examples
of error segmentation cases are listed in Table 4. Specifically, Case 1 demonstrates two
flowers that are fused together. Here, the proposed approach was unable to segment them
and considered them as part of the same flower. Case 2 demonstrates changes in lighting
conditions that resulted in an image with varying light and dark areas, which led to a poor
segmentation outcome and a binary image with significant noise. The causes of missed
flower segmentation were analysed as follows. (1) In Case 1, cantaloupe flowers grew in a
climbing form because of their biological characteristics, which often causes overlapping
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where one flower covers another. This overlap results in outer flowers having significantly
more visible characteristics than those of the inner or obscured flowers. The biological
characteristics of these two flowers were almost identical, which posed challenges for the
segmentation method that led to missed segmentation. (2) In Case 2, natural lighting
conditions strongly affected the segmentation process. The proposed method struggled to
extract the characteristics of the flowers when they were photographed in poor or complex
lighting environments with alternating light and dark areas. This resulted in segmentation
problems and missed segmentation. These cases pose challenges in determining the
positions and orientations of flowers in subsequent processes, highlighting the limitations
of our method. For example, variations in lighting conditions or the influence of wind can
alter the position and shape of flowers, creating uncertainties that significantly impact the
identification and location processes. These uncertainty factors reduce the overall accuracy
of the proposed method, indicating the need for further research to develop solutions and
address existing issues in future studies.

Table 4. Examples of error segmentation cases of the proposed method.

Case Original Proposed Method

1

Agriculture 2024, 14, 746 16 of 21 

segmentation outcome and a binary image with significant noise. The causes of missed 

flower segmentation were analysed as follows. (1) In Case 1, cantaloupe flowers grew in 

a climbing form because of their biological characteristics, which often causes overlapping 

where one flower covers another. This overlap results in outer flowers having significantly 

more visible characteristics than those of the inner or obscured flowers. The biological 

characteristics of these two flowers were almost identical, which posed challenges for the 

segmentation method that led to missed segmentation. (2) In Case 2, natural lighting con-

ditions strongly affected the segmentation process. The proposed method struggled to 

extract the characteristics of the flowers when they were photographed in poor or complex 

lighting environments with alternating light and dark areas. This resulted in segmentation 

problems and missed segmentation. These cases pose challenges in determining the posi-

tions and orientations of flowers in subsequent processes, highlighting the limitations of 

our method. For example, variations in lighting conditions or the influence of wind can 

alter the position and shape of flowers, creating uncertainties that significantly impact the 

identification and location processes. These uncertainty factors reduce the overall accu-

racy of the proposed method, indicating the need for further research to develop solutions 

and address existing issues in future studies. 

Table 4. Examples of error segmentation cases of the proposed method. 

Case Original Proposed Method 

1 

2 

5.2. Evaluating the Accuracy of Determining the Growth Orientation of Cantaloupe Flowers 

Determining the growth orientation of flowers is based on identifying their key points. 

It is possible to derive the pistil and centre of gravity points through mathematical approx-

imation and image processing. An arrow representing the growth orientation of the flower 

can be derived from these two points, as shown in Figure 11. The red bounding box and 

label represent the positions and names of the individual cantaloupe flowers. The orange 

and black arrows represent the orientation of flower growth predicted by the proposed 

method and the axis containing the correct orientation of each labelled flower, respectively. 

The predicted results obtained using the proposed method were compared with the 

actual results to evaluate the effectiveness of predicting the flower growth orientation. A 

statistical analysis of the data was also conducted. The evaluation scheme was imple-

mented as follows. First, the proposed method was applied to determine the arrows rep-

resenting the growth orientation of the flower, which were then compared to the labelled 

actual arrows. Subsequently, ImageJ software version 1.54was used to measure and record 

the angle of deviation between the two arrows. The prediction of the flower’s growth ori-

entation was considered to be accurate when the deflection angle was less than 5°. A 
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5.2. Evaluating the Accuracy of Determining the Growth Orientation of Cantaloupe Flowers

Determining the growth orientation of flowers is based on identifying their key points.
It is possible to derive the pistil and centre of gravity points through mathematical approxi-
mation and image processing. An arrow representing the growth orientation of the flower
can be derived from these two points, as shown in Figure 11. The red bounding box and
label represent the positions and names of the individual cantaloupe flowers. The orange
and black arrows represent the orientation of flower growth predicted by the proposed
method and the axis containing the correct orientation of each labelled flower, respectively.

The predicted results obtained using the proposed method were compared with the
actual results to evaluate the effectiveness of predicting the flower growth orientation. A
statistical analysis of the data was also conducted. The evaluation scheme was implemented
as follows. First, the proposed method was applied to determine the arrows representing
the growth orientation of the flower, which were then compared to the labelled actual ar-
rows. Subsequently, ImageJ software version 1.54was used to measure and record the angle
of deviation between the two arrows. The prediction of the flower’s growth orientation
was considered to be accurate when the deflection angle was less than 5◦. A dataset was
developed consisting of 89 images containing flowers to conduct this experimental process,
and the results are presented in Table 5. The mean deviation angle between the arrow
formed by the proposed method and the actual angle was 3.89◦, indicating that most of the
deviation angles were below the specified threshold of 5◦. The accuracy of the method was
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approximately 86.7%. Therefore, the proposed method effectively predicted the growth
orientation of flowers within an acceptable margin of error.
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Table 5. Statistical results for determining the accuracy of growth orientation of the flower.

Case Number of
Flowers in Image

Deviation Angle
(◦)

Mean Value of All of
Deviation Angle Values Accuracy (%)

1 1 2.9

3.89 86.7

2 2 3.7; 4.1
3 2 4.4; 6.7
4 3 4.8; 3.1; 3.7
5 2 2.9; 3.7

. . . . . . . . .
85 3 3.2; 3.1; 2.9
86 2 2.1; 1.9
87 1 6.3
88 3 4.1; 6.6; 5.2
89 1 3.5

5.3. Evaluating the Accuracy of Determining the Position of Cantaloupe Flowers in 3D Space

Obtaining the position of the flower in 3D space was based on the 2D to 3D inverse-
projection and depth-estimation methods presented in Section 4. First, the position of a
point in the image frame was converted to a point in 3D space with a position relative to
the camera frame using algebraic calculations. Here, the depth of the point was obtained
using the depth estimation method. The results are shown in Figures 12 and 13, where the
pistil position was estimated in 3D space using three parameters (x, y, and z) relative to
the camera frame. Here, the camera is the origin of the coordinate at the time of taking
the ith image. The results of the proposed method were compared with the real values to
comprehensively evaluate the effectiveness of the method. Experiments were conducted in
a laboratory environment and greenhouse. For the laboratory experiment, a cantaloupe
flower was attached to a specialised angle-measuring device to change the angle of the
flower relative to the camera. The process of setting up the experimental subjects in the
laboratory is shown in Figure 12.

The results obtained in the laboratory are presented in Table 6, and those in the
greenhouse are presented in Table 7. In laboratory experiments, environmental conditions
were fixed by placing a black curtain behind the objects and fixed lighting and wind.
Meanwhile, experiments in the greenhouse, the experiment time is in the morning at about
9:00 a.m, without major changes in light and wind conditions. As shown in Tables 6 and 7,
3D position determination of the flowers could determine the position of the flowers
relative to the camera coordinate system of the ith image. The proposed method exhibited a
certain margin of error within the range of 0.1 to 1.6 cm. In fact, considering the biology of
the flower and structure of the robot’s nozzle, it was deemed acceptable for the discrepancy



Agriculture 2024, 14, 746 17 of 20

error between the proposed method and real value on the x and y axes to be less than
0.3 cm for accurate pollination. Similarly, an error of less than 1 cm on the z-depth axis was
considered acceptable for successful pollination.
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Table 6. Statistical results for determining the 3D position of a flower in the laboratory.

No.
Proposed

Method (x, y, z)
(cm)

Ground Truth
(x, y, z) (cm)

Position Error
(dx, dy, dz) (cm) Pollination Success Rate

(%)

1 8.5; 6.3; 24.5 8.7; 6.6; 25.3 0.2; 0.3; 0.8 Success

86.5%

2 6.9; 7.3; 29.6 7.1, 7.5, 30.4 0.2; 0.2; 0.8 Success
3 7.6; 8.1; 21.6 7.8; 8.4; 22.3 0.2; 0.3; 0.7 Success
4 7.8; 9.2; 27.1 7.9; 8.9; 26.2 0.1; 0.3; 0.9 Success
5 6.2; 8.7; 31.7 6.3; 6.0; 30.5 0.2; 0.3; 1.2 Fail

. . . . . . . . . . . . . . .
85 −8.6; 5.4; 31.1 −8.3; 5.5; 29.7 0.3; 0.1; 1.4 Fail
86 −7.8; 6.1; 25.6 −7.6; 6.2; 26.5 0.2; 0.1; 0.9 Success
87 9.1; −6.4; 24.3 9.4; −6.6; 25.2 0.3; 0.2; 0.9 Success
88 7.3; 10.8; 29.5 7.6; 10.6; 30.3 0.3; 0.2; 0.8 Success
89 8.9; 9.2; 26.6 9.1; 9.4; 27.5 0.2; 0.2; 0.9 Success

The laboratory was set up to determine the location of flowers. Here, a flower was
attached to a highly accurate angle-measuring device, and the object to be measured was
placed in front of a black background to minimise image noise. Experiments involving
various scenarios were conducted by adjusting the angle of the flower and its actual
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distance from the camera. The maximum value observed on the x- and y-axes was 11.2 cm,
whereas the maximum value on the z-axis was 35.7 cm. The results revealed only two
instances of pollination failure, where the values on either the x- or y-axis exceeded 0.3 cm.
In contrast, pollination failure primarily stemmed from errors in the z-axis values, with
all errors exceeding 1 cm occurring at distances greater than 30 cm. Conducting these
experiments in a laboratory environment facilitated significant reductions in interference
from brightness and complex background noise, resulting in highly practical findings.
In fact, the location was pinpointed with an accuracy of up to 86.5%, making this study
valuable for practical applications.

Table 7. Statistical results for determining the 3D position of a flower in the greenhouse.

No.
Proprosed

Method
(x, y, z) (cm)

Ground Truth
(x, y, z) (cm)

Position Error
(dx, dy, dz) (cm) Pollination Success Rate

(%)

1 10.3; 5.5; 21.1 10.1; 5.4; 21.8 0.2; 0.1; 0.7 Success

83.1%

2 −6.6; 7.1; 23.3 −6.3,7.0,23.7 0.3; 0.1; 0.4 Success
3 −7.2; 7.5; 22.2 −7.4; 7.8; 22.8 0.2; 0.3; 0.6 Success
4 5.4; −9.0; 31.6 5.4; −9.4; 33.1 0; 0.4; 1.5 Fail
5 6.1; 6.3; 29.8 6.3; 6.0; 30.5 0.2; 0.3; 0.7 Success

. . . . . . . . . . . . . . .
85 9.1; −6.4; 37.1 9.4; −6.5; 36.5 0.3; 0.1; 1.6 Fail
86 5.8; −8.1; 20.7 5.6; −7.9; 21.1 0.2; 0.2; 0.4 Success

87 −8.1; −6.8; 21.3 −8.0; −6.6;
21.9 0.1; 0.2; 0.6 Success

88 6.2; 13.8; 19.5 5.9; 13.2; 20.2 0.3; 0.7; 0.7 Fail
89 9.1; 8.4; 27.8 9.4; 8.2; 26.9 0.3; 0.2; 0.9 Success

The results obtained from the data in Table 7 reveal the following patterns for the
experiments performed in the greenhouse. Errors for the x- and y-axes mostly remained
within an acceptable range (<0.3 cm) for small values of approximately 10 cm. However,
the errors on the x- and y-axes also increased as the values gradually increased beyond
10 cm, leading to some instances of pollination failure (>0.3 cm). Similarly, in the case of
depth estimation (z axis), values near 20 cm typically exhibited acceptable errors (<1 cm).
Nonetheless, the errors increased significantly for larger depth values of approximately
30 cm. The calculations indicated that approximately 72% of failures could be attributed
to high errors in depth values in the majority of pollination failure cases. Despite these
errors resulting in some pollination failures, a statistical analysis revealed up to 83.1%
of pollination cases were successful. The results in the greenhouse were slightly poorer
because it had a slightly more chaotic environment than that of the laboratory. Overall,
most cases met the pollination requirements, demonstrating the feasibility of applying this
method to determine flower positions in 3D space in a real environment.

6. Conclusions

In this study, we proposed a novel approach utilizing threshold-based segmentation
methods and advanced image processing techniques to accurately detect the position
and orientation of cantaloupe flowers. Additionally, a multi-view imaging method was
developed to generate depth maps of the flower images. By integrating this information
into a reverse-projection model, we successfully determined the coordinates of the flowers
in three-dimensional space. The results of the experiments demonstrated the effectiveness
and feasibility of our method compared to existing approaches. Our findings built the way
for the development of innovative technologies for smart devices aimed at automating
cantaloupe flower pollination. Furthermore, this research lays the groundwork for the
advancement of equipment capable of precisely locating targets and conducting accurate
pollination tasks. Moreover, this study offers a comprehensive solution to the challenge of
transferring cognitive information to robots and automated systems involved in fruit and
vegetable pollination, leading to potential cost savings through efficient pollen utilization.
Moving forward, our future research will focus on addressing the remaining limitations
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and introducing new algorithms to further enhance the accuracy of flower detection based
on an AI platform.
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