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Abstract: Coastal environments are dynamic ecosystems, constantly subject to erosion/accretion
processes. Erosional trends have unfortunately been intensifying for decades due to anthropic factors
and an accelerated sea level rise might exacerbate the problem. It is crucial to preserve these areas for
safeguarding not only coastal ecosystems and cultural heritage, but also the population living there. In
this context, monitoring coastal areas is essential and geomatics techniques, especially satellite remote
sensing imagery, might prove very advantageous. In this paper, a semi-automatic methodology to
extract shorelines from SAR (Synthetic Aperture Radar) Sentinel-1 and optical Sentinel-2 satellite
images was developed. An experimental algorithm, called J-Net Dynamic, was tested in two pilot
sites. The semi-automatic methodology was validated with GNSS (Global Navigation Satellite
System) reference shorelines and demonstrated to be a powerful tool for a robust extraction of the
shoreline both from optical and SAR images. The experimental algorithm was able to extract the
shoreline closer to the reference with SAR images on the natural beach of Castelldefels and it was
demonstrated to be less sensitive to speckle effects than the commonly used Canny Edge Detector.
Using the SAR images of the urban beach of Somorrostro, the Canny detector was not able to extract
the shoreline, while the new algorithm could do it but with low accuracy because of the noise induced
by man-made structures. For further investigation, the Sentinel-2-extracted shorelines were also
compared to the ones extracted by a state-of-the-art tool, CoastSat, in the two beaches using both
automatic and manual thresholds. The mean errors obtained with J-Net Dynamic were generally
higher than the ones from CoastSat using the manual threshold but lower if using the automatic one.
The proposed methodology including the J-Net Dynamic algorithm proves to extract the shorelines
closer to the reference in most of the cases and offers the great advantage of being able to work
with both optical and SAR images. This feature could allow to reduce the time lag between satellite
derived shorelines paving the way to an enhanced monitoring and management of coastal areas.

Keywords: remote sensing; synthetic aperture radar (SAR); multispectral images; coastal erosion; shoreline
extraction; satellite images; canny edge detection; CoastSat; active connection matrix (ACM); GNSS

1. Introduction and State of the Art

The coastal zone represents one of the most populated and developed areas in the
world [1]. It has rich biodiversity and more than 45% of world’s population lives there [2].
It has always been the subject of human attraction because of their resources, starting from
economic reasons, as it includes the main access points to marine trade and transport, to cul-
tural activities and cultural heritage. For these reasons, coastal zones have been growing and
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developing continuously and their utilisation has greatly increased during recent decades [3].
This led inevitably to many changes in the coastal environment not only from the point of
view of the appearance, but also of the biodiversity of the entire ecosystem. The coastal zone
is, at the same time, a vulnerable environment. The hazards, such as hurricanes, storms and
tsunami, represent significant threats to the population, infrastructure and to the environment
itself. There are also other hazards which are not visible or produce long-term effects, such as
rising sea levels and coastal erosion. According to some authors [4,5], global mean sea level
has risen about 20 cm since 1880 and this process is accelerating. It was of 1.4 mm per year
throughout most of the twentieth century increasing to 3.6 mm per year in 2006–2015. Even if
the world follows a low CO2 emission trend, the global sea level will likely rise at least 0.3 m
by 2100. On the contrary, if it follows a pathway with high emissions, a worst-case scenario of
as much as 1.1 m by 2100 is possible [4].

The water level is rising mostly because of a combination of meltwater from glaciers
and ice sheets and thermal expansion of seawater as it warms [5]. Sea level rise during
the 21st century will increase inundation episodes and erosion processes [4]. The latter
implies a natural displacement of sand from the dry beach in the offshore direction into
deeper waters or in the alongshore direction into other coastal stretches. It can be caused by
natural factors such as storms or sea level rise or for anthropogenic reasons, mainly related
to the construction of dams in rivers (limiting sediment availability) and of infrastructures
in the coastal zone. Other factors such as accelerated urbanization and intensive economic
and tourist activities also play a role.

A global and consistent evaluation of coastal morphodynamics over 32 years, from 1984
to 2015, based on satellite observations was studied in [6]. The authors used more than
2 million virtual transects in the coastal active zone to estimate the land losses and gains. The
coastal active zone is the most dynamic part of the coast and it is defined as the buffer area
between permanent land and water. They demonstrated that the overall surface of eroded
permanent land is almost 28,000 km2, twice the surface of gained land over the same period.
This erosive trend is observed not only globally but also at the European level, with nearly all
its coasts suffering from an erosive trend. The Mediterranean littoral is the most affected one
and, in particular, about 60% of the Catalan coast shows an erosive trend [7].

Prevention has a central role in the management of coastal areas. The protection of
coastal green belts as well as the shoreline through nourishments, coastal dykes or other
hard infrastructures should be based on a carefully performed risk analysis [8]. Coastal
monitoring is essential for the preservation of these areas [2]. Shoreline extraction is
included in the so-called “softer” components and this is one of the most used technique
for coastal management.

The definition of “shoreline” is a topic of debate. It is the line that delimits a natural
body of water. It differs from coastline, which is a strip of land of indefinite length and
width that extends inland starting from the shoreline [9]. The main problem of its definition
concerns its dynamic nature, so the term “instantaneous shoreline” is more appropriate be-
cause it clarifies that it is taken in a specific instant of time. By comparing the instantaneous
shorelines taken in different moments, it is possible to monitor the dynamics of coastal areas.
Several geomatic techniques have been used for this purpose. Up to now, the simple visual
interpretation was generally used but, recently, topographic data collection, photogrammetry,
digital image processing techniques, satellite and video remote sensing have been considered
valid methods to detect shoreline objectively [10–17]. Satellite images are complementary to
video and photogrammetric aerial-based monitoring, and are used to generate shorelines at
regional, national or global scales with high temporal frequency (few days). However, they are
particularly advantageous compared with traditional and photogrammetric aerial acquisitions.
Although they only capture the instantaneous shoreline and the spatial resolution could be
a limitation to study small variations, they have the following benefits: they can investigate
a wider area, they do not need an “ad hoc” flight to be planned, the data can be acquired
and processed more quickly offering a high level of detail, multispectral bands facilitate the
delineation of the water and boundary interface, the satellite revisit times are very short and,
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finally, there is no need to go physically to the place under investigation. The satellite-derived
shorelines could be a tool in the forthcoming years to assess the long-term sustainability of
coastal areas, to evaluate the coastal retreat due to sea level rise or to evaluate the lifespan
of sand nourishments [18]. The requirements for shoreline delineation depend on the char-
acteristics of the purpose of the study. For this reason, specific investigation methodologies
have to satisfy different requirements, e.g., spatial resolution and shoreline position accuracy
(from tens of metres to sub-metre), temporal and spatial scales of investigation (e.g., long- or
medium-term analyses, regional or local scale), and temporal frequency and response time for
up-to-date information [19]. Recently, there has been a growing interest in extracting shoreline
from satellite thanks to the deployment of Sentinel-2 (S2) satellites and to Planetscope (Cubesat
satellite) with a good spatial and temporal resolution [18]. The Copernicus data (Sentinel-1
(S1) and -2) are used in various fields such as ice monitoring [20], oil-spill monitoring [21], ship
detection for maritime security [22], mapping for forest, water and soil management [23–25],
ground deformation caused by landslide or earthquake [26], land monitoring [27], emergency
management and security [28], agriculture [29,30], but they are also widely exploited in coastal
environment and shoreline extraction [13,31–33]. Satellite-derived shorelines, despite being
less accurate than other techniques, have the enormous advantage of being weekly available
within all our planet. At the same time, some available open-source tools that allow any
user to extract shorelines (Coastsat [34] and CASSIE [35]) from S2 imagery have appeared.
Shorelines can be extracted also from SAR (Synthetic Aperture Radar) Sentinel-1 (S1) images
but generally, the approach is not so straightforward as for S2 imagery, mostly due to the
difficulty of interpreting and processing the data. This may explain why the shoreline ex-
traction from SAR images is not so well adopted within the scientific community. A recent
review [18] pointed out that shoreline can be extracted from multispectral satellite imagery
(Sentinel-2 and Landsat 8), using several water indices and approaches, with an accuracy
between 10 and 15 m. Recent studies show that shorelines with sub-pixel accuracy can be
extracted in micro-tidal beaches [36], but also in embayed and open-ocean beaches (including
different tidal ranges) [37], using several water indices (NDWI, MNDWI, AWEI, WI). Among
them, the Normalized Difference Water Index (NDWI) [38] and some of its variants such as
the Modified (M) NDWI [39], and used in Coastsat [40], are a key element in any workflow
or tool devoted to shoreline extraction [37]. Other water indices such as Automated Water
Extraction Index (AWEI) [41] or Water Index (WI) [42] have been proposed to improve the
performance on shoreline extraction over anthropized areas or in challenging conditions. Few
works suggest that shorelines can be extracted also from S1 with an accuracy of around 1
pixel, such as in [43] where shorelines from an intertidal area were extracted with an accuracy
of around 1 pixel (13 m) (Mean Absolute Error).

The aim of this paper is to create a robust and repeatable methodology to extract
the “instantaneous shoreline” that can work both for optical and SAR images. The open,
easy-to-use and free-of-charge satellite images, namely, the Sentinel products, of two
Mediterranean beaches, are used. An experimental algorithm (used in a previous work of
the authors [44]) is tested and compared with two algorithms. The shorelines extracted
from the S2 and S1 images are validated, at first, with GNSS (Global Navigation Satellite
System) measurements, as it is often done in the literature [45,46]. Subsequently, they are
compared with the shorelines extracted from two commonly used methods: Canny Edge
Detector and CoastSat tool. The advantage of the proposed approach is the use of the same
algorithm (J-Net) for shoreline extraction from S1 and S2, only varying the pre-processing
strategy. Moreover, the time lag between satellite-derived shorelines is shorter thanks to the
capacity to derive data from two different constellations, even with the presence of clouds.
This is a key advantage to provide enhanced monitoring and management of coastal areas.

The paper is organized as follows: in Section 2, the study sites and methods are
described, and the new methodology for shoreline extraction is presented. Section 3
illustrates the obtained results. GNSS measurements are used as ground truth to compute
the achieved accuracy of the satellite-derived shorelines. The results are then compared
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to the Canny Edge Detector and the CoastSat tool. Finally, the discussion is developed in
Section 4 and the main conclusions of the work are listed in Section 5.

2. Materials and Methods
2.1. Study Areas

Shoreline extraction is conducted in two sandy beaches in Catalunya, north-western
Mediterranean Sea (Figure 1).

Figure 1. Geographical location of the studied beaches in Castelldefels and Barcelona cities (Spain)
Source: Google maps, images from TerraMetrics, CNES/Airbus, Institut Cartogràfic de Catalunya,
Landsat/Copernicus, Maxar Technologies.

The beach of Castelldefels is long, flat and wide, with light-brown fine sand that runs
for about 5 km along generally shallow and clean waters. It is located 21.2 km away from
the city centre of Barcelona, in the south-eastern direction. Somorrostro is, instead, a steeper
beach, with a length of about 500 m and surrounded by man-made groins, covered with
a mixture of brown fine sand and pebbles. It is located in Barcelona city, between Hospital
del Mar and Marina Street in the Ciutat Vella district.

The wave conditions in the central Catalan coast are generally mild, with a significant
wave height below 2 m, because the fetch is limited by surrounding landmasses in most
directions and winds in the region are generally light to moderate in strength. However,
a few storms with significant wave heights from 2 to 5 m can reach the coast every year
from the eastern and southern directions, usually concentrated in the autumn and winter
seasons. The astronomical tides in the Western Mediterranean Sea feature a small range, of
about 20 cm on average, so that inter-annual variability and storm surges, with sea level
increments up to 50 cm, can be more significant.

2.2. Sentinel-1 and -2 Imagery and GNSS Data Sets

The Earth Observation (EO) dataset for the present case study is composed of Sentinel-1
and Sentinel-2 images. Sentinel is the mission within the Copernicus programme, an
initiative of the European Commission (EC) and the European Space Agency (ESA). The
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Copernicus programme is based on observation data received from EO satellites and
ground-based information [47,48].

Sentinel-1 is a SAR system, working in C-band (central frequency of 5.404 GHz), and it
is made up of 2 satellites, Sentinel-1A and Sentinel-1B, sharing the same orbital plane. With
both satellites operating (so until December 2021), the revisit time is 6 days. As it is well known,
it operates in four acquisition modes and images are provided in 3 levels. In addition, the
acquisition geometry could be ascending or descending, depending of the orbit path, which
is, respectively, from north to south and vice versa. In this work, the IW-GRD (Interferometric
Wide - Ground Range Detected) level with 10 m resolution is considered, which consists of
focused SAR data that have been detected, multi-looked and projected to ground range using
an Earth ellipsoid model and contain only the amplitude information. Descending images are
selected because of the beaches’ geometry. VH polarization is used since the contrast between
water and land is more evident.

Sentinel-2 is an optical multispectral system which comprises a constellation of two
polar-orbiting satellites (Sentinel-2A and Sentinel-2B), following a sun-synchronous orbit,
phased at 180◦ to each other. The revisit time is 5 days and the sensor can acquire 13 spectral
bands in the visible, NIR (Near InfraRed) and SWIR (Short Wave InfraRed) ranges (four
bands at 10 m, six bands at 20 m and three bands at 60 m spatial resolution). Sentinel-2
products are available for users in two levels, and in this work, Level-2A is used.

A field campaign of GNSS measurements was carried out in the two studied beaches
from May 2017 until March 2018. A total of 10 and 5 shorelines were measured in Castellde-
fels and Somorrostro, respectively (Table 1), and they were used as ground truth to validate
the derived shorelines.

Table 1. GNSS (Global Navigation Satellite System) data acquisition dates, Sentinel-2 (S2) and
Sentinel-1 (S2) imagery dates and relative time gaps.

Castelldefels Beach

Shoreline GNSS date S2 imagery
date

Time gap
S2 (days)

S1 imagery
date

Time gap
S1 (days)

2017/05/31 2017/06/02 2 2017/05/31 0

2017/11/20 2017/11/19 1 2017/11/21 1

2017/11/23 2017/11/19 4 2017/11/21 2

2017/11/27 2017/12/09 12 2017/11/27 0

2017/11/28 2017/12/09 13 2017/11/27 1

2018/01/17 2018/01/18 1 2018/01/20 3

2018/01/18 2018/01/18 0 2018/01/20 2

2018/03/14 2018/03/14 0 2018/03/15 1

2018/03/19 2018/03/14 5 2018/03/21 2

2018/03/21 2018/03/14 7 2018/03/21 0

Somorrostro Beach

2017/10/06 2017/10/10 4 2017/10/04 2

2017/11/02 2017/10/30 3 2017/11/03 1

2017/11/07 2017/11/09 2 2017/11/09 2

2017/11/13 2017/11/14 1 2017/11/15 2

2017/11/15 2017/11/14 1 2017/11/15 0
In bold, the actual dates taken into account for this research. The time gap is the number of days between GNSS
and the images’ dates.
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The GNSS shoreline position was tracked using an Ashtech Pro.Mark2 system from
Thales Navigation in the kinematic relative positioning method. This Differential Global
Positioning System (dGPS) consists of two receivers that acquire and store the raw satellite
data. One receiver, the base, was positioned at the geodesic vertex of the Cartographic and
Geological Institute of Catalonia, while the other, after being synchronized for 5 min at
another geodesic vertex, was carried in a backpack by a person walking on foot. The people
in charge of walking were experienced researchers and they systematically walked in the
middle of the swash zone (i.e., by visually detecting the intermediate position between
wave runup and rundown). The resolution provided by the dGPS after post-processing
the raw data is 1–3 cm for the planimetry and 10 cm for the altimetry, much lower than
the spatial resolution of the satellite images. The dates of the reference GNSS measurements
are shown in the first column of Table 1, which also shows Sentinel-2 and Sentinel-1
acquisition dates with the time gap between GNSS measurements and satellite images.

As it can be seen, the time gap between Sentinel-2 images and GNSS measurements is,
for some days, really high (ranging from 5 to 13 days). This does not happen for Sentinel-1
images. As is known, one of the main disadvantages of optical systems such as Sentinel-2 is
that no data are available when there are clouds covering the scene. SAR systems, working
in the microwave range of the electromagnetic spectrum, can also acquire data during the
night and in any weather conditions. As their measures may not correspond to the same
situation of the reference data and the results may be compromised, Sentinel-2 images with
a time gap of more than 4 days are discarded from the analysis. Although the final time
gaps are short and the hydrodynamic variability in the area is typically mild (Section 2.1),
its potential influence on shoreline extraction will be checked (Section 4.1). On the other
hand, all Sentinel-1 data, as they are SAR data, can be used, but to maintain consistency
with optical data, only the images corresponding to the same GNSS dates are considered.
The dates taken into account for this research are highlighted in bold in Table 1. The
Sentinel-1 dataset consists of seven images before and seven after the days of interest, in
order to apply the multi-temporal speckle filtering used to reduce the speckle effects.

In Figure 2, as examples, a crop of two original images in Castelldefels (Sentinel-2
taken on 2018/01/18 and Sentinel-1 taken on 2018/01/20) are shown. The reference system
is WGS84/UTM, Zone 31 N (EPSG: 32631).

Figure 2. Crops of (a) the original S2 NIR (Near InfraRed) band and (b) S1 VH polarization images.

2.3. Pre-Processing of S1 and S2 Images

In order to remove geometric and radiometric distortion (and speckle filtering in the
case of SAR images), pre-processing is performed on both Sentinel-1 and Sentinel-2 images.

Sentinel-1 images pre-processing is a key issue of SAR elaboration because, for a better
identification of the shoreline, it is essential to reduce noise while preserving the edges. A
crucial step is the reduction of the speckle, caused by random constructive and destructive
interference resulting in salt and pepper noise throughout the image. The performed pre-
processing steps are: thermal noise removal, applying orbit file, calibration, coregistration,
multitemporal de-speckle, range doppler terrain correction. Thermal noise removal is
applied to remove an additive background energy that causes noise floor, especially in
the cross-polarization channel. Then, orbit file is applied, which provides an accurate
satellite position and velocity information. During the calibration, pixel values are directly
connected to the radar backscatter and coregistration aligns all the slaves with the master
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image, creating a unique stack. Then, multitemporal de-speckle is applied to reduce speckle
effects. Speckle filtering is still an important issue to be overcome, although there are several
approaches and algorithms that have been implemented [49–52]. In this case, the Lee filter
with 3 × 3 window size is used because it is a good compromise between keeping the
spatial resolution and preserving the edges. Finally, terrain correction allows compensating
topographical distortions.

Sentinel-2 pre-processing, since they are already orthorectified and atmospherically
corrected using Sen2Cor processor (SNAP (Sentinel Application Platform) tool) and Plan-
etDEM Digital Elevation Model (DEM), consists of resampling the bands with spatial
resolution from 20 m to 10 m and performing several tests in order to find the best band
and indices to detect the shoreline. Resampling to 10 m is performed on 11 (SWIR) and
12 (SWIR) bands. Bands with spatial resolution of 60 m are not considered due to their
not-optimal resampling. Bands and indices tested as input for the new algorithm were NIR,
SWIR, NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference
Water Index) and SAVI (Soil Adjusted Vegetation Index) (Figure 3). NIR and SWIR are,
respectively, band number 8 and 12. The other three are combination of bands (Equations
(1)–(3)).

Figure 3. Sentinel-2 tested bands and indices for shoreline detection.

NDVI =
NIR − RED
NIR + RED

(1)

NDWI =
BLUE − NIR
BLUE + NIR

(2)

SAVI = (1 + L)× NIR − RED
NIR + RED + L

(3)

SAVI is generally used, as the NDVI, to detect vegetated areas but it is more specific
in areas where vegetative cover is low (<40%). The parameter “L” in Equation (3) is a
correction factor which ranges from 0 to 1 and it is usually found by trial and error. In this
case, a value of 0.5 is used.
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As it can be seen from the images in Figure 3 (which are only from Castelldefels but the
same applies to Somorrosto beach), the best band for this research turns out to be the NIR
(band 8), which visually defined more clearly the separation line between land and water.
The NIR band is indeed suitable for discriminating water from wet and dry sand, as it is
almost completely absorbed by the water and possible perturbations are minimised by the
shallow bottoms [19]. The SWIR band appears more blurry because of the resampling from
20 m to 10 m, while NDVI, SAVI and NDWI show disturbances on the water, produced by
waves, or double lines near the shore.

2.4. New Methodology for Shoreline Extraction

The semi-automatic methodology proposed for shoreline extraction takes into account
the J-Net Dynamic algorithm, developed by Professor Paolo Massimo Buscema, Director of
the Semeion Research Centre of Science of Communication of Rome. The patent concerns
Active Connections Matrix Systems (ACM), according to which each image is considered as
an active matrix (network) of connected elements (pixels) that develops over time. The main
idea upon which this theory is based states that each digital image stores the maximum
amount of information within the pixel values and their relationships. Furthermore, it is
possible to obtain important information by analysing the reciprocal positions occupied
by pixels, as well as their weights. Among all the ACM Systems, J-Net Dynamic is an
algorithm working as an edge detector, so it is able to extract the boundaries of the images
in an iterative way. A range of values in the equation parameters can be established and
the image that better enhances the boundaries between water and land can be chosen.
The ACM Systems come from the machine learning and data science community and
were originally applied in the medical field. In this paper, their applicability in shoreline
monitoring is tested by comparing the results to GNSS measurements. For a complete
presentation of ACM algorithms, and, more specifically, of the J-Net Dynamic, see [53–55].

The proposed methodology can be grouped into 4 main blocks: image pre-processing
and cropping of the area of interest; shoreline extraction using J-Net Dynamic algorithm;
geoprocessing and finally validation and comparisons. The detailed methodology is shown
in Figure 4. The first step consists of creating a crop of the image in the area of interest
(Figure 4a). Second, the experimental algorithm, J-Net Dynamic, is applied (Figure 4b),
which keeps 3 pixels in each column following the edge. The black one is the most probable
border. Third, pixels with the same value (the black ones) are masked out (Figure 4c),
obtaining a binary image which is subsequently converted from raster to vector (Figure 4d),
and then from vector to line (Figure 4(e1)). The created lines are, actually, polygons around
the pixels and not a continuous line. For this reason, the central points (centroids) of
these polygons are extracted (Figure 4(e2)) and, consequently, the points are joined to
form a continuous line (Figure 4f). Finally, the shortest distance between the line and by
the GNSS measured points is calculated (Figure 4g) for every considered day. Mean and
standard deviation (in absolute values) of all the points of each shoreline are determined.
Every image in Figure 4 is zoomed in order to better appreciate the differences between
the different steps. The procedure is first applied to Sentinel-2 images. Then, Sentinel-
1 images are coregistered to the Sentinel-2 ones and the procedure is repeated for SAR
images for both test sites. All these steps are performed using QGIS (Quantum Geographic
Information System).
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Figure 4. Semi-automatic methodology for shoreline extraction: (a) crop of the original NIR band
image; (b) J-Net Dynamic application; (c) mask of pixels with the same value; (d) transformation from
raster to vector and (e1) from vector to line, which are polygons around every pixel, and (e2) from
line (polygons) to points; (f) interpolation to create the final shoreline; (g) computation of the shortest
distance between extracted line and GNSS measurements (the measures are expressed in metres).
The shown example is for a Sentinel-2 image.

2.5. Alternative Detection Methods

In order to compare the performance of the proposed approach with the state-of-the-
art tools, both Canny algorithm and CoastSat tool are also used for extracting shorelines
from S1 and S2 imagery.

The Canny Edge Detector is an edge detection operator that uses a multi-stage al-
gorithm to detect a wide range of edges in images [56]. The Canny algorithm [57] is
composed of 5 steps—noise reduction, gradient calculation, non-maximum suppression,
double thresholding and edge tracking by hysteresis.

CoastSat [34,40,58,59] is an open-source, widely used software that enables users
to obtain time-series of shoreline position at any coastline worldwide from 30+ years
(and growing) of publicly available satellite imagery [34]. It takes advantage of Google
Earth Engine (GEE) to retrieve Sentinel-2 images cropped by the user in the area of interest.
The images are pre-processed by cloud masking, pansharpening and down-sampling before
applying the shoreline extraction algorithm. This algorithm relies on a MNDWI (Modified
Normalized Difference Water Index) image obtained using the short-wave infrared band
(SWIR) and green band, and a classification of the pixels of the area of interest with a
different label (water, white water, sand, and others) based on supervised learning tech-
nique. Then, a sand/water threshold is computed automatically using Otsu’s thresholding
but considering only the pixels labelled as water and sand during the classification step.
After the application of the threshold, the shoreline is extracted at sub-pixel level using a
marching squares method. In this work, two shorelines from CoastSat were extracted for
each date, one using an automatic threshold (with default settings) and the other adjusting
manually a threshold (Table 2). In order to compare the experimental algorithm with
CoastSat, the MNDWI is also applied in Sentinel-2 images before the ACM.
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Table 2. MNDWI (Modified Normalized Difference Water Index) automatic and manual thresholds
used to extract shorelines from CoastSat in Castelldefels and in Somorrostro beaches.

Sentinel-2/CoastSat Thresholds

Image GNSS Reference MNDWI
auto threshold

MNDWI
manual threshold

Castelldefels Beach

2017/06/02 2017/05/31 −0.2363 −0.0510

2017/11/19 2017/11/20 −0.3117 −0.0930

2017/11/19 2017/11/23 −0.3117 −0.0930

2018/01/18 2018/01/17 −0.2690 −0.0900

2018/01/18 2018/01/18 −0.2690 −0.0900

Somorrostro Beach

2017/10/10 2017/10/06 −0.2316 0.0130

2017/10/30 2017/11/02 −0.1595 0.0476

2017/11/09 2017/11/07 −0.2823 0.0620

2017/11/14 2017/11/13 −0.2598 0.0321

2017/11/14 2017/11/15 −0.2598 0.0321

3. Results
3.1. Results of the New Methodology

The results of the J-Net Dynamic algorithm compared to the GNSS points are reported
in Table 3 for Sentinel-2 and Table 4 for Sentinel-1. Mean and standard deviation are lower
in Sentinel-2 images, i.e., shorelines extracted from optical images are closer to reference
data, as expected. SAR images are affected by speckle, which worsens significantly the
quality of the original image (Figure 2b).

Table 3. Mean and standard deviation of the distances between Sentinel-2 shorelines and GNSS reference
points in Castelldefels and in Somorrostro beaches by using the experimental J-Net Dynamic algorithm.

Sentinel-2/J-Net Dynamic

Image GNSS Reference Mean (m) Standard deviation (m)

Castelldefels Beach

2017/06/02 2017/05/31 9.0 3.2

2017/11/19 2017/11/20 6.3 4.8

2017/11/19 2017/11/23 6.0 4.7

2018/01/18 2018/01/17 3.3 2.1

2018/01/18 2018/01/18 3.0 2.4

2018/03/14 2018/03/14 2.1 1.8

Somorrostro Beach

2017/10/10 2017/10/06 4.4 2.9

2017/10/30 2017/11/02 2.5 3.3

2017/11/09 2017/11/07 4.6 2.9

2017/11/14 2017/11/13 4.0 3.4

2017/11/14 2017/11/15 4.7 4.0



J. Mar. Sci. Eng. 2023, 11, 627 11 of 25

Table 4. Mean and standard deviation of the distances between Sentinel-1 shorelines and GNSS reference
points in Castelldefels and in Somorrostro beaches by using the experimental J-Net Dynamic algorithm.

Sentinel-1/J-Net Dynamic

Image GNSS Reference Mean (m) Standard deviation (m)

Castelldefels Beach

2017/05/31 2017/05/31 21.0 13.0

2017/11/21 2017/11/20 10.5 6.4

2017/11/21 2017/11/23 10.6 6.9

2018/01/20 2018/01/17 9.3 5.8

2018/01/20 2018/01/18 9.9 6.3

2018/03/15 2018/03/14 15.9 7.9

Somorrostro Beach

2017/10/04 2017/10/06 31.2 22.3

2017/11/03 2017/11/02 35.9 20.5

2017/11/09 2017/11/07 29.9 18.0

2017/11/15 2017/11/13 32.7 19.9

2017/11/15 2017/11/15 31.1 20.0

Referring to Castelldefels and considering Sentinel-2 images, extracted shorelines accuracy
is sub-pixel, with a minimum of 2.1 m and a maximum value of 9.0 m. Despite speckle effects,
accuracy achieved by Sentinel-1 shorelines ranges from 9.3 to 21 m. Images compared with more
than one GNSS reference data point have similar mean values. This can be seen in Sentinel-2
images of 2017/11/19 and 2018/01/18 and Sentinel-1 images 2017/11/21 and 2018/01/20,
which were compared to two GNSS surveys, obtaining very similar results. In both optical and
radar images, the obtained accuracy ranged from sub-pixel to 2 pixels in Castelldefels beach.

Regarding Somorrostro Sentinel-2 images, the extracted shoreline accuracy is sub-
pixel, with a minimum of 2.5 m and a maximum value of 4.7 m. The results confirm the
trend obtained in Castelldefels. The biggest difference occurs in the SAR dataset. The
achieved accuracy is around 3 pixels for all the images, with a minimum of 29.9 m and a
maximum value of 35.9 m.

3.2. Comparison with Canny Algorithm

The obtained results, shown in Tables 5 and 6, are compared with techniques currently
used in the literature, starting with the Canny Edge Detector, explained in Section 2.5.

In Castelldefels beach, the extraction is possible but, generally, the obtained shorelines
are similar or worse (depending on the day) from the ground truth (GNSS measurements)
than J-Net Dynamic. Canny Edge Detector, indeed, proves to be powerful on optical images
using NIR band, achieving minimum mean value of 3.2 m, sub-pixel accuracy and maximum
mean value of 12.7 m. Again, the accuracy attained by this detector in SAR images is lower
due to the speckle effect, with minimum mean value of 7.5 m and maximum of 25.4 m. In both
cases, the mean distance values of the same image compared to different GNSS measurements
are similar, as was the case with the J-Net Dynamic algorithm. The results are therefore quite
similar in the two algorithms, the achieved accuracy being from sub-pixel to 1 pixel (10 m)
in Sentinel-2 and 1-2 pixels (10–20 m) in Sentinel-1 imagery. In Sentinel-2, half of the mean
values are closer to reference data by applying J-Net Dynamic and the other half—by applying
Canny. In SAR images, the experimental algorithm (J-Net Dynamic) detects the shoreline
closer to GNSS references than the common one (Canny) in four out of six cases. This proves
that J-Net Dynamic is less sensitive to speckle and to artefacts present in the image.
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Table 5. Mean and standard deviation of the distances between Sentinel-2 shorelines and GNSS
reference points in Castelldefels and in Somorrostro beaches by using the commonly used Canny
Edge Detector algorithm.

Sentinel-2/Canny

Image GNSS Reference Mean (m) Standard deviation (m)

Castelldefels Beach

2017/06/02 2017/05/31 3.2 2.6

2017/11/19 2017/11/20 5.2 3.1

2017/11/19 2017/11/23 5.3 3.2

2018/01/18 2018/01/17 12.7 2.9

2018/01/18 2018/01/18 10.3 3.1

2018/03/14 2018/03/14 10.6 2.8

Somorrostro Beach

2017/10/10 2017/10/06 5.2 2.6

2017/10/30 2017/11/02 - -

2017/11/09 2017/11/07 12.6 4.9

2017/11/14 2017/11/13 12.2 5.4

2017/11/14 2017/11/15 14.1 5.9

Table 6. Mean and standard deviation of the distances between Sentinel-1 shorelines and GNSS
reference points in Castelldefels and in Somorrostro beaches by using the commonly used Canny
Edge Detection algorithm.

Sentinel-1/Canny

Image GNSS Reference Mean (m) Standard deviation (m)

Castelldefels Beach

2017/05/31 2017/05/31 24.4 9.9

2017/11/21 2017/11/20 7.5 5.0

2017/11/21 2017/11/23 8.2 5.9

2018/01/20 2018/01/17 25.4 9.6

2018/01/20 2018/01/18 24.3 10.6

2018/03/15 2018/03/14 24.0 12.1

Somorrostro Beach

2017/10/04 2017/10/06 - -

2017/11/03 2017/11/02 - -

2017/11/09 2017/11/07 - -

2017/11/15 2017/11/13 - -

2017/11/15 2017/11/15 - -
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Regarding Somorrostro, the border between water and land is not well defined by the
Canny Detector, especially for SAR images. In the optical ones, the algorithm does not work in
one day and it provides shorelines significantly further from the reference compared to J-Net
Dynamic. Indeed, the minimum “Canny value” is 5.2 m, while the maximum is 14.1 m. In
SAR images, the Canny algorithm cannot provide any results, proving to be more sensitive
to speckle effects. It is not capable of extracting the shoreline where a higher noise level is
present due to the scatterers founded in the image (Figure 5). The edges are not well extracted
throughout all SAR images, the shorelines are interrupted in correspondence with the higher
scattering from the port. It seems that the commonly used Canny algorithm is not able to
extract the shoreline on SAR images when the beach is steep and narrow and is surrounded by
ports or other man-made artefacts. The comparison between J-Net Dynamic and Canny results
in Sentinel-2 and -1 images is reported in graphical format in Appendix A, Figures A1 and A2,
respectively considering Castelldefels beach and in Figures A3 and A4 in Somorrostro beach.

Figure 5. Zoom of Somorrostro Sentinel-1 SAR image. The red rectangle points at the scatterers that
create sidelobes, which introduce noise for shoreline extraction.

3.3. Comparison with CoastSat Tool

A further comparison is performed with the shorelines extracted from CoastSat. As
mentioned above, automatic and manual thresholds are used as reported in Table 2, while
the results are provided in Table 7.

Generally, in both beaches, the CoastSat with manual threshold provides shoreline
closer to the GNSS points than those of the automatic thresholds, as expected. Moreover,
during the day 2018/03/14, the area is slightly covered by fog and CoastSat cannot extract
the shoreline. The accuracy is sub-pixel, reaching a lower value of 1.7 m in Castelldefels and
3.6 m in Somorrostro, compared, respectively, to 5.4 m and 5.3 m for the automatic thresh-
old. In addition, in Somorrostro, the obtained distances are greater than in Castelldefels.
The extraction seems to be more reliable in the flat and wide beach than in the steeper one.

As it can be seen from the results in Table 8, the distances obtained by the application
of MNDWI + J-Net Dynamic are generally lower than the ones extracted from MNDWI
automatic threshold of CoastSat, but higher than the ones with the manual threshold. The
minimum value achieved by MNDWI + J-Net Dynamic is 3.4 m in Castelldefels and 5.1 m
in Somorrostro, while the higher values are 13.2 m and 16.6 m, respectively. As previously
noticed, also in this case, the distances for the wide and large beach of Castelldefels are
lower than Somorrostro.
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Table 7. Mean and standard deviation of the distances between Sentinel-2 shorelines and GNSS
reference points in Castelldefels and in Somorrostro beaches by using CoastSat with both automatic
and manual thresholds.

Sentinel-2/CoastSat

Image GNSS Reference Mean (m) St. Dev. (m) Mean (m) St. Dev. (m)

Auto Threshold Manual Threshold

Castelldefels Beach

2017/06/02 2017/05/31 10.9 2.4 3.0 1.6

2017/11/19 2017/11/20 15.5 1.3 4.6 2.0

2017/11/19 2017/11/23 15.6 1.1 4.7 1.9

2018/01/18 2018/01/17 7.6 1.7 2.0 1.1

2018/01/18 2018/01/18 5.4 1.8 1.7 1.0

Somorrostro Beach

2017/10/10 2017/10/06 15.9 3.1 6.8 3.6

2017/10/30 2017/11/02 20.8 14.0 9.2 7.8

2017/11/09 2017/11/07 19.7 4.5 3.6 3.3

2017/11/14 2017/11/13 5.5 4.3 10.3 3.9

2017/11/14 2017/11/15 5.3 5.2 8.6 3.8

Table 8. Mean and standard deviation of the distances between Sentinel-2 shorelines and GNSS
reference points in Castelldefels and in Somorrostro beaches by using at first the MNDWI and then
the experimental J-Net Dynamic algorithm.

Sentinel-2/MNDWI Plus J-Net Dynamic

Image GNSS Reference Mean (m) Standard deviation (m)

Castelldefels Beach

2017/06/02 2017/05/31 2.7 2.3

2017/11/19 2017/11/20 13.2 3.6

2017/11/19 2017/11/23 13.0 3.8

2018/01/18 2018/01/17 3.4 2.2

2018/01/18 2018/01/18 4.3 2.9

Somorrostro Beach

2017/10/10 2017/10/06 14.6 4.5

2017/10/30 2017/11/02 13.0 11.0

2017/11/09 2017/11/07 16.6 7.3

2017/11/14 2017/11/13 5.8 3.5

2017/11/14 2017/11/15 5.1 3.4
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The comparison between J-Net and CoastSat results is shown in Appendix A, Figure A5
considering Castelldefels beach and Figure A6 for Somorrostro beach.

4. Discussion
4.1. Role of the Oceanographic Conditions on the Obtained Errors

Beach shorelines are very dynamic, responding to wave and sea level conditions.
During storms, which can last 1–2 days in the Mediterranean Sea, the shoreline typically
moves onshore because of the beach inundation produced by the sea level increase and
wave run-up due to wave breaking and/or storm surge. This temporal shoreline recession
can be of tens of meters in tideless beaches such as the studied ones [60], depending mainly
on the intensity of the storm and the beach slope. After the storm, when the sea level
returns to its mean position, the shoreline moves again seaward. However, storms can also
produce offshore sediment transport so a certain “permanent” shoreline recession can be
often observed after them. The amount is variable but always smaller than the temporal
recession due to inundation. Some authors [60,61] have shown maximum changes of the
order of 10 m in Somorrostro and Castelldefels, respectively, during large storms. In the
periods without storms (lasting from weeks to months), sediment transport is typically
onshore-directed and the shoreline can slowly accrete.

As aforementioned, the established time gap between the satellite images and GNSS
measurements is up to 4 days (Table 1). It is important to check what part of the obtained
differences between satellite and GNSS shorelines could be due to a real change in shoreline
position, either due to variations in wave and sea level conditions during the different
dates or due to storm erosion that may have occurred between the two dates. To check
this in the case of Castelldefels beach, the dataset developed by De Swart et al. [61], which
covered the study period of the present contribution, is used. The daily shoreline positions
extracted from video images are analysed, together with the wave conditions from a buoy
located at 68 m depth and propagated using the SWAN (Simulating WAves Nearshore)
model to 10 m depth in front of the beach. No daily video-derived shorelines are available
for Somorrostro during the study period, but the wave conditions at 10 m depth in front of
the beach are computed using optical approximation and wave energy conservation. In
both sites, sea level conditions measured inside Barcelona harbour are also considered.

In Table 9, the oceanographic conditions during the studied dates are listed. Specifi-
cally, ∆zs and ∆Hs contain the difference between the two dates in the Barcelona harbour
sea surface level and in the significant wave height at 10 m depth in front of each beach, re-
spectively. Moreover, Eacc is a proxy of the wave energy at deep water accumulated during
the time gap, which can be an indicator of potential storm-induced shoreline changes [62],
and ∆xs is the difference between the two dates in the alongshore-averaged videoed shore-
line position, available only in the case of Castelldefels. The variability in the Barcelona
harbour sea surface is small (<0.15 m) in all the studied dates and no significant effects are
to be expected in terms of shoreline motion. In most of the studied dates for GNSS and
satellite images in Castelldefels beach, there are calm wave conditions (significant wave
height, Hs < 0.50 m). In particular, in all the optical images of Castelldefels and the first
two day of SAR images, the Hs values were similar (differences < 0.15 m) both in GNSS
and in the satellite images dates, and no storms occurred during the time gap (Table 9).

Accordingly, the video-derived shorelines in that beach show movements smaller than
1–2 m, so in the range of the video-extraction method accuracy [17] and significantly lower
than the spatial resolution of the satellite images. In the last four days of SAR images in
Castelldefels, and especially those in January and March 2018, there are larger Hs, of 0.70 m to
0.90 m, either during the GNSS surveys or during the S1 images. Due to the time gaps, Hs
differences of up to 0.60 m occur between the pairs of dates and, accordingly, more significant
shoreline motions between 3 and 8 m can be detected from video images (Table 9). Thus,
although there could be real changes in shoreline position, they are not detectable on Sentinel
images. The higher value of variation is lower than the spatial resolution of the images.
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Table 9. Oceanographic conditions during the studied shoreline dates (of the satellite images and of
the GNSS surveys).

Image Date GNSS Date Gap (d) ∆zs (m) ∆Hs (m) Eacc (m2h) ∆xs (m)

Castelldefels Beach S2

2017/06/02 2017/05/31 2.1 0.05 0.05 8.1 −0.2

2017/11/19 2017/11/20 1 −0.01 0.01 5 0.4

2017/11/19 2017/11/23 4.2 0.01 0.15 12.4 −1.8

2018/01/18 2018/01/17 0.8 −0.03 0.09 22.1 0

2018/01/18 2018/01/18 0.1 0.02 0.13 1.9 0

2018/03/14 2018/03/14 0.1 0.05 0 0.5 0

Castelldefels Beach S1

2017/05/31 2017/05/31 0.1 −0.03 −0.02 1.3 0

2017/11/21 2017/11/20 1 −0.03 0.04 3.5 −0.4

2017/11/21 2017/11/23 2.2 −0.01 0.18 4.2 −2.6

2018/01/20 2018/01/17 2.8 −0.09 0.45 31.5 −7.6

2018/01/20 2018/01/18 2.1 −0.04 0.49 11.4 −5.5

2018/03/15 2018/03/14 1.1 −0.09 −0.6 15.7 4.4

Somorrostro Beach S2

2017/10/10 2017/10/06 4.1 −0.15 0.2 60.9 -

2017/10/30 2017/11/02 2.9 0.05 0.02 39.4 -

2017/11/09 2017/11/07 2.1 0.06 0.24 42 -

2017/11/14 2017/11/13 1.1 −0.15 −0.14 36.4 -

2017/11/14 2017/11/15 1.1 0.02 −0.31 54.1 -

Somorrostro Beach S1

2017/10/04 2017/10/06 1.9 0.09 −0.1 13.5 -

2017/11/03 2017/11/02 1.1 0 0.28 4.8 -

2017/11/09 2017/11/07 2.1 0.06 0.24 42 -

2017/11/15 2017/11/13 2.1 −0.15 0.07 85.3 -

2017/11/15 2017/11/15 0.1 −0.02 0.09 4.4 -

In the Barcelona cases, there are higher energetic waves (Hs up to 1.2 m) during dates,
with accumulated storm energy between pairs of dates from 30 to 80 m2h in many of the
dates (corresponding to a Class 1 storm in [62]) and changes in Hs between GNSS survey
and image dates ranged from 0.20 m to 0.30 m. However, given that the beach slope in
Somorrostro is higher than in Castelldefels, the effect of these changes in the shoreline
position might be small and, in any case, lower than the spatial resolution of the images.

Thereby, the differences occurring in the present contribution between satellite-derived
and GNSS shorelines are not related to changes in oceanographic conditions. The larger
standard deviations obtained in both sites using S1 images are due to the level of noise
present in radar images, mainly caused by speckle and man-made structures.
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4.2. Analysis of the Obtained Results

The obtained results generally show that the semi-automatic methodology for shore-
line extraction using the experimental algorithm J-Net Dynamic provides good accuracy.
An example of the shorelines extracted with each method is reported in Figure 6.

Figure 6. All extracted shorelines: (a) S2 Castelldefels, date 2017/06/02, (b) S2 Somorrostro, date
2017/10/10; (c) S1 Castelldefels 2017/05/31; (d) Somorrostro, dates 2017/10/04. GNSS reference
points (yellow); CoastSat shoreline extracted with manual (light blue) and automatic (red) thresholds;
shoreline extracted by J-Net Dynamic over the MNDWI image (pink); Canny-derived shoreline (red);
J-Net Dynamic extracted shoreline (blue).

In the validation with GNSS measurements, the mean distances reach sub-pixel values
for optical (Table 3) and one pixel for SAR images (Table 4) in the wide and flat coast of
Castelldefels. In the steeper and narrow Somorrosto beach, it reaches sub-pixel accuracy for
Sentinel-2 images (Table 3) but 3 pixel for SAR (Table 4). Generally, the accuracy is better
in optical than in SAR imagery and in Somorrostro it is worst than in Castelldefels. The
main sources of noise are the speckle effect and the man-made artifacts, but the geological
differences between two beaches might play a role. Somorrostro beach is steeper than the
Castelldefels one and its width is smaller. Looking at Figure 5, the noise reflection from
specific scatterers along the port is clearly visible and it creates a little segment which affects
the image and the shoreline detection algorithm.

The Canny Edge Detector cannot extract the shorelines in SAR imagery. Not only is it
more sensible to speckle compared with J-Net, but it also presents more difficulty when
the beach is surrounded by man-made structures and the level of noise increases. The
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mean and standard deviation on optical images are comparable, while on SAR, the J-Net
provided shorelines closer to the ground truth (Tables 5 and 6).

Using CoastSat, the results in Somorrostro beach reach one-pixel accuracy, decreasing
to sub-pixel in Castelldefels (Table 7). The manual threshold detects the closest shoreline,
but the automatic one extracts more distant shorelines compared with J-Net. In addition,
J-Net Dynamic can be applied also on SAR images, which cannot be done with CoastSat.
In one case, CoastSat is not able to extract the shoreline due to the presence of haze. In the
last two days, there is also an inversion of the values trend probably due to the presence of
clouds. The automatic threshold tends to overestimate the value and in cloud conditions, it
works better than the manual threshold due to the incorrect human interpretation.

Finally, general considerations can be extrapolated from the results. First, when the
beach is flat and wide without hard structures nearby, the extraction is more reliable and
closer to the ground truth, especially in SAR imagery. This is in agreement with other
studies, where it was found that the extracted shoreline needed manual corrections in urban
and port areas. Second, the applicability of radar satellite imagery for shoreline extraction
is possible in flat and wide beaches, but, the accuracy is lower than in optical images, with
errors of 1–2 pixels instead of sub-pixel optical accuracy. However, since optical images
cannot give any information during the night or bad weather, under this conditions, SAR
images can be a good complement. Moreover, one of the greater advantage of SAR images
is the high capacity for water distinction. Therefore, this kind of sensor can be used as an
additional information source for monitoring, both in terms of water body identification
and in shoreline studies.

5. Conclusions

In this work, a successful semi-automatic procedure to extract the shoreline is found.
The satellite dataset consists of optical Sentinel-2 and SAR Sentinel-1 imagery over two
kinds of sandy beaches: the flatter Castelldefels and the steeper Somorrostro (Barcelona).
An experimental algorithm, called J-Net Dynamic, is tested and validated against the
ground truth, which is constituted by GNSS measurements. Then, another two comparisons
with state-of-the-art tools are performed in order to strengthen the methodology. The
obtained results are compared with a common algorithm, the Canny Edge Detector and
with CoastSat tool, both using automatic and manual thresholds.

The J-Net Dynamic algorithm, deriving from the machine learning world and mainly
used for medical purposes, was demonstrated to be powerful also on satellite remote
sensed images for coastal applications. Sub-pixel accuracy (<10 m) is reached in optical
images and errors increase to 1–2 pixels in SAR images.

Considering Canny, the results are more or less comparable in the optical images but
J-Net shows better performance with SAR imagery. It appears to be less sensitive to the
speckle effect and man-made structures close to the beach. The comparison with the shore-
lines extracted from optical images using CoastSat software shows that the experimental
algorithm provides an extraction closer to the reference than the one obtained by using the
automatic thresholds in CoastSat, but further in case of the manual one.

Copernicus Sentinel-1 and -2 high-resolution images are full, open, free of charge,
easy to download and to use, therefore, they are important data sources for continuous
monitoring. The present research demonstrates that a sub-pixel accuracy can be reached,
which makes them appropriate tools to support management and planning by monitoring
the position of the shoreline and, as a consequence, erosion and accretion in the coastal
areas. The present results and analysis lead to recommendations and best practices useful
for the scientific community for shoreline studies. They can be summarized as follows:
especially when using SAR images, it is suggested not to use Canny but J-Net Dynamic
algorithm; shoreline extraction using SAR images in urban beaches can be problematic due
to the noise created by nearby solid structures; in optical images, it is recommended to use
CoastSat with manual threshold or, alternatively, J-Net Dynamic rather than CoastSat with
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automatic threshold; when possible, Sentinel-1 and -2 free-of-charge images can be used
for shoreline extraction with one-pixel and sub-pixel accuracy, respectively.

A future study could, at first, implement the semi-automatic procedure in a software,
in order to allow a quick extraction of the shoreline. Storing a database of shoreline
over time allows to perform a time-series analysis and, consequently, provide a possible
intervention plan. In addition, the influence of the ascending and descending SAR imagery
for the shoreline extraction may be studied in detail. Moreover, the proposed approach
should be extended to additional sandy beaches, to further confirm the influence of the
beach slope and anthropic artefacts in the extraction of the shoreline from S1 imagery. This
methodology could also be tested on rocky beaches, both with and without man-made
structures. Further work should include an integration and/or a fusion of both sensors to
enhance the monitoring of shorelines before, during and after storms or to derive linear
regression rates of shoreline displacement using combined shorelines. Finally, Very High
Resolution (VHR) satellite images, such as optical WorldView-2 and SAR COSMO-SkyMed,
could also be tested.
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Abbreviations
The following abbreviations are used in this manuscript:

ACM Active Connection Matrix
AWEI Automated Water Extraction Index
DEM Digital Elevation Model
dGPS Differential Global Positioning System
EC European Commission
EO Earth Observation
EPSG European Petroleum Survey Group
ESA European Space Agency
GEE Google Earth Engine
GNSS Global Navigation Satellite System
GRD Ground Range Detected
IW Interferometric Wide
MNDWI Modified Normalized Difference Water Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
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NIR Near InfraRed
QGIS Quantum Geographic Information System
S1 Sentinel-1
S2 Sentinel-2
SAR Synthetic Aperture Radar
SAVI Soil Adjusted Vegetation Index
SNAP Sentinel Application Platform
SWAN Simulating WAves Nearshore
SWIR Short Wave InfraRed
UTM Universal Transverse Mercator
WGS84 World Geodetic System 84
WI Water Index

Appendix A. Graphical Comparison between the Results

In this appendix, the comparison between the mean distance and standard deviation
for each date on S2 and S1 imagery considering all the algorithms is reported in graphic
format. Figure A1 refers to the application of J-Net Dynamic and Canny on Sentinel-2
imagery in Castelldefels (Tables 3 and 5), while Figure A2 presents the same comparison
but in S1 imagery (Tables 4 and 6). Figures A3 and A4 are related to Tables 3–6. They
present the comparison between J-Net Dynamic and Canny on S2 and S1 in Somorrostro
beach. The comparison between CoastSat both with automatic and manual threshold and
J-Net Dynamic over MNDWI in Castelldefels is shown in Figure A5, while for Somorrostro
it is shown in Figure A6 (Tables 8 and 7).

Figure A1. Comparison between the mean distance and standard deviation for each date on Sentinel-2
imagery considering J-Net Dynamic and Canny algorithms in Castelldefels.
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Figure A2. Comparison between the mean distance and standard deviation for each date on Sentinel-1
imagery considering J-Net Dynamic and Canny algorithms in Castelldefels.

Figure A3. Comparison between the mean distance and standard deviation for each date on Sentinel-2
imagery considering J-Net Dynamic and Canny algorithms in Somorrostro.
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Figure A4. Comparison between the mean distance and standard deviation for each date on Sentinel-1
imagery considering J-Net Dynamic and Canny algorithms in Somorrostro.

Figure A5. Comparison between the mean distance and standard deviation for each date on Sentinel-2
imagery considering J-Net Dynamic plus MNDWI algorithm and CoastSat with automatic and manual
thresholds in Castelldefels.
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Figure A6. Comparison between the mean distance and standard deviation for each date on Sentinel-2
imagery considering J-Net Dynamic plus MNDWI algorithm and CoastSat with automatic and manual
thresholds in Somorrostro.
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