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Abstract: (1) Background: This challenge is exacerbated by the aging of the rural population, leading
to a scarcity of available manpower. To address this issue, the automation and mechanization of
outdoor vegetable cultivation are imperative. Therefore, developing an automated cultivation plat-
form that reduces labor requirements and improves yield by efficiently performing all the cultivation
activities related to field vegetables, particularly onions and garlic, is essential. In this study, we
propose methods to identify onion and garlic plants with the best growth status and accurately
predict their live bulb weight by regularly photographing their growth status using a multispectral
camera mounted on a drone. (2) Methods: This study was conducted in four stages. First, two pilot
blocks with a total of 16 experimental units, four horizontals, and four verticals were installed for
both onions and garlic. Overall, a total of 32 experimental units were prepared for both onion and
garlic. Second, multispectral image data were collected using a multispectral camera repeating a total
of seven times for each area in 32 experimental units prepared for both onions and garlic. Simultane-
ously, growth data and live bulb weight at the corresponding points were recorded manually. Third,
correlation analysis was conducted to determine the relationship between various vegetation indexes
extracted from multispectral images and the manually measured growth data and live bulb weights.
Fourth, based on the vegetation indexes extracted from multispectral images and previously collected
growth data, a method to predict the live bulb weight of onions and garlic in real time during the
cultivation period, using functional regression models and machine learning methods, was examined.
(3) Results: The experimental results revealed that the Functional Concurrence Regression (FCR)
model exhibited the most robust prediction performance both when using growth factors and when
using vegetation indexes. Following closely, with a slight distinction, Gaussian Process Functional
Data Analysis (GPFDA), Random Forest Regression (RFR), and AdaBoost demonstrated the next-best
predictive power. However, a Support Vector Machine (SVM) and Deep Neural Network (DNN)
displayed comparatively poorer predictive power. Notably, when employing growth factors as
explanatory variables, all prediction models exhibited a slightly improved performance compared
to that when using vegetation indexes. (4) Discussion: This study explores predicting onion and
garlic bulb weights in real-time using multispectral imaging and machine learning, filling a gap in
research where previous studies primarily focused on utilizing artificial intelligence and machine
learning for productivity enhancement, disease management, and crop monitoring. (5) Conclusions:
In this study, we developed an automated method to predict the growth trajectory of onion and
garlic bulb weights throughout the growing season by utilizing multispectral images, growth factors,
and live bulb weight data, revealing that the FCR model demonstrated the most robust predictive
performance among six artificial intelligence models tested.

Keywords: field vegetables; prediction of live bulb weight; multispectral images; various vegetation
indices; growth indices; correlation analysis; functional regression models; machine learning methods;
performance evaluation measures
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1. Introduction

Agriculture plays a pivotal role in sustaining the human diet economy. The global
population is growing tremendously, leading to a substantial increase in the demand for
and supply of food. However, conventional farming methods prove insufficient to meet
these escalating requirements. Consequently, there is a pressing need for innovative auto-
mated agricultural techniques, and smart agriculture, through the application of artificial
intelligence (AI), is emerging as a key solution to the challenges that we face today. Smart
agriculture, harnessing the power of AI technologies, such as machine learning, deep learn-
ing, and statistical analysis, is crucial in addressing the complexities of modern farming.
Various aspects of agricultural processes, including crop selection, crop yield prediction,
soil suitability classification, and water management, benefit from these advanced technolo-
gies. Machine learning (ML) algorithms contribute to crop selection and management, deep
learning techniques enable crop selection and crop production forecasting, and time-series
analysis aids in forecasting crop demand, product price, and crop yield. Additionally, ML
and deep learning algorithms could be integrated to develop smart agricultural technolo-
gies for various tasks, including soil assessment and soil suitability classification. Therefore,
the adoption of cutting-edge technologies within AI in agricultural fields holds the potential
to assist farmers in producing high-quality crops. The development of the agricultural
sector will also contribute considerably to rural development. Within the agricultural sector,
diverse technologies, including disease detection, diagnosis, and soil-specific fertilizer rec-
ommendations, can be leveraged to improve agricultural practices, such as crop production,
real-time monitoring, and harvesting.

Here, we will consider the pivotal role that AI and ML technologies play in revolution-
izing smart agriculture in previous research published so far. First, we will examine review
papers that describe how artificial intelligence technology is applied to the growth status
of field crops, the effects of nitrogen and irrigation, and yield prediction. Eli-Chukwu [1]
outlines AI’s applications in soil, crop, weed, and disease management, stressing both
their potentials and constraints alongside expert system integration for enhanced produc-
tivity. Ayed and Hanana [2] showcase AI and ML’s efficacy across various agricultural
supply chain sectors, indicating a clear upward trend in their adoption to enhance the
food industries. Noteworthy contributions by Jagli et al. [3] introduce AI applications such
as sensor, robot, and drone utilization for irrigation, weeding, and spraying, collectively
aiding in resource conservation, soil fertility preservation, and improved crop productivity.
Hossen et al. [4] advocate for AI-driven automation in soil and disease management, crop
monitoring, and weed control, highlighting their potential to alleviate agricultural chal-
lenges and reduce labor-intensive tasks. Akkem et al. [5] review ML and deep learning’s
relevance in agriculture, emphasizing their role in soil fertility assessment and crop selec-
tion, including time-series analysis and prediction. Oliveira and Silva [6] document the
prevalent use of AI technologies, including ML, convolutional neural networks, and IoT,
in agriculture, while also outlining the future directions and challenges. Sharma et al. [7]
present a systematic review of ML applications in agriculture in their review paper. They
focused on a prediction of soil parameters such as organic carbon and moisture content,
crop yield prediction, and disease and weed detection in crops and species detection. They
also examine ML using computer vision to classify diverse sets of crop images to monitor
crop quality and yield assessment.

Second, we will review papers that describe the methods for predicting the raw
weight or yield of onions or garlic using statistical models or machine learning techniques.
Jeong et al. [8] prepared experimental plots where garlic and onions were grown according
to various planting times and fertilizer rates. Then, they collected RGB and multispectral
UAV images of onions and garlic at a spatial resolution of less than 1 cm to establish the
correlation between the UAV images of garlic and onions and various biophysical parame-
ters. In addition, they estimated the fresh weight of garlic and onions using two spectral
indices, vegetation fraction and 3D-based height estimation obtained using an RGB camera,
and studied the nutritional status of crops based on NDVI calculated using multispectral
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images. Lee et al. [9] assessed the climate change from 1973 to 2017 in Gyeongsangnam-
do, South Korea, and analyzed the relationship between weather conditions and onion
bulb yield from the 1991/1992 to 2016/2017 growing seasons. Through linear regression
analysis, they confirmed that temperature and precipitation were positively correlated
with onion bulb yield. Przygocka-Cyna et al. [10] verified the seasonal trend of onion
biomass and how its yield varies depending on the dynamics of nitrogen (N) and sulfur
(S) uptake based on three years of field surveys. These experimental conditions consisted
of three levels of nitrogen and three levels of sulfur absorption, and the total dry weight
(TDW), total N uptake (TNU), and total S uptake (TSU) of onions were measured at 10-day
intervals. Through experiments, they confirmed that TDW and TNU can be well explained
by using an exponential linear model and TSU by using a quadratic growth model during
the season. Desta et al. [11] conducted an experiment to evaluate the effects of three harvest
stages (60, 80, and 100% top fall), two curing levels (non-cured and cured bulbs), and
three storage methods (floor, shelf, and net bag) on the storability of the garlic variety
‘Tseday’ during 2014-2015. They conducted the experiment in a randomized complete
block design repeated three times at both sites. The results of their study showed that
harvesting at a peak drop rate of 80%, and curing and storing bulbs in racks or mesh
bags led to good yields and post-harvest quality and effective storage potential of garlic
bulbs under ambient storage conditions. Kim et al. [12] quantify onion and garlic growth
parameters using UAV-derived data, developing predictive models for bulb weight estima-
tion. Mwinuka et al. [13] evaluate thermal and multispectral imaging for assessing African
eggplant irrigation performance, highlighting the sensitivity of the crop water stress index
derived from mobile phone-based thermal images. Salari et al. [14] conducted a study at the
Agricultural Research Farm of Kabul University to study the effects of land management
practices and sowing dates on onion growth and yield. Different agronomic traits including
the number of leaves per plant, leaf length, leaf area per plant, leaf area index, normalized
difference vegetation index (NDVI), maturity period, marketable yield, and total yield were
studied in these trials. They found that the planting date had a significant effect on onion
growth and yield, but land management practices did not have a significant effect on onion
growth and maturity. Kim et al. [15] performed a garlic bulb weight estimation analysis
reflecting the characteristics of Korean garlic grown in an open field using growth survey
data. Additionally, they built a step-by-step model to predict garlic bulb weight based on
the fact that factors affecting garlic bulb weight can vary depending on the growth stage.
During the analysis process, LASSO regression analysis was used for variable selection
and coefficient estimation of garlic bulb weight. Kim and Soon [16] learned the Neural
Prophet (NP) lagged time-series model using onion and garlic data from the Korea Rural
Economic Institute. And they predicted the average fresh bulb weight of onion and garlic
using the learned NP model. The prediction results showed that the average absolute error
was within 5%.

In this study, we investigated how vegetation index and growth data derived from
multispectral imaging affect the real-time live bulb weight prediction of onions and garlic
grown in a field during the cultivation period. To implement this problem, we describe
the methods for manually collecting growth data and extracting various vegetation indices
from multispectral images. We also used concurrency regression models and various
machine learning methods to understand how the weight of raw bulbs increases during
the growing season of onions and garlic.

The structure of the paper is as follows. Section 2 describes the procedure that was
used to collect multispectral images of onions and garlic grown in each experimental
plot using a camera mounted on a drone, and collected data by directly measuring the
corresponding growth data and live bulb weight. The methods for extracting various
vegetation indexes from multispectral images, which are used to predict the fresh bulb
weight of onions and garlic, are presented. Various statistical models and ML methods that
can predict the live bulb weight based on the extracted vegetation index and growth data
are described. Section 3 describes the experimental procedure for predicting the live bulb
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weight using the R-package and compares the performance of various prediction methods.
Section 4 discuss the current problem and future works. Section 5 summarizes the research
results derived so far.

2. Materials and Methods
2.1. Study Area and Data Collection

First, to obtain the experimental data, onions and garlic were cultivated at the Chive
Vegetable Research Institute in Muan-gun, Jeollanam-do. The cultivation period spanned
from October 2022 to June 2023, and the final harvest was conducted on 2 June 2023. The
experimental field was divided into two blocks, and each block was further divided into a
total of 16 experimental plots. Figure 1 illustrates the overall structure of the experimental
plot for onions and garlic.
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Figure 1. The structure of the experimental plots for onions and garlic.

Second, four growth parameters (plant height, leaf length, leaf width, and the number
of leaves), as well as the live bulb weight of onions and garlic were measured at regular
intervals. A total of 64 measurements were taken by randomly selecting four points in
each of the 16 experimental units, and the same measurement was repeated seven times
from 14 March to 30 May. The date on which each measurement was performed, and the
measured values of each growth parameter and the live bulb weight at a particular location
are given in Table 1.

Third, multispectral images of onions and garlic growing in the experimental area were
repeatedly captured seven times using a drone, from 15 March to 31 May. The multispectral
images comprised five channels of blue, green, red, red edge, and near-infrared (NIR).
Figure 2 presents a sample multi-spectral image and its five distinct channel images.
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Table 1. Measurement dates, growth parameter values, and the live bulb weight of onions and garlic
during the cultivation period.

Crop Crop Parameters Date of Observation

3/14 4/3 4/19 5/9 5/23 5/30

Garlic

Plant height 38.25 61.63 86.25 84.25 71.00 62.75
Leaf length 7 21 27.25 36.25 36 37.75
Leaf width 10.55 14.225 16.7 14.83 14.6 12.68

No. of leaves 6.25 7.5 8 5.75 5 4
Live bulb weight 0.038 0.569 8.533 28.667 44.667 53.000

Onion

Plant height 30.08 48.13 68.75 70.00 58.75 46.33
Leaf length 3.85 5 9 17.875 18.25 19.67
Leaf width 9.8 15.38 20.9 19.03 9.63 10.67

No. of leaves 5.8 7.5 9.5 7.8 5.5 4.7
Live bulb weight 0.138 1.976 29.633 101 169.33 173.33
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2.2. Extraction of Vegetation Indexes

First, multispectral images were taken using a camera mounted on a drone to monitor
the growth status of the onion and garlic crops in the experimental area during the growth
period. The multispectral image acquired using the RedEdge-M multispectral camera
(Micasense, Seattle, WA, USA) comprised five spectral bands: Blue (475 ± 20 nm), Green
(560 ± 20 nm), Red (668 ± 10 nm), Red edge (717 ± 10 nm), and NIR (840 ± 40 nm). The
parameters related to drone flight were set with a flight altitude of 20 m, a longitudinal
overlap of 80%, and a lateral overlap of 60% for image capture. Multispectral images of
the onions and garlic growing in the experimental area were collected through repeated
filming six times from 15 March to 31 May. Figure 3 presents a sample multispectral image
of the onion and garlic experimental plots.
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Second, the methods for extracting vegetation indexes influencing the live bulb weight
from the multispectral images of onions and garlic obtained during the cultivation period
were examined [17–21]. For this task, 20 different vegetation indexes estimated from
multispectral image bands (R, G, B, Red edge, and NIR) were used. The vegetation indexes
were extracted using the numpy and skimage packages in a Python 3.8 environment. Each
of the five multispectral images taken for each treatment plot was loaded using the skimage
package, and the vegetation index was calculated by applying the relevant formula for each
vegetation index using the numpy package. Table 2 specifies the names of the extracted
vegetation indexes, their abbreviations, calculation formulas, and related references.

Table 2. Details of the multispectral vegetation indexes evaluated in the present study.

Indices Acronym Equation Reference

Chlorophyll index red CIred Rn
Rr

− 1 Gitelson et al. (2005) [22]

Chlorophyll vegetation index CVI Rn Rr
Rg

2 Vincini et al. (2008) [23]

Enhanced vegetation index EVI 2.5(R n−Rr)
Rn+6Rr−7.5Rb+1 Gitelson et al. (2005) [22]

Two-band enhanced vegetation index EVI2
2.5(R n−Rr)
Rn+2.4Rr+1

Jiang et al. (2008) [24]

Green chlorophyll index GCI Rn
Rg

− 1 Gitelson et al. (2005) [22]

Green normalized difference vegetation index GNDVI Rn−Rg
Rn+Rg

Hunt & Daughtry (2018) [25]

Green ratio vegetation index GRVI Rn
Rg

Sripada et al. (2006) [26]

Modified excess green MEXG 1.262Rg − 0.884Rr − 0.311Rb Burgos-Artizzu et al. (2011) [27]

Modified normalized green–red difference MNGRD Rg
2−Rr

2

Rg
2+Rr

2 Bendig et al. (2015) [28]

Normalized difference red edge NDRE Rn−Rre
Rn+Rre

Wang et al. (2014) [29]

Normalized difference vegetation index NDVI Rn−Rr
Rn+Rr

Gitelson et al. (2005) [22]

Normalized green–red difference NGRD Rg−Rr
Rg+Rr

Hamuda et al. (2016) [30]

Optimized soil adjusted vegetation index OSAVI Rn−Rr
Rn+Rr+0.16 Roundeaux et al. (1996) [31]

Pigment-specific normalized vegetation index PSND Rn−Rb
Rn+Rb

Blackbum (1998) [32]

Renormalized difference vegetation index RDVI Rn−Rr

(R n−Rr)
0.5 Roujean & Breon (1995) [33]

Red-edge chlorophyll index RECI Rn
Rre

− 1 Gitelson et al. (2005) [22]

Ratio vegetation index RVI Rn
Rr

Gitelson et al. (2005) [22]

Soil adjusted vegetation index SAVI 1.5(Rn−Rr)
Rn+Rr+0.5 Zhong et al. (2019) [34]

Simplified canopy chlorophyll content index SCCCI NDRE
NDVI Raper & Varco (2015) [35]

Triangular greenness index TGI Rg − 0.39Rr − 0.61Rb Hunt et al. (2011) [36]

2.3. Prediction of the Live Bulb Weight

A correlation analysis method was designed to determine how the different vegetation
indexes and growth data were related to the live bulb weight. Statistical regression models
and ML methods capable of accurately predicting the live bulb weight were also examined.
Particularly, we considered two functional simultaneous regression model-based meth-
ods, namely the Spline Smoothing-based method and Gaussian Process Regression-based
method, and four ML methods, including Support Vector Regression, Random Forest
Regression, AdaBoost, and Deep Neural Network, were examined.
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2.3.1. Correlation Analysis

Generally, a statistical method that analyzes the correlation between two real variables,
such as vegetation index and the live bulb weight, is called correlation analysis. Here, a
measure of the correlation between the two variables, X and Y, was represented as the
correlation coefficient defined as follows:

ρ =
Cov(X, Y)

SD(X)× SD(Y)
, (1)

where Cov(X, Y) denotes the covariance of X and Y, and SD(X) and SD(Y) denote the
standard deviation of X and Y, respectively. Furthermore, when n observed values for two
variables (X, Y) are denoted as (x1, y1), · · · , (xn, yn), the population correlation coefficient
ρ is estimated as the sample correlation coefficient defined as follows.

r =
∑n

i=1 (xi − x)(yi − y)√
(xi − x)2

√
(yi − y)2

. (2)

Next, the problem of testing whether a relationship exists between the two variables
was considered. First, the statistical hypothesis for the correlation coefficient is given
as follows.

H0 : ρ = 0 (No correlation exists) versus H1 : ρ ̸= 0 (Correlation exists).
Second, the test statistic and rejection area at significance level α were defined as follows.

|T| =
∣∣∣∣∣
√

n − 2√
1 − r2

r

∣∣∣∣∣ ≥ t α
2
(n − 2), (3)

where t α
2
(n − 2) represents the percentile of the t-distribution with (n − 2) degrees of freedom.

2.3.2. Nonparametric Functional Concurrent Regression Model

Generally, function-to-function regression refers to a situation where both independent
and dependent variables in a regression model are of a functional nature. Functional
concurrent regression is a specific type of function-to-function regression that relates the
response function at a specific point to the covariate value at that point and the point
itself [24,37–47]. Standard functional concurrent models are linear (a linear combination
of the covariates is used), and are often criticized for their linearity assumption and lack
of flexibility. To address this issue, a nonparametric functional concurrent regression
that models the response function at a specific point using a multivariate non-parametric
function of both the point and the covariate value at that point was considered. Such
models offer heightened flexibility and predictive accuracy, especially when the underlying
relationship is nonlinear.

Here, the nonparametric consistency regression model is expressed as a mathematical
formula. The observed data for ith subjects was assumed to be

{
Yi(t), Xi1(t), · · · , XiQ(t)

}
( i = 1, · · · , n), where Yi(t) represents the functional response for t = t1, · · · , tm and
Xi1(t), · · · , XiQ(t) for t = t1, · · · , tm are the Q corresponding functional covariates. The
general form of an additive nonlinear functional concurrent model with Q covariates is
defined as follows:

Yi(t) = µY(t) + ∑Q
q=1 Fq

{
Xiq(t), t

}
+ ϵi(t), i = 1, · · · , n (4)

where µ(t) is an unknown intercept function, and FqK, q = 1, · · · , Q are unknown bivariate
smooth functions.

Here, the methods for estimating the unknown intercept function µ(t) and unknown
bivariate smooth function Fq

{
Xiq(t), t

}
given in model (1) were examined. Generally, there
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are three methods for estimating these two functions: a Spline Smoothing-based method, a
Gaussian Process Regression-based method, and a Kernel Smoothing-based method.

First, an estimation method based on Spline Smoothing was considered. In the model-
ing process, {Bµ,d(t)}

Kµ

d=1. was considered to be a set of univariate B-spline basis functions
defined on [0, 1], where Kµ represents the basis dimensions. Based on these basis functions,

µY(t) = ∑
Kµ

d=1 Bµ,d(t)θµ,d = BT
µ(t)Θµ, where Bµ(t) is the Kµ-dimensional vector of Bµ,d(t)’s,

and Θµ is the vector of unknown parameters θµ,d’s. Furthermore, Fq
{

Xiq(t), t
}

was mod-
eled as a bivariate basis expansion using a tensor product of univariate B-spline basis

functions. For q = 1, · · · , Q, the B-spline basis functions {BXq ,k(x)}
Kxq
k=1. and {BTq ,l(t)}

Ktq
l=1.

were employed for x and t, respectively, and were used to model Fq
{

Xiq(t), t
}

. Thus,
Fq
{

Xiq(t), t
}

was represented as follows:

Fq
{

Xiq(t), t
}
= ∑

Kxq
k=1 ∑

Ktq
l=1 θq,k,l BXq ,k(x)BTq ,l(t) = ZT

i,q(t)Θq, (5)

where ZT
i,q(t) is the Kxq Ktq -dimensional vector of Bi,Xq ,k(x)BTq ,l(t), and Θq is the vector of

unknown parameters, θi,k,l’s. Based on the above expansions, model (1) was expressed
as follows:

Yi(t) = BT
µ(t)Θµ + ∑Q

q=1 ZT
i,q(t)Θq + ϵi(t) (6)

In this representation, a large number of basis functions were expected to result in a
better but rougher fit, while a small number of basis functions were expected to result in an
overly smooth estimate. Inconsistent with the literature, a large number of basis functions
were employed to fully capture the complexity of the functions, and the coefficients were
penalized to ensure the smoothness of the resulting fit. Consequently, a criterion that
incorporates penalty functions for parameter vectors was considered.

Here, Θµ and Θq, q = 1, · · · , Q were estimated by minimizing a penalized criterion
as follows:

L(Θ) = ∑n
i=1 ∥ Yi(t)− (BT

µ(t)Θµ + ∑Q
q=1 ZT

i,q(t)Θq) ∥2 + ΘT
µPµΘµ + ∑Q

q=1 ΘT
q PqΘq (7)

where Pµ and Pq, q = 1, · · · , Q are the penalty matrices for the smoothness of µY(t) and
Fq
{

Xiq(t), t
}

, q = 1, · · · , Q, respectively, and contain penalty parameters that regularize
the trade-off between the goodness of fit and the smoothness of fit. The minimization of
L(Θ) was straightforward. A closed-form expression of the estimator is as follows:

Θ̂ =
(
∑n

i=1 Z
T
i Zi + P

)−1
∑n

i=1 Z
T
i Yi (8)

where Yi = [Yi(t1), · · · , Yi(tm) ]
T and Zi =

[
Bµ

∣∣Zi,1
∣∣· · ·∣∣Zi,Q

]
. The penalty parameters

can be determined based on Generalized Cross-Validation (GCV) or restricted maximum
likelihood (REML).

Finally, the prediction of response trajectory when a new covariate and its evaluation
points are given was considered. Considering that a new unknown response Ynew(t) is
obtained based on new observations

[
X1,new(t), · · · , XQ,new(t)

]
, then, this new response

can be predicted using the following equation:

Ŷnew(t) = ∑Kµ

d=1 Bµ,d(t)θ̂µ,d + ∑Q
q=1 ∑Kx,q

k=1 ∑Kt,q
l=1 BX,q,k(Xq,new(t))BT,q,l(t)θ̂q,k,l (9)

where θ̂µ,d and θ̂q,k,l are estimated based on the above formula.
Second, an estimation method based on Gaussian Process Regression was explored. A

Gaussian process is a set of random variables, where any finite subset follows a multivariate
normal distribution. Such a process via GP{m(·), C(·, ·)}, where m(·) and C(·, ·) are the
mean and covariance functions, respectively. A realization X(·) from such a process is a
random function with E(X(x)) = m(x) and Cov(X(x), X(x′)) = C(x, x′), where x and x′ are
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points in the domain of the process. Furthermore, for any finite set of points x1, · · · , xn, the
vector (X(x1), · · · , X(x n))

T followed a multivariate normal distribution.
Given a dataset consisting of n data points {yi, xi, i = 1, · · · , n}, where for each i, xi

is a Q-dimensional vector of inputs, and yi is the output, a Gaussian Process Regression
model is defined as follows:

Yi = f (xi) + ϵi, (10)

where ϵi ∼ N(0, σ2) is an error term. The unknown function f (xi) is a nonlinear function
of xi. The prior for this function was assumed to correspond to a Gaussian process, i.e., for
each i, f (xi) followed a multivariate normal distribution with zero mean, and there existed
a covariance function C

(
xi, xj

)
= Cov

(
f (xi), f

(
xj
))

. An example of such a covariance
function is as follows:

C
(
xi, xj

)
= C

(
xi, xj; θ

)
= v0exp

(
−1

2∑Q
q=1 wq

(
xiq − xjq

)2
)
+ a0 + a1

′

∑Q
q=1 xiqxjq (11)

where θ =
(
w1, · · · , wQ, v0, a0, a1

)
denotes the set of unknown parameters. Therefore,

Y = (y1, · · · , yn) followed a normal distribution with zero mean and a covariance matrix
as follows:

Ψ(θ) = C(θ) + σ2
v I (12)

where I is an identity matrix, C(θ) is an (n × n) matrix with elements as given in (11), and
Ψ(θ) is an (n × n) matrix.

Shi et al. [45] developed a Gaussian Process Regressions framework for nonparametric
concurrent models as follows:

Yi(t) = ZT
i β(t) + Fi

{
Xi1(t), · · · , XiQ(t)

}
+ ϵi(t), (13)

where β(t) is a vector of unknown coefficient functions, and Fi
{

Xi1(t), · · · , XiQ(t)
}

is
the Gaussian process with zero mean and covariance kernel function C

(
xi, xj

)
xi = xi(t).

The model components were estimated using a two-stage approach. In the first stage,
each observed response curve was smoothed using a B-spline function: Yi(t) = ΦT(t)Ai,
where Φ(t) =

[
Φ1(t), · · · , ΦQ(t)

]T are B-spline basis functions, and Ai is a Q × 1 vector

of coefficients. These coefficients were estimated by minimizing
∫
(Yi(t)− ΦT(t)Ai)

2
dt

with respect to Ai for each i = 1, · · · , n. The unknown coefficient function β(t) was also
modeled using a B-spline basis function: β(t) = ΦT(t)B, where B is a matrix of unknown
coefficients. The matrix B was estimated as

(
ZTZ

)−1ZT A, where Z = [Z1, · · · , Zn]
T and

similar calculations were performed for A. In the second stage, the residuals from the first
stage were computed as follows:

∼
Fi
{

Xi1(t), · · · , XiQ(t)
}
= Yi(t)− ZT

i β̂(t). (14)

Then,
∼
Fi
{

Xi1(t), · · · , XiQ(t)
}

was modeled through a Gaussian process with the co-
variance function C(x, x′ : θ). The covariance components involved in C(·) were estimated
either through Maximum Likelihood Estimation (MLE) or using a Bayesian approach.

Next, the generation of a prediction y∗ at a new test point (t∗, x∗) with x∗ = x(t∗) was
considered. Using Equation (11), the predicted value was given by ŷ∗ = ZT

i β̂(t∗) + F̂i{x∗},
where F̂i{x∗} is predicted by its conditional mean E(Fi{x∗}|D) through the Gaussian
process with the estimated covariance function C

(
x, x′ : θ̂

)
.

2.3.3. Machine Learning Methods

The first method, Support Vector Regression (SVR), was initially proposed by
Drucker et al. [48]. It is a variant of support vector machines (SVMs), a popular algo-
rithm for classification tasks. SVR extends an SVM’s capabilities to solve regression prob-
lems by optimizing an epsilon-insensitive loss function. SVR is an algorithm that aims
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to discover the optimal fit for a given dataset. It operates by constructing a hyperplane
in high-dimensional feature space to maximize the margin around training data points
while minimizing the error on unseen data points. Unlike other regression models that
minimize the error across all data points, SVR focuses on minimizing the error within a
specific margin.

The second method, Random Forest Regression (RFR), is a supervised learning al-
gorithm that uses an ensemble learning method for regression [49] as shown in Figure 4.
The ensemble learning method is a technique that combines predictions from multiple
ML algorithms to generate predictions that are more accurate than those generated by a
single model.
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The RFR model is renowned for its robustness and accuracy, excelling across various
problem domains, especially those involving features with non-linear relationships. How-
ever, it comes with notable drawbacks, including a lack of interpretability, susceptibility to
overfitting, and the need to choose the number of trees for inclusion in the model.

The third method, Adaptive Boost (AdaBoost), is an algorithm that sets the initial
model as a weak model. Subsequently, it uses weights at each step to sequentially fit
a new model that compensates for the weaknesses of the previous model. The final
model is created by linearly combining these sequentially fitted models. At every step,
AdaBoost increases the weight of data with large errors or misclassification in the previous
learning data, while reducing the weight of data with low errors or correct classification. By
iteratively adjusting the weights and extracting new training data, AdaBoost emphasizes
previously mispredicted data, resulting in a model that predicts them more accurately.
Originally introduced for binary classification by Freund and Schapire [50], AdaBoost has
been adapted for regression problems. Its success in delivering accurate ensembles and its
resistance to overfitting led Breiman to call AdaBoost the “best off-the-shelf classifier in the
world” (NIPS Workshop 1996) [51].

The fourth method is based on an Artificial Neural Network (ANN) or a simple
traditional neural network, which aims to solve trivial tasks using a straightforward
network outline. An ANN is loosely inspired by biological neural networks. It is a
collection of layers to perform a specific task. Each layer consists of a collection of nodes
that operate together. Typically comprising an input layer, one to two hidden layers, and
an output layer, ANNs are suited for solving basic mathematical and computer problems,
including fundamental gate structures with their respective truth tables. However, they
face challenges when applied to complex tasks like image processing, computer vision,
and natural language processing. In contrast, Deep Neural Networks (DNNs) feature a
more intricate hidden layer structure, encompassing various layers, such as a convolutional
layer, max-pooling layer, dense layer, and other unique layers [52]. These additional layers
enhance the model’s ability to understand complex problems and provide optimal solutions.
A DNN has more layers (more depth) than an ANN, and each layer adds complexity to the
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model and enables the model to process the inputs concisely to provide the ideal solution
as the output. DNNs have garnered extremely high traction due to their high efficiency in
handling a wide variety of deep-learning projects.

3. Experimental Results
3.1. Graphical Interpretation and Correlation Analysis

First, the relationships between the 20 vegetation indexes and the four growth param-
eters (plant height, leaf length, leaf width, and the number of leaves) were investigated
using graph analysis and correlation analysis. Figure 5 presents scatter plots indicating the
relationship between four growth characteristics and the NDVI, a representative vegetation
index extracted from the multispectral images of onions and garlic. Figure 5 indicates that
plant height, leaf width, and the number of leaves exhibited a highly positive correlation
with the NDVI, while the leaf length exhibited a comparatively limited correlation with the
NDVI, depending on the duration of cultivation.
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Next, correlation analysis was conducted to determine the relationship between the
20 vegetation indexes and the four growth parameters. As shown in Table 3, three of
the growth parameters, excluding the leaf length, exhibited a very high correlation with
the 20 vegetation indexes. Notably, the leaf length exhibited a low correlation with the
20 vegetation indexes. The vegetation indexes that exhibited the highest correlation with
the growth parameters were the NDRE, RDVI, PSND, and NDVI, which are commonly
used indexes for determining the crop growth status. These findings are consistent with
the observations derived from the scatter plots.

Second, graph analysis and correlation analysis were conducted to determine the
relationships between the studied vegetation indexes and live bulb weight during the
growing season of onions and garlic. Figure 6 visually illustrates the relationship between
various vegetation indexes and the live bulb weights of onions and garlic. Figure 6 clearly
indicates an overall negative correlation between the live bulb weight and vegetation
indexes during the growing period. This observation is consistent with the fact that, as the
stems and leaves of onions and garlic mature, they gradually dry out, leading to a decrease
in the extracted vegetation indexes.
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Table 3. Correlation coefficients for the relationships between four growth parameters and 20
vegetation indexes (Bold number is highest score in the column).

Index

Garlic Onion

Plant
Height

Leaf
Length

Leaf
Width

No. of
Leaves

Plant
Height

Leaf
Length

Leaf
Width

No. of
Leaves

CIred 0.754 0.179 0.827 0.713 0.611 −0.005 0.663 0.584
CVI 0.768 0.329 0.707 0.472 0.635 −0.096 0.745 0.750
EVI 0.693 0.051 0.837 0.830 0.803 0.150 0.830 0.777

EVI2 0.731 0.097 0.842 0.804 0.820 0.179 0.830 0.788
GCI 0.794 0.220 0.841 0.696 0.666 −0.011 0.732 0.673

GNDVI 0.795 0.207 0.843 0.717 0.781 0.111 0.806 0.787
GRVI 0.794 0.220 0.841 0.696 0.666 −0.011 0.732 0.673

MEXG 0.661 0.136 0.764 0.713 0.827 0.650 0.591 0.519
MNGRD 0.694 0.120 0.812 0.755 0.782 0.249 0.731 0.645

NDRE 0.763 0.166 0.868 0.771 0.733 0.017 0.808 0.780
NDVI 0.777 0.187 0.848 0.742 0.821 0.211 0.800 0.765
NGRD 0.694 0.121 0.811 0.752 0.769 0.235 0.722 0.634
OSAVI 0.753 0.131 0.848 0.785 0.827 0.201 0.821 0.782
PSND 0.859 0.383 0.815 0.567 0.870 0.326 0.782 0.778
RDVI 0.704 0.072 0.825 0.809 0.845 0.241 0.833 0.795
RECI 0.757 0.162 0.864 0.763 0.671 −0.045 0.770 0.714
RVI 0.754 0.179 0.827 0.713 0.611 −0.005 0.663 0.584

SAVI 0.733 0.101 0.842 0.802 0.828 0.196 0.831 0.790
SCCCI 0.552 0.064 0.715 0.693 0.474 −0.297 0.677 0.731

TGI 0.632 0.186 0.670 0.589 0.670 0.810 0.337 0.297
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In addition, we calculated the correlation coefficient to numerically confirm that there
is a negative correlation between the live bulb weight and vegetation index, which we
identified from the above scatter plot. From Table 4 given below, we can see that most of
the vegetation indices have a strong negative correlation with the live bulb weight.

Third, graph analysis and correlation analysis were conducted to determine the re-
lationship between the four growth parameters and the live bulb weights of onions and
garlic during the cultivation period. Figure 7 visually illustrates the relationships between
the four growth characteristics of onions and garlic and the fresh bulb weight. The results
indicate that as onions and garlic grow, the values of the three growth factors, excluding
stem length, exhibit a negative correlation with the weight of the fresh bulb. On the other
hand, only the leaf length exhibits a positive correlation with the bulb weight.
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Table 4. Correlation coefficients for the relationships between live bulb weight and 20 vegetation indexes.

Crop Index r Index r Index r Index r

Garlic

EVI −0.88213 SAVI −0.86864 RECI −0.82706 GNDVI −0.79407
MNGRD −0.87429 RDVI −0.86652 CIred −0.81859 TGI −0.73566
NGRD −0.87265 OSAVI −0.85837 RVI −0.81859 PSND −0.73122
EVI2 −0.87170 NDVI −0.83005 GCI −0.79714 SCCCI −0.63974

MEXG −0.87026 NDRE −0.82949 GRVI −0.79714 CVI −0.60588

Onion

SCCCI −0.81404 EVI −0.78047 NDVI −0.76211 CIred −0.64783
NDRE −0.80220 OSAVI −0.77935 PSND −0.74064 RVI −0.64783

CVI −0.78715 EVI2 −0.77855 GRVI −0.72242 NGRD −0.63909
GNDVI −0.78523 RDVI −0.77170 GCI −0.72242 MEXG −0.17486

SAVI −0.78135 RECI −0.76769 MNGRD −0.64898 TGI 0.45755
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Additionally, the correlation coefficient was calculated to numerically substantiate the
positive correlation observed in the scatter plots depicting the relationships between the
live bulb weight and vegetation indexes. The correlation coefficients presented in Table 5
indicate a negative correlation between the live bulb weight and three of the growth factors,
excluding the leaf length. On the other hand, among the growth factors studied, only the
leaf length exhibited a positive correlation with the live bulb weight. This is consistent with
the observations derived from the scatter plots.

Table 5. Hyperparameters of each machine learning algorithm.

DNN SVR RFR AdaBoost

Hyper
Parameters Value Hyper

Parameters Value Hyper
Parameters Value Hyper

Parameters Value

optimizer adam C 10 n_estimators 100 n_estimators 100
learning rate 0.07 epsilon 0.2 criterion squared_error loss linear

loss mse kernel linear max_depth 8
epochs 100

batch_size 8

3.2. Prediction of the Live Bulb Weight

First, 20 vegetation indexes were used as the input variables and two types of statistical
regression models and four types of ML models were considered for predicting the raw
weight of onions and garlic. To visually assess the prediction power of these models,
two-dimensional scatter plots comparing the actual observed and predicted values were
generated. Figure 8 illustrates the performance of the six prediction models. The results
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clearly indicate that FCR and RFR have the best prediction ability, followed by AdaBoost
and SVR, while Gaussian Process Functional Data Analysis (GPFDA) and DNN have the
lowest prediction ability.
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Second, to predict the fresh bulb weight of onions and garlic, four growth factors (plant
height, leaf width, leaf length, and number of leaves) were used as the input variables, and
two types of statistical regression models and four types of ML models were considered.
Two-dimensional scatter plots comparing the actual observed and predicted values were
generated to visually present the prediction power of the models. Figure 9 clearly depicts
that, in the case of onions, FCR and GPFDA have the best prediction ability, followed
by RFR and AdaBoost, while SVM and DNN have the lowest prediction ability. On the
other hand, in the case of garlic, FCR has the best prediction ability, followed by RFR and
AdaBoost, while GPFDA, SVM, and DNN have a comparatively poorer prediction ability.

Third, the following four measures were considered to quantitatively evaluate the
prediction accuracy of the two types of statistical regression models and four types of
machine learning models used to predict the fresh bulb weight of onions and garlic in
this paper. These are the coefficient of determination (R2), root mean square error (RMSE),
normalized root mean square error (nRMSE), and mean absolute percentage error (MAPE),
respectively.
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R2 = 1 −
(

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2

)
, RMSE =

√
∑n

i=1(yi − ŷi)
2

n − p − 1
, nRMSE = 100 × RMSE

y
, MAPE =

100
n

× ∑n
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (15)

where SSE is the sum of square error, SST is the total sum of square, and n is the number
of observations.
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Fourth, the onion and garlic fresh bulb weight prediction performance of the six
prediction models was quantitatively analyzed using four indicators. Hyperparameters
for each machine learning algorithm are listed in Table 5. For the training and testing, we
randomly shuffled the entire dataset and utilized 80% as training data, 20% as test data

Table 6 shows the four measurement values corresponding to the six prediction
models used for predicting the live bulb weight of onions and garlic when 20 vegetation
indexes were used as input variables. These indexes were obtained from images captured
over multiple dates and calculated from those images. For each date of image capture,
20 vegetation indices were calculated, resulting in 20 vegetation values measured on the
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same date. The results clearly indicate that the FCR model has the best prediction power,
the RFR and AdaBoost models have the second-best prediction power, and the SVR and
DNN models have the third-best prediction power, while the GPFDA model has the poorest
prediction power.

Table 6. Predictions of live bulb weight using 20 vegetation indexes.

Crop Model R2 RMSE nRMSE MAPE

Garlic

FCR 0.962 3.233 15.108 13.283
GPFDA 0.795 10.383 48.856 39.654

SVR 0.916 5.750 25.182 19.688
RFR 0.940 4.868 21.610 14.757

AdaBoost 0.952 4.390 19.487 12.927
DNN 0.938 4.989 22.145 16.217

Onion

FCR 0.973 11.413 12.495 9.428
GPFDA 0.852 52.764 49.319 39.490

SVR 0.774 38.498 37.006 27.215
RFR 0.953 21.161 20.341 12.310

AdaBoost 0.960 19.600 18.840 11.858
DNN 0.902 29.372 28.233 19.438

Table 7 shows the four measurement values corresponding to the six prediction models
used for predicting the live bulb weight of onions and garlic when four growth factors were
used as the input variables. The results indicate that the FCR model has the best prediction
power, the RFR and AdaBoost models have the second-best prediction power, and the SVR
and GPFDA models have the third-best prediction power, while the DNN model has the
poorest prediction power.

Table 7. Predictions of live bulb weight using growth factor items.

Crop Model R2 RMSE nRMSE MAPE

Garlic

FCR 0.993 2.024 9.459 7.744
GPFDA 0.896 6.838 32.176 20.253

SVR 0.902 6.150 27.302 18.918
RFR 0.936 5.237 23.247 15.350

AdaBoost 0.930 5.358 23.784 15.219
DNN 0.850 7.475 33.182 24.404

Onion

FCR 0.995 7.782 8.520 7.157
GPFDA 0.980 15.116 14.129 4.111

SVR 0.913 27.281 26.223 19.043
RFR 0.955 20.074 19.295 11.764

AdaBoost 0.949 21.842 20.995 14.548
DNN 0.907 26.810 25.771 16.809

Together, the results of the two types of analyses revealed that using the four growth
factors rather than the 20 vegetation indexes as the input variables resulted in improved
live bulb weight prediction for both onions and garlic. Moreover, the prediction power of
the six prediction models maintained a consistent ranking, irrespective of whether growth
factors or vegetation indexes were used as the input variables.

4. Discussion

Previous studies have primarily utilized artificial intelligence and machine learn-
ing technologies for productivity enhancement, disease management, and crop monitor-
ing [1–7]. Additionally, attempts have been made to use UAVs and spectral images to
acquire various biological parameters [17–21]. However, not much research has been
conducted so far on predicting the weight of onion and garlic bulbs in real time.
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This study was conducted in four stages. First, two pilot blocks each were selected
for both onions and garlic, with each block comprising a total of 16 experimental units,
four horizontals and four verticals. Thus, a total of 32 experimental units were prepared
for both onions and garlic. Second, image data were collected using a multispectral
camera, which was repeated a total of seven times for each area in the 32 experimental
units prepared for both onions and garlic. Simultaneously, growth data and the live bulb
weight at the corresponding points were recorded manually. Third, correlation analysis
was conducted to determine the relationship between various vegetation indexes extracted
from multispectral images and the manually measured growth data and live bulb weights.
Fourth, based on the vegetation index extracted from multispectral images and previously
collected growth data, we proposed a method to predict the live bulb weight of onions and
garlic in real time during the cultivation period using a functional concurrence regression
model and ML techniques.

The academic value and applicability of our research results described in this paper
are as follows. First, our findings can inform agricultural practices aimed at optimizing
the cultivation of onions and garlic. By understanding the factors influencing the weight
of fresh bulbs during the growth period, farmers can adjust their cultivation methods,
such as irrigation, fertilization, and pest control, to enhance the yield and quality. Second,
our study contributes to the advancement of machine learning applications in agriculture.
The development of predictive models for onion and garlic bulb weight estimation opens
avenues for the creation of decision support systems for farmers. These systems can provide
real-time recommendations based on environmental conditions and crop characteristics,
aiding in more precise and efficient farming practices. Third, our research results can be
applied to various fields beyond agriculture. Third, our research results can be applied
to various fields beyond agriculture. The methodologies and techniques employed, such
as image analysis and machine learning algorithms, can be adapted for the monitoring
and managing of various other crops and plant species. This broader application potential
underscores the significance of our research in advancing technology-driven solutions for
sustainable agriculture and food security.

5. Conclusions

In this study, we introduced an automated method to predict the growth trajectory of
onion and garlic bulb weights during the growing season. To establish this method, data,
including multispectral images, growth factors, and the live bulb weight, were collected
at consistent intervals from planting to harvest. Subsequently, six artificial intelligence
models were employed to predict the live bulb weight based on 20 vegetation indexes
derived from multispectral images, pre-collected growth factors, and live bulb weight data.
The experimental results revealed that the FCR model showed the most robust prediction
performance both when using four growth factors and when using 20 vegetation indexes.
Following closely, with a slight distinction, GPFDA, RFR, and AdaBoost exhibited the
next-best predictive power. However, SVM and DNN displayed comparatively poorer
predictive power. Notably, when using the four growth factors as explanatory variables, all
the predictive models exhibited improved prediction performance compared to that when
using the 20 vegetation indexes.
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