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Abstract: The occurrence of deep-sea geohazards is accompanied by dynamic changes in the physical
properties of seafloor sediments. Therefore, studying the physical properties is helpful for monitoring
and early warnings of deep-sea geohazards. Existing physical property inversion methods have
problems regarding the poor inversion accuracy and limited application scope. To address these
issues, we establish a deep learning model between the resistivity of seafloor sediment and its density,
water content, and porosity. Compared with empirical formulas, the deep learning model has the
advantages of a more concentrated prediction range and a higher prediction accuracy. This algorithm
was applied to invert the spatial distribution characteristics and temporal variation of the seafloor
sediment density, water content, and porosity in the South China Sea hydrate test area for 12 days.
The study reveals that the dynamic changes in the physical properties of seafloor sediments in the
South China Sea hydrate zone exhibit obvious stratification characteristics. The dynamic changes in
the physical properties of seafloor sediments are mainly observed at depths of 0–0.9 m below the
seafloor, and the sediment properties remain stable at depths of 0.9–1.8 m below the seafloor. This
study achieves the monitoring and early warning of dynamic changes in the physical properties of
seafloor sediments and provides a guarantee for the safe construction of marine engineering.

Keywords: sediment resistivity; physical property; deep learning; the South China Sea

1. Introduction

Seabed geohazards in the South China Sea [1], such as landslides [2,3], turbidity cur-
rents [4,5], and liquefaction [6], pose a significant risk to marine engineering projects [7], such
as gas hydrate extraction [8,9], offshore oil and gas platform construction [10], and submarine
fiber optic cables [11,12]. This is an urgent issue for national deep-sea development [13].
The process of incubation and the occurrence of deep seabed geohazards is characterized by
dynamic changes in the engineering geological properties of sediments [14]. Current studies
on engineering geological properties of submarine sediments and other related topics are
mostly based on empirical formulas [15] with low prediction accuracy.

The method of neural networks was proposed in 1950 [16], but it was not until 2010
and GPU studies were improved that it became one of the most important methods of deep
learning [17]. At present, artificial neural networks are widely used in studies of seabed
sediments [18]. In 2006, Singh et al. [19] used artificial neural networks to predict aquifers in
sediments by inverting vertical resistivity bathymetry data. Similarly, in 2009, Luo et al. [20] used
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the backpropagation (BP) artificial neural network in Matlab to study the physical properties
of submarine sediments. The backpropagation artificial neural network was established with
porosity, density, and water content as the input parameters and sound velocity as the output
parameter. In 2016, Mukherjee et al. [21] developed an artificial neural network to predict the
porosity and saturation of gas hydrates in reservoirs. The input parameter was density logs
and the output parameters were porosity and saturation. In 2018, Zhou et al. [22] reviewed
the application of deep learning algorithms based on the Keras database in Python language
in the field of geology. In 2021, Singh et al. [23] employed neural networks to estimate gas
hydrate saturation in sediments using porosity, bulk density, and P wave velocity as the input
parameters. They compared 12 different machine learning algorithms and obtained a prediction
accuracy of approximately 84%, which was higher than the accuracies of seismic and resistivity
methods, which do not exceed 75%. In 2021, Chen employed an artificial neural network
algorithm based on machine learning to invert acoustic impedance and CPT data [24]. In 2022,
Singh et al. [25] used machine learning methods and nuclear magnetic resonance (NMR) data
from downhole gas hydrate reservoirs to classify lithology. AI automation also has applications
in mineralogy, and in 2022, Pszonka et al. applied SEM automation to mineral and texture
sorting in gravity flows from seafloor sediments [26].

Most of the studies in this field have focused on using artificial intelligence methods
to establish the relationship between the physical properties of seafloor sediments and
geophysical parameters. However, the predicted values are mostly single discrete labels,
and there is a lack of research on the dynamic changes in the physical properties of seafloor
sediments. This study aims to construct a single-input, multiple-output deep neural
learning algorithm for predicting the physical properties of seafloor sediments in the
hydrate test area in the South China Sea.

2. Geological Background
2.1. Overview of the South China Sea Hydrate Test Area

The focus of this study is a hydrate test area located in the Shenhu Sea region of the
South China Sea (Figure 1). The study area is situated within the Baiyun Depression, which
forms part of the Pearl River Estuary Basin and is positioned between the Xisha Trough and
Dongsha Islands [27] at a water depth of 1342 m. The geological setting of the study area is
characterized by the interaction of several tectonic plates, including the Eurasian, Pacific,
and Sino-Indian plates. The region exhibits both passive and active continental features,
and displays a complex seafloor topography with varying elevations, characterized by
the presence of erosion channels, sea valleys, seamounts, steep slopes, plateaus, alluvial
fans, landslides, and other geological hazards. The dominant substrate in the study area is
argillaceous silt.

2.2. Study Material of Core Sediments from the South China Sea

In 2020, we boarded the “Ocean Geology No. 6” research vessel of the Guangzhou
Marine Geological Survey Bureau and obtained an 8 m long sediment core sample from the
natural gas hydrate test area on the northern continental slope of the South China Sea. The
engineering geological properties of the sediment, including density, water content, liquid
limit, particle size composition, consolidation, cohesion, and internal friction angle, were
obtained through laboratory geotechnical tests (Figure 2). The core sediment test results
showed that the density of the seabed sediment in the South China Sea hydrate test area
ranged from 1.32 to 1.50 g/cm3, the water content ranged from 119% to 148%, the liquid
limit ranged from 83.35 to 101.54, and the plastic limit ranged from 29.60 to 43.05. The
range of the liquidity index was 0.90 to 1.95 and the range of plasticity index was 40.83 to
65.46. The sediment in the study area has the physical characteristics of a low density, a
high water content, and a high compressibility [28].
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porosity, liquid limit, plastic limit, liquid index, plasticity index, shear strength, angle of internal
friction, cohesive forces, modulus of compressibility, coefficient of compressibility, effective grain
diameter, continuous grain diameter, average particle size, constrained diameter, coefficient of
nonuniformity, coefficient of curvature, resistivity, sound attenuation, sound speed).

3. Deep Learning Inversion Method
3.1. Construction of Datasets

The present study utilizes a dataset consisting of multiple labels, including resistivity,
density, water content, and porosity of sediments, for training and modeling. The training
dataset was constructed using both actual measured data of seafloor sediments from the
hydrate test area in the South China Sea, as well as the literature data collected from various
locations such as the Yellow River estuary [29], offshore of Ningbo [30], and the northern
land slope of the South China Sea [31]. The input parameter in the dataset is resistivity,
while the output parameters are density, water content, and porosity.

3.1.1. Data Scatter Matrix

The scatter matrix visualization method is a highly effective tool for exploratory data
analysis, typically using one feature as the x-axis and another feature as the y-axis. It
facilitates the identification of relationships between features and enables the selection of
optimal input and output parameters and the detection of outliers and other anomalies
in the data [32]. The scatterplot matrix comprises two basic types of plots, namely a
scatterplot and a histogram. The scatterplot above and below the diagonal presents the
relationship between variables, while the histogram on the diagonal represents the variable
distribution [33]. The scatterplot matrix of the actual measured data is presented in Figure 3.
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3.1.2. Data Preprocessing

Data with widely different value ranges can pose challenges for neural network
learning, as the network may struggle to adapt to such variations. To address this issue,
it is necessary to preprocess the input data by scaling each feature individually [34]. The
most effective method is standardizing each feature, which entails subtracting the feature
mean and dividing the result by the standard deviation for each feature of the input data
(Equation (1)). This can result in data compression and distinctive data characteristics,
namely a mean value of 0 and a standard deviation of 1 for each feature of the dataset.

z =
x − µ

σ
(1)

where x is the raw data, µ is the mean of the raw dataset, and σ is the standard deviation of
the raw dataset.

3.1.3. Train–Test Dataset Split

The dataset in this study was partitioned into a training set and a test set, wherein
the former comprises 75% of the data and the latter comprises 25%. To minimize the
risk of errors due to arbitrary partitioning, the train_test_split() function was utilized for
partitioning the dataset, with the random seed specified as RandomState = 0 to ensure
the reproducibility of the results. Subsequently, the input and output parameters were
separated for both the training and test sets.

3.2. Construction of the Deep Learning Model

This study presents a physical property prediction model for seafloor sediments in the
hydrate test area of the South China Sea. The proposed model employs a nonlinear network
topology and was developed using the functional APIs provided in the TensorFlow and
Keras modules of Python. The functional API can directly manipulate the tensor, utilizing
layers as functions that receive and return the tensor. This differs from the sequential model
implementation of neural networks, which is limited to single-input and single-output
models [35]. The functional API model is more general and flexible, allowing for the
implementation of multiple input models, multiple output models, and graph-like models,
and is therefore a suitable approach for addressing the problem at hand.

The neural network is comprised of layers, which function as data processing modules
that convert input tensors into output tensors. The selection of layers depends on the
tensor format and data processing requirements. In this study, a deep network learning
model with seven layers was constructed, consisting of one input layer, one output layer,
and five implicit neural network layers. The five implicit neural network layers contain
four dense layers and one residual layer (Figure 4). The dense layer was used to train
the neural network, while the last layer of the neural network was set as a one-unit linear
layer without an activation function. The inclusion of an activation function would restrict
the input range, limiting the prediction of density, water content, and porosity to within
certain ranges. Additionally, a residual connection was incorporated into the model to
prevent the loss of input resistivity information during data processing. The residual con-
nection allows for the overlaying of the previous output tensor with the subsequent output
tensor, ensuring the reinjection of previous resistivity information into the downstream
data stream.

3.2.1. K-Fold Verification

When adjusting the parameters of a neural network, it is crucial to evaluate its perfor-
mance. However, when the available data are scarce, a small validation set may result in
significant fluctuations in the validation scores. Moreover, different ways of partitioning
the validation set can further increase the variance of the validation scores, which hinders
reliable model evaluation [36]. To address this issue, the K-fold cross-validation approach
was employed in this study. The data in this paper were divided into five training and
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validation sets using the K-fold cross-validation method. Additionally, five identical mod-
els were built. Each model was trained on four partitions and evaluated on the remaining
one. The validation score of the model was computed as the average of the five validation
scores.
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3.2.2. Performance Evaluation Criteria

The loss function is one of the most important performance evaluation criteria and is
used for the feedback signal of learning. The mean square error (MSE) loss function, which
quantifies the squared difference between predicted and target values, was utilized in this
prediction model (Equations (2) and (3)). In order to monitor the progress of the learning
process, a new metric, the mean absolute error (MAE), was employed [37]. This metric
measures the absolute value of the difference between the predicted and target values. By
monitoring the MAE during the training process, the performance of the learning process
can be evaluated and adjusted accordingly.

MSE =
1
N

N

∑
t=1

(yt − ft)
2 (2)

MSE =
1
N

N

∑
t=1

∣∣∣∣yt − ft

yt

∣∣∣∣ (3)

3.3. Resistivity Observations of Seafloor Sediments in the South China Sea Hydrate Test Area

We have developed SEEGeo (In Situ Surveying Equipment of Engineering Geology in
Complex Deep Sea) in order to realize the in situ long term observation of the engineering
geological properties of seabed sediments. The SEEGeo (Figure 5) can simultaneously
measure the resistivity, sound velocity, and excess pore pressure water pressure of the
sediment [38]. Therefore, long-term observations of the resistivity of seafloor sediments
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were conducted in the hydrate test area of the South China Sea. The equipment was
operated once a day, and a total of 12 days of data were collected from 15 to 27 September.
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4. Results and Discussion
4.1. Relationship between Sediment Resistivity and Physical Properties
4.1.1. Relationship between Sediment Resistivity and Density

Sediment density, which is the mass per unit volume of soil, displays considerable
variability across diverse submarine sediments, and is closely linked to soil mineral compo-
sition, pore volume, and water content [39]. This study compares the relationship between
resistivity and density derived from empirical equations, and the relationship derived from
the deep learning model. We also explore the conditions and ranges of applicability of
these distinct models.

The correlation based on empirical equations between resistivity and density is
as follows: (1) the density increases monotonically with the increase in resistivity and
(2) the seafloor sediment resistivity varies between 0.32 and 1.43 Ω·m, with a correspond-
ing density range of 1.32~2.13 g/cm3. By fitting the resistivity and density datasets of
the seafloor sediment with the empirical equation, a quadratic polynomial relationship
between these two variables can be derived (Equation (4)).

y = −0.31x2 + 1.96x − 1.50 (4)

The result indicates that the correlation between seafloor sediment resistivity and
density based on the empirical equation is poor, with an R2 value of 0.33. The traditional
empirical formula is inadequate as a fitting model for the resistivity–density correlation.

We explored the correlation between sediment resistivity and density based on deep
learning (Figure 6). The results indicate that the relationship between these two properties
follows a three-step trend: decreasing, increasing, and sharply increasing. More specifically,
when the resistivity ranges from 0.32 to 0.46 Ω·m, the sediment density decreases as the
resistivity increases, with a slope of −0.79 from 1.48 g/cm3 to 1.37 g/cm3. When the
resistivity ranges from 0.46 to 1.15 Ω·m, the sediment density increases as the resistivity
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increases, with a slope of 0.25 from 1.37 g/cm3 to 1.54 g/cm3. Finally, when the resistivity
is between 1.15 and 1.43 Ω·m, the sediment density increases sharply as the resistivity
increases, with a slope of 1.04 from 1.54 g/cm3 to 1.83 g/cm3. These findings suggest that
the deep learning model can reveal complex relationships between sediment properties,
which may not be captured by traditional empirical formulas.
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The present study investigated the relationship between sediment resistivity and
density using both empirical and deep learning models. The results indicate that: (1) The
deep learning model predicts that the sediment resistivity is not monotonically related to
density, indicating that the same sediment density may have different resistivity values.
(2) The resistivity cannot be solely determined based on density in the range of 1.38 to
1.47 g/cm3 and the range of 0.33 to 0.83 Ω·m, as there are multiple solutions, but can be
determined based on density when the density exceeds 1.47 g/cm3. (3) The sediment
density can be uniquely determined based on resistivity. (4) The sediment density is more
sensitive to changes in resistivity when the resistivity is >1.15 Ω·m, where changes in
density per unit of resistivity correspond to larger values. (5) The correlation coefficient
between resistivity and density based on the empirical equation is very low, with a value
of 0.33. The R2 correlation coefficient is typically used in linear models and may not fully
capture the predictive ability of the model in nonlinear models. Moreover, the correlation
coefficient is closely related to the sample size of the dataset, and the model results can
vary widely across different datasets.

4.1.2. Relationship between Sediment Resistivity and Water Content

Seafloor sediments are typically saturated or nearly saturated, with water content
playing a crucial role in the design of seafloor engineering structures [40]. An increase
in water content results in an improved fluid connectivity of sediment pores, leading to
an enhanced electrical conductivity and, correspondingly, a lower resistivity. In contrast,
sediments with a low water content exhibit a higher resistivity, and water with various
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ions functions as a good electrical conductor [30]. Despite a decline in resistivity with the
decreasing water content in the saturated state, the magnitude of change diminishes [31].
The primary factors influencing sediment resistivity in descending order are water content,
pore water conductivity, soil saturation, and soil type [41].

The present study investigated the correlation between sediment resistivity and the
water content of seafloor sediment based on an empirical formula. The resistivity of the
seafloor sediment varied between 0.32 and 2.17 Ω·m, while the water content ranged from
24% to 154%. By fitting the relationship between the resistivity and the water content of the
seafloor sediment with the empirical equation, a power function relationship (Equation (5))
between these two variables can be derived.

y = 52.83x−1.745 (5)

The results indicated a power function relationship between the resistivity and the
water content of the seafloor sediment. In particular, the resistivity decreased sharply at
first with the increase in water content, followed by a slow decrease. These findings suggest
that water content plays an important role in determining the resistivity of the seafloor
sediment and should be taken into consideration when modeling the resistivity. However,
we need to develop more accurate models for predicting the sediment resistivity based on
water content.

The deep learning model reveals a correlation between sediment resistivity and water
content characterized by a three-step trend (Figure 7). Specifically, the water content
exhibits a slow and linear decrease with increasing resistivity, followed by a rapid decrease
expressed by a power function, and a subsequent slow and linear decrease. This trend is
observed in three distinct resistivity ranges. For resistivities between 0.33 and 0.72 Ω·m,
the water content decreases slowly and linearly with increasing resistivity, with a slope of
−12.82, resulting in a decrease from 120% to 115%. For resistivities ranging from 0.72 to
1.16 Ω·m, the water content rapidly decreases with increasing resistivity in a power function
with a negative exponent, with a slope of −12.82, resulting in a decrease from 115% to 115%.
Finally, for resistivities between 1.16 and 2.17 Ω·m, the water content decreases slowly
and linearly with increasing resistivity, with a slope of −24.75, resulting in a decrease
from 41% to 16%.

The present study investigated the relationship between water content and resistivity
using both empirical and deep learning models. The results indicate that: (1) The deep
learning model shows a monotonically decreasing relationship between water content and
resistivity, which is one-to-one and without multi-solution. (2) The correlation between
water content and resistivity is characterized by both a linear decreasing function and a
negative exponential power function in the deep learning model. For sediment resistivity
values of <0.71 Ω·m (i.e., water content > 115%), a linear decreasing function of water
content to resistivity is observed. The prediction result of the empirical formula model is
an exponential function and differs significantly from the deep learning prediction model.
For sediment resistivity values between 0.71 and 1.33 Ω·m (i.e., a water content between 34
and 115%), the prediction results of the empirical formula model are in good agreement
with those of the deep-learning-based prediction model. For sediment resistivity values
of >0.71 Ω·m (i.e., a water content < 115%), the deep learning prediction model fits better
than the empirical formula. (3) The sensitivity of water content to resistivity is higher for
resistivity values of >0.71 Ω·m (i.e., a water content < 115%), implying that a unit change
in resistivity corresponds to a larger change in water content. Therefore, the inversion of
water content in this interval is more accurate.

4.1.3. Relationship between Sediment Resistivity and Porosity

The sediment porosity is a critical physical parameter that characterizes the total
volume of pores within the sediment. The influence of sediment porosity on the resistivity
magnitude is significant. Sediments with a higher porosity possess a larger pore space that
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facilitates better connectivity within the pore network. As a result, the fluid within the pore
has a higher mobility, leading to improved electrical conductivity and lower resistivity [42].
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The empirical equations reveal a correlation between sediment resistivity and porosity,
where the seafloor sediment resistivity ranges between 0.32 and 1.93 Ω·m, while the porosity
of the sediment ranges from 36.81 to 79.52%. The seafloor surface sediment exhibits a strong
linear relationship between sediment resistivity and porosity (Equation (6)).

y = −26.58x + 84.08 (6)

The present study demonstrates a favorable correlation between the resistivity and
the porosity of seafloor sediments based on empirical formulas with an R2 value of 0.97,
indicating a high degree of correlation. The traditional empirical formulas exhibit good fits
to the data, although discrepancies are observed in the predicted values at both low and
high resistivity ranges.

This study employed deep learning to investigate the correlation between sediment
resistivity and porosity (Figure 8). The results reveal that the porosity of seafloor sediments
follows a three-step trend with increasing resistivity, characterized by extremely slow, slow,
and rapid decreases. Specifically, for resistivities of <0.50 Ω·m (i.e., 0.33–0.50 Ω·m), the
sediment porosity decreases extremely slowly from 69.37% to 69.13%, with a slope of
−1.41. In the range of 0.50–0.70 Ω·m, the sediment porosity decreases slowly from 69.13%
to 66.74%, with a slope of −11.95. Finally, when the resistivity is greater than 0.70 Ω·m
(i.e., 0.70 to 1.93 Ω·m), the sediment porosity decreases rapidly and linearly from 66.74%
to 29.19% with a slope of −30.53. These findings provide a valuable contribution to the
understanding of the intricate relationship between sediment resistivity and porosity, and
can facilitate the enhancement in the accuracy of seafloor sediment characterization.
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The present study investigated the relationship between sediment resistivity and
porosity using both empirical and deep learning models. The results reveal that the
sediment porosity and resistivity exhibit a monotonically decreasing function, indicating
a one-to-one correspondence with no multi-solution. The deep learning model can be
divided into three linearly decreasing functions, with the corresponding cutoff points of
0.5 Ω·m and 69.13% water content and 0.7 Ω·m and 66.74% water content. When the
sediment resistivity is greater than 0.70 Ω·m, the sediment porosity is more sensitive to
resistivity, and it is more accurate to invert the sediment density change by resistivity.
Furthermore, when the sediment resistivity is less than 0.70 Ω·m and the water content
is greater than 68%, the prediction values of the empirical formula model and the deep
learning prediction model differ significantly, with the latter tending towards a constant
value that is closer to the actual value. As the sediment porosity increases, the sediment
resistivity approaches the seawater resistivity and exhibits a constant value. The correlation
coefficient increases significantly with an increase in data samples, highlighting the superior
performance of the deep learning model in describing the correlation between sediment
resistivity and porosity compared to traditional models.

As a result, the deep neural network learning model exhibits superior performance
and provides a more accurate prediction range compared to the empirical formula. The
empirical formula inversion model is effective in analyzing linear relationships with simple
correlations and high coefficients of determination. In contrast, the deep learning inversion
model is suitable for examining nonlinear relationships with complex correlations and
poor coefficients of determination. When training data are abundant, the deep learning
inversion model outperforms the empirical formula model in terms of prediction accuracy.
Specifically, the deep learning inversion model improves the accuracy of the prediction area
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by 50%, enhances the concentration of the prediction area, and increases the goodness-of-fit
by 33%, thereby achieving a higher prediction accuracy.

4.2. In Situ Resistivity Observation Results in the South China Sea Hydrate Test Area
4.2.1. Spatial Structure of Seafloor Sediment Resistivity

The present study investigated the spatial structure of sediment resistivity within
1.80 m of the seafloor in the South China Sea hydrate test area (Figure 9). The resistivity
of the seawater on 15 September was found to be 0.06 Ω·m, while the resistivity of the
seafloor sediment ranged from 0.01 to 6.86 Ω·m, with a mean resistivity of 0.84 Ω·m and a
median resistivity of 0.23 Ω·m. Most of the resistivity values were distributed between 0.01
and 2 Ω·m, with two extreme points at 0.9–1.1 m, 5.82, and 6.86 Ω·m, respectively. When
focusing on the range of 0–2 Ω·m, most of the resistivity values were distributed between
0.01 and 1 Ω·m.
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In this study, the first layer of sediment in the South China Sea hydrate test area was
found to exhibit a low resistivity when buried at a depth of 0–0.07 m. The resistivity ranged
from 0.01 to 0.83 Ω·m, with a variation rate of 0–71%. A total of 11 measurements were
recorded in this layer, two of which exhibited resistivity values lower than that of seawater.
Specifically, resistivity values of 0.03 Ω·m at a depth of 0.07 m and 0.01 Ω·m at a depth of
0.20 m were recorded.

The second layer of sediment was identified as a very high resistivity layer buried
at depths ranging from 0.68 to 0.95 m. The resistivity of this layer varies from 0.07 to
6.86 Ω·m, exhibiting a variation rate of 5–600%. Within this layer, there were five measure-
ment points, two of which had resistivity values significantly higher than the resistivity
of the seafloor sediment (0.06–2 Ω·m). Specifically, the resistivity at a depth of 0.74 m was
5.82 Ω·m, which is 509% higher than the lowest value, and the resistivity at a depth of
0.88 m was 6.86 Ω·m, which is 600% higher than the lowest value.
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The third layer of sediment was identified as a low resistivity layer, with a sediment
depth ranging from 0.945 m to 1.5525 m. The resistivity values in this layer exhibit variations
ranging from 0.02 Ω·m to 0.58 Ω·m, representing a variation rate of 1% to 59%. A total of
10 measurements were recorded within this layer, and it is noteworthy that one of these
points situated at a depth of 1.01 m had a resistivity value of 0.02 Ω·m.

The fourth layer comprises high resistivity sediment buried at depths ranging from
1.55 to 1.76 m. The resistivity of the sediment varies from 0.14 to 1.85 Ω·m, with a variation
rate of 11 to 161%. Four measurements were taken in this layer, out of which two had
significantly higher resistivity values. At a depth of 1.62 m, the resistivity value was
1.85 Ω·m, indicating a variation rate of 161%. Similarly, at a depth of 1.76 m, the resistivity
value was 1.82 Ω·m, indicating a variation rate of 159%.

4.2.2. The Variation in Seafloor Sediment Resistivity with Time

The present study investigated the dynamic changes i the resistivity of the seafloor sediment
in the hydrate test area of the South China Sea over 12 days, from 15 to 27 September. The
resistivity values of the seafloor sediment in the South China Sea hydrate test area ranged from
0.002 to 6.86 Ω·m, and were classified into three layers (Figure 10). The first layer, with resistivity
values lower than the resistivity of seawater (<0.06 Ω·m), is shown in white. The second layer
corresponds to the resistivity values of normal sediment (0.06–2 Ω·m) and is filled in blue. The
third layer has resistivity values greater than the resistivity of normal sediment (>2 Ω·m) and is
filled in green and red.
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Figure 10. Time-varying curve of seafloor sediment resistivity in the South China Sea hydrate test area.

In the range of 0–1.755 m, the resistivity is divided into seven layers in the longitudinal
structure, which are classified as a low resistivity layer, an ultra-low resistivity layer, a high
resistivity layer, an ultra-high resistivity layer, an ultra-low resistivity layer, a low resistivity
layer, and a high resistivity layer.

In the first layer, sediments are buried at a depth of 0–0.6 m in the normal low resistivity
zone, and the resistivity variation ranges from 0.43 to 3.55 Ω·m. The resistivity does not
change significantly over time.

The second layer, located at a sediment burial depth of 0.06~0.20 m, is characterized by
ultra-low resistivity. Within this layer, there exist two distinct low resistivity zones, located at
0.06 and 0.20 m, respectively, with resistivity varying between 0.01 and 0.17 Ω·m. At a depth
of 0.06 m, the resistivity gradually increases over time, ranging from 0.02 Ω·m to 0.06 Ω·m,
ultimately approaching the resistivity value of seawater. Similarly, at a depth of 0.20 m, the
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resistivity also gradually increases over time, ranging from 0.01 Ω·m to 0.17 Ω·m, and reaches
0.08 Ω·m on the following day, 16 September, which is also close to the resistivity of seawater.

The third layer of sediment, with a burial depth of 0.33–0.47 m, is characterized by
high resistivity. The resistivity in this layer ranges from 0.09 to 2.44 Ω·m and exhibits
an increasing-then-decreasing trend. At a depth of 0.33 m, the resistivity increases from
0.62 Ω·m to 2.44 Ω·m and then decreases to 0.52 Ω·m. Similarly, at 0.40 m and 0.47 m, the
resistivity increases and then decreases, with values changing from 0.82 Ω·m to 1.73 Ω·m
to 0.64 Ω·m and from 0.21 Ω·m to 2.32 Ω·m to 1.22 Ω·m, respectively.

The fourth layer of sediment located at a depth of 0.67 to 0.94 m is characterized
by ultra-high resistivity, which exceeds the normal sediment resistivity (>2 Ω·m). The
resistivity ranges from 0.18 to 6.85 Ω·m, demonstrating a three-layer structure of high
resistivity–low resistivity–high resistivity. The ultra-high resistivity layer at 0.74 m exhibits
a gradual decrease in resistivity over time, from 5.82 Ω·m to 5.65 Ω·m. Likewise, the low
resistivity layer at 0.81 m shows a decrease in resistivity with time, changing from 0.22 Ω·m
to 0.18 Ω·m. In the ultra-high resistivity zone at 0.87 m, the resistivity gradually decreases
with time from 6.85 Ω·m to 6.35 Ω·m.

The fifth layer of the sediment, a burial depth of 1.01 m, is an ultra-low resistivity zone
with a resistivity even lower than that of seawater. The resistivity varies in a narrow range
of 0.02~0.03 Ω·m and shows a trend of increasing initially and then decreasing, reaching a
peak value of 0.03 Ω·m from 0.02 Ω·m before decreasing back to 0.02 Ω·m.

The fifth layer of the sediment, located at a burial depth of 1.08 to 1.55 m, exhibits a
low resistivity. The resistivity values range between 0.06 and 0.58 Ω·m, and display little
temporal variation, remaining in a stable state.

The seventh layer of sediment, located at a burial depth of 1.62–1.80 m, exhibits a high
resistivity with a resistivity range of 0.38–1.88 Ω·m. At a depth of 1.62 m, the resistivity
value is classified as a high resistivity and displays a gradually decreasing trend, declining
from 1.85 Ω·m to 1.79 Ω·m. At 1.68 m, the resistivity is categorized as a low resistivity
and exhibits little variation over time, with resistivity values oscillating between 0.38 and
0.40 Ω·m. The resistivity at a depth of 1.80 m is classified as a high resistivity and demon-
strates a gradual increase from 1.82 Ω·m to 1.88 Ω·m.

The in situ observation structure of natural gas hydrates deposited on the seafloor
exhibits a bimodal structure in resistivity. Jana et al. [43] pointed out that in the hydrate
occurrence zone, the bimodal feature of the resistivity of the sediment layer indicates
the presence of the hydrate layer. This paper presents resistivity observations of seafloor
sediment in the South China Sea hydrate test area, which indicate that the resistivity
at 0.7~0.9 m below the seafloor surface has a bimodal structure with a resistivity value
of 7.0, indicating the presence of a thin layer of natural gas hydrate. The resistivity of
the ultra-high resistivity layer at 0.74 m decreases gradually with time from 5.82 Ω·m to
5.65 Ω·m, while the resistivity of the low resistivity layer at 0.81 m decreases gradually
from 0.23 Ω·m to 0.19 Ω·m over time. Similarly, the resistivity of the ultra-high resistivity
zone at 0.88 m gradually decreases over time from 6.86 Ω·m to 6.35 Ω·m. The bimodal
resistivity of the seafloor sediment is a typical characteristic of hydrate storage. Previous
studies by Wu and Guo have also reported the bimodal structure of hydrate resistivity in
seafloor sediments [44], with a resistivity value of approximately 7 Ω·m, consistent with
the findings of this study.

4.3. Dynamic Changes in Physical Properties of Seafloor Sediments Based on Deep Learning Inversion
4.3.1. Temporal Variation in Seafloor Sediment Density in the South China Sea Hydrate Zone

The findings of the sediment density inversion of the seafloor in the South China
Sea hydrate test area reveal distinct variations in sediment density at varying depths.
The sediment within 0.7 m of the seafloor surface exhibited marked dynamic changes
in density, whereas the density of sediment situated below 0.7 m remained essentially
constant (Figure 11).
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The present study depicts the temporal variation of sediment density, obtained through
resistivity inversion of seafloor sediment in the South China Sea hydrate test mining
area at a depth of 1.755 m below the seafloor surface. The sediment density exhibits
a variation range of 1.30–1.60 g/cm3, with distinct variation patterns observed among
different sediment layers (Figure 11). Specifically, sediment samples collected from depths
of 0.1, 0.4, 0.6, 0.9, 1.3, and 1.6 m below the seafloor surface were selected for analysis, and
their density variation patterns were evaluated over time.

The results revealed varying patterns in sediment density with time at different
depths. At a depth of 0.1 m, the sediment density fluctuated between 1.51 and 1.53 g/cm3.
Specifically, the density decreased gradually from 15 to 27 September, but then suddenly
increased from 17 to 28 September. Within the depth range of 0.4 m, the sediment density
varied between 1.30 and 1.40 g/cm3. From 15 to 17 September, the density exhibited a
rapid decrease, followed by a period of stability and no change until 27 September, when it
suddenly decreased again. Within the depth range of 0.6 m, sediment density varied from
1.44 to 1.47 g/cm3 and exhibited a gradual decrease from 15 to 28 September. At a depth
of 0.9 m, the sediment density varied from 1.57 to 1.60 g/cm3, representing a 2% decrease
in density over time from 15 to 28 September. At the depth range of 1.3 m, the sediment
density ranged from 1.49 to 1.50 g/cm3, with a slow increase in density observed over the
same time. At a depth of 1.6 m, the sediment density varied between 1.30 and 1.31 g/cm3

and remained stable from 15 to 28 September.
At the depths of 0.1, 1.3, and 1.6 m below the seafloor surface, the sediment densities

remained stable and unchanged, indicating that the sediment properties of these layers
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did not change during the measurement period. At the depth of 0.4 m below the seafloor
surface, the sediment density exhibited a trend of “decrease–increase–decrease” with time.
With increasing time, the sediment density of the sediment layer at a 0.4 m burial depth
decreased, but the density of adjacent layers did not significantly change. It is assumed
that there was no vertical transport of the sediment and that horizontal transport along the
sediment layer may have occurred. A potential mechanism may be that when the horizontal
fluid is transported, the fine sediment particles are transported and carried away first [45],
leading to a reduction in sediment density. These observations suggest the possibility of
fluid exchange between the soil and seawater at the site. The lack of changes in overlying
sediment characteristics suggests that fluid transport occurs horizontally [46,47].

4.3.2. Temporal Dynamics of the Water Content in Seafloor Sediments in the South China
Sea Hydrate Zone

The findings of the sediment water content inversion of the seafloor in the South China
Sea hydrate test area reveal distinct variations in the sediment water content at varying
depths. Specifically, the water content within 0.7 m below the seafloor showed pronounced
dynamic changes, while the water content below 0.7 m remained relatively constant.

The present study investigated the temporal variations in water content in the seafloor
sediment of the South China Sea hydrate test area at a depth of 1,755 m below the seafloor
(Figure 12). The water content exhibited variations within the range of 42–125%, and
different sediment layers displayed diverse patterns of variation. Specifically, the water
content at depths of 0.1, 0.4, 0.6, 0.9, 1.3, and 1.6 m below the seafloor were selected for
analysis to determine the time-dependent variation patterns.
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In the South China Sea hydrate test area, the water content within specific depth intervals
exhibited temporal variability. Within the depth interval of 0.1 m below the seafloor, the water
content ranged between 124.3% and 124.5%. The water content gradually decreased from 15
to 27 September, with a sudden increase occurring between 17 and 28 September. Near the
depth interval of 0.4 m below the seafloor surface, the water content ranged from 119.5% to
122.4%. Between 15 and 17 September, the water content decreased rapidly, followed by a
stable and unchanged state between 17 and 27 September, and then a sudden decrease on
28 September. At the depth interval of 0.6 m below the seafloor surface, the water content
ranged from 123.2% to 123.6%, gradually decreasing from 15 to 28 September. For the depth
interval of 0.9 m below the seafloor surface, the water content ranged from 42.8% to 46.1%,
exhibiting a 7% increase. Between 15 and 27 September, the water content gradually increased,
followed by a slight decrease between 27 and 28 September. At the depth interval of 1.3 m below
the seafloor surface, the water content ranged from 123.9% to 124.0%, remaining relatively stable
from 15 to 28 September. Finally, for the depth interval of 1.6 m below the seafloor surface,
the water content ranged from 118.4% to 118.6%, exhibiting little temporal variability over the
same period.

In the water content study, stable sediment properties were found at the depths of
0.1, 1.3, and 1.6 m below the seafloor, as evidenced by the unchanging sediment porosity.
However, at a depth of 0.4 m below the seafloor surface, the water content exhibited a
temporal trend of “decrease–increase–decrease.”

4.3.3. Temporal Dynamics of the Seafloor Sediment Porosity in the South China Sea
Hydrate Test Area

The study of sediment porosity in the seafloor of the South China Sea hydrate test
area using deep learning inversion techniques revealed varying patterns of variation at
different depths (Figure 13). Specifically, the porosity of sediment below 0.7 m remained
stable, whereas dynamic changes in the sediment porosity within 0.7 m of the seafloor
surface are evident. These findings highlight the non-uniform distribution of sediment
properties in the study area.

The temporal variation in the sediment porosity in the South China Sea hydrate test
area was within the depth of 0~1.755 m below the seafloor. The sediment porosity varied
within the range of 52~76%, and distinct layers of sediment porosity exhibited diverse
variation patterns. The depths of 0.1, 0.4, 0.6, 0.9, 1.3, and 1.6 m below the seafloor were
scrutinized to explore the sediment porosity variation patterns with time.

The variability results of sediment porosity indicate that the sediment porosity at a
depth of 0.1 m ranged between 75.49% and 75.69%. Between 15 and 27 September, the
porosity gradually decreased before abruptly increasing from 17 to 28 September. At a
depth of 0.4 m, the porosity ranged from 69.63% to 73.49%. From 15 to 17 September,
the porosity decreased rapidly before stabilizing until 27 September, and then abruptly
decreased from 27 to 28 September. The sediment porosity at a depth of 0.6 m ranged
between 74.31% and 74.78%, showing a gradual decrease from 15 to 28 September. At
a depth of 0.9 m, the sediment porosity varied from 51.79% to 53.54%, and exhibited an
overall increase of 3% from 15 to 27 September, followed by a gradual decrease from 27 to
28 September. The sediment porosity at a depth of 1.3 m remained essentially unchanged,
ranging from 75.11% to 75.16% between 15 and 28 September. Finally, the sediment porosity
at a depth of 1.6 m ranged between 69.24% and 69.45% and remained stable throughout the
study period. These findings suggest that sediment porosity can vary significantly with
depth and time and may provide valuable insights into sediment behavior and depositional
processes in marine environments.

In this study, the sediment properties at various depths below the seafloor were
investigated in order to better understand the behavior of sediment under pressure and
over time. Specifically, the sediment porosity was monitored at depths of 0.1, 0.4, 0.6, 0.9,
1.3, and 1.6 m below the seafloor. The results showed that at depths of 0.1, 1.3, and 1.6 m
below the seafloor, the sediment porosity remained stable and unchanged, indicating that
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the properties of the sediment in these layers did not change. However, at a depth of 0.4 m
below the seafloor, the sediment porosity exhibited a trend of “decrease–increase–decrease”
over time. At a depth of 0.6 m below the seafloor, the sediment porosity gradually increased
over time, while at a depth of 0.9 m below the seafloor, the sediment porosity exhibited a
clear increasing trend over time.
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5. Conclusions

This study addresses the challenge of accurately inverting seafloor sediment physical
properties and presents a model for the inversion of sediment physical properties based
on a deep learning algorithm for seafloor sediment resistivity in offshore China. The deep
learning algorithm establishes the relationship between seafloor sediment resistivity and
key physical properties such as density, water content, and porosity in the hydrate test
area of the South China Sea. This study clarifies the effect of the main controlling factors of
density, water content, and porosity on resistivity and compares the differences between
the deep learning inversion model and the empirical formula inversion model. The deep
learning inversion algorithm is then used to invert the resistivity of seafloor sediments in
the hydrate test area of the South China Sea, and the spatial distribution characteristics and
dynamic changes in physical properties such as the density, water content, and porosity of
the seafloor sediments are obtained. The results reveal the dynamic changes in sediment
properties within 1.76 m below the seabed, providing valuable insights for future seafloor
exploration and resource exploitation.
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1. In this study, a novel model for the inversion of physical properties of seafloor
sediments is presented. The model is based on a deep learning algorithm, which utilizes the
TensorFlow and Keras deep learning databases to establish a six-layer neural network with
a functional API. The mean squared error (MSE) is used as the loss function and the mean
absolute error (MAE) is the supervisory function. The relationships between the resistivity
of seafloor sediment and the density, water content, and porosity were established.

2. The use of seafloor sediment resistivity for the inversion of physical properties
such as density, porosity, and water content has been explored. Empirical and deep
learning relationships have been established, indicating that resistivity is strongly correlated
with both porosity and water content in a power function, exhibiting a bipartite trend
of “sharp decrease–slow decrease” with increasing water content. A good correlation
between resistivity and density has also been identified, with density increasing in a
“decrease–increase–sharp increase” three-stage trend as the resistivity increases.

3. The deep learning model exhibits a better fit and more accurate prediction capa-
bilities than the empirical formula model. The empirical formula model is suitable for
analyzing linear relationships with simple correlations and high correlation coefficients.
In contrast, the deep learning inversion model is suitable for analyzing non-linear rela-
tionships with complex correlations and low correlation coefficients. When the model is
trained with a large amount of data, the prediction results obtained using the deep learning
inversion model are significantly better than those obtained using the empirical formula
model. The deep learning inversion model improves the accuracy of the prediction range,
resulting in a more concentrated prediction range and a higher prediction accuracy.

4. Based on in situ observations in the hydrate zone of the South China Sea, the
physical properties of seafloor sediments in the hydrate zone of the South China Sea exhibit
stratified variations. Specifically, in the range of 0–0.7 m below the seafloor, the density
varies between 1.37 and 1.53 g/cm3, the porosity varies between 73 and76%, and the water
content varies between 122 and 124%. Within the 0.7–0.9 m depth range, the density varies
between 1.43 and 1.60 g/cm3, the porosity varies between 51 and 75%, and the water
content varies between 43 and 124%. Lastly, in the range of 0.9–1.8 m, the density varies
between 1.31 and 1.52 g/cm3, the porosity varies between 69 and 76%, and the water
content between 118 and 124%. These observations suggest that the physical properties of
seafloor sediments in the hydrate zone exhibit distinct variations with depth, indicating
the potential for stratified modeling of sediment properties in this region.

5. Based on long-term in situ observations in the hydrate zone of the South China Sea,
the engineering properties of seafloor sediments in the region exhibit a four-layer feature
that comprises low-resistivity, very high-resistivity, low-resistivity, and high-resistivity
layers. Specifically, the resistivity of sediments at a depth of 0.3 m below the seafloor
surface remains stable with time, while in the range of 0.3–0.7 m below the seafloor surface,
the resistivity first increases and then decreases over time. In the range of 0.7–1 m below
the seafloor surface, the resistivity decreases over time. At depths of 1–1.6 m below the
seafloor surface, the resistivity remains stable over time, while at a depth of 1.6 m below the
seafloor surface, the resistivity decreases over time. In addition, a layer containing hydrate
is identified, displaying a resistivity bimodal structure with a value of 6.86 Ω·m.

6. By utilizing in situ resistivity observation data and a deep learning inversion sedi-
ment physical property model, the present study was able to identify a significant impact
of hydrate decomposition on the sediment’s physical properties. The observation period
revealed that the resistivity increased in the range of 0–0.7 m below the seafloor, which
coincided with a decrease in sediment density, water content, and porosity. Conversely,
the resistivity decreased in the range of 0.7–0.9 m below the seafloor, which aligned with a
decrease in sediment density and an increase in porosity and water content. In comparison
to previous studies, this dynamic alteration was determined to be attributed to hydrate
decomposition and the resultant gas production. It is hypothesized that the sediment
dynamics at a depth of 0.7–0.9 m below the seafloor are instigated by the decomposition of
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surface hydrate, whereas the sediment dynamics at a depth of 0–0.7 m below the seafloor
are caused by the gas generated from hydrate decomposition.
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