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Abstract: Slope stability formulae for rubble mound structures are usually developed for head-on
conditions. Often, the effects of oblique waves are neglected, mainly because it is assumed that for
oblique wave attack, the reduction in damage compared to perpendicular wave attack is insignificant.
When the incident waves are oblique, the required armour size can be reduced compared to the
perpendicular wave attack case. Therefore, it is important to consider the wave obliquity influence
on slope stability formulae as a reduction factor. One of the most recent formulae for estimating
the stability of rock-armoured slopes, referred to as Etemad-Shahidi et al. (2020), was proposed for
perpendicular wave attack. The aim of this study is to develop a suitable wave obliquity reduction
factor for the above-mentioned stability formula. To achieve this, first, laboratory experiment datasets
from existing reliable studies were selected and analysed. Then, previously suggested reduction
factors were evaluated and a suitable reduction factor for the mentioned stability formula were
suggested. The suggested reduction factor includes the effect of wave obliquity and directional
spreading explicitly. It is shown that the stability prediction is improved by using the wave obliquity
reduction factor.

Keywords: oblique wave; rubble mound breakwater; slope stability; reduction factor

1. Introduction

Many studies are being conducted on breakwaters and especially new breakwa-
ters [1–7]. However, studies in the field of rubble mound breakwaters have not stopped
yet, and many studies are still being conducted in different fields of rubble mound break-
waters [8–11]. One of the most important issues in breakwater design is the determination
of the armour block’s weight using the stability number Ns. Stability formulae for armour
layers of rubble mound structures are typically based on laboratory experiments in wave
flumes, i.e., 2D experiments. Therefore, the formulae are generally developed for per-
pendicular wave attack and do not include effects of oblique waves. This is, however, a
conservative assumption since the stability of armour slopes generally increases for oblique
waves. Waves usually attack breakwater obliquely, and it is important to find out how
much the stability increases due to the wave obliquity. Oblique wave attack does not
only affect the stability of armour layers, but also wave overtopping. To account for the
effects of oblique waves on mean overtopping discharges, several studies have been con-
ducted [12–16]. In most of them, a reduction factor for wave obliquity has been proposed
to mean overtopping discharges.

Several studies have been performed to investigate the effect of wave angle (β) on
armour stability. A few researchers have performed laboratory experiments to consider
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effects of oblique waves on the stability of armour layers. They performed tests with long-
crested and/or short-crested waves on rock and/or concrete armour layers. Almost all test
results showed that for oblique waves, smaller units are required. Therefore, they proposed
a reduction factor (γβ) in the required armour size. This reduction factor has been found to
be a function of (cosXβ). Galland [13] carried out tests with long-crested waves and incident
waves with angles between β = 0◦ and 75◦ and proposed X = 0.25. Yu et al. [17] performed
tests with long-crested and short-crested waves with angles between β = 0◦ and 60◦ on rock
and suggested X = 1.16. Wolters and Van Gent [18] also provided a dataset for wave angles
up to β = 70◦ for rock and they obtained X = 1.1, which is very close to that suggested by
Yu et al. [17]. In the last study, Van Gent [19] performed small-scale tests in a wave basin to
assess the effects of oblique waves on the stability of rock slopes and armoured cubes. The
physical model experiments were focused on wave directions between perpendicular (0◦)
and parallel (90◦) using both short- and long-crested waves. They showed that that for rock
slopes, the influence of oblique waves is larger for long-crested waves. Table 1 shows the
wave obliquity reduction factor for rock armour stability from various authors. This table
shows that Galland [13] indicates a much smaller influence of wave obliquity compared
to other studies. Moreover, in the approach by Van Gent [19], a minimum value for the
reduction factor was suggested for parallel waves with wave angle of 90◦. In fact, when
waves are parallel to the longitudinal axis of the structure, the reduction factor is limited to
0.42 and 0.35 for short-crested and long-crested waves, respectively.

Table 1. Wave obliquity reduction factor for rock armour size from various studies.

Reference Formula Equation No

Galland [13] cos0.25 β (1)
Yu et al. [17] cos1.157 β (2)
Wolters and Van Gent [18] cos1.1 β (3)

Van Gent [19] (1 − cβ) cos2β + cβ

cβ = 0.42 for short-crested
(4)

cβ = 0.35 for long-crested

Figure 1 shows the graphical presentation of wave obliquity reduction factor suggested
in different references. As discussed before, Galland [13] indicates the lower influence of
wave obliquity. In the range of 0 < β < 45, the prediction of wave obliquity reduction factor
by Yu et al. [17], Wolters and Van Gent [18] (WV) and Van Gent [19] (VG) are very similar,
and for angles more than 50◦ degrees, they become different. For β > 45, Yu et al. [17] and
WV predict a much higher influence of the wave obliquity on armour size than that of Van
Gent [19] for rock slopes.
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There are several experimental formulae for the predication of stability
number [1,20–23]. They have been generally developed for perpendicular wave attack
without considering the wave obliquity effects. The suggested reduction factors (γβ) are
compatible with a specific stability formula. For example, the formula proposed by Yu
et al. [17] is compatible with Hudson’s [20] stability formula, i.e.:

Ns =
Hs

∆Dn50
= (KDcotα)1/3 (5)

where Ns is the stability number, Dn50 is the nominal diameter of the stones, Hs is the
significant wave height, α is the structure front angle, ∆ = ρa/ρw − 1 is the relative buoyant
density, ρa is the armour density and ρw is the density of water. The stability coefficient,
KD, incorporates the effects of armour type and safety factor, and it varies from 2 (1.6) for
breaking waves to 4 (2.8) for non-breaking waves hitting the trunk (head) of a breakwater.
Van Gent’s [19] reduction factor is compatible with Van Gent et al.’s [22] rock armour
stability formula, i.e.,:

Ns = 8.4P0.18 Ir−0.5
m−1,0

(
Sd/
√

Nw)1/5(Hs/H2%) IfIrm−1,0 < Irc or cotα ≥ 4 (6a)

Ns = 1.3P−0.13 IrP
m−1,0cotα0.5

(
Sd/
√

Nw)1/5(Hs/H2%) IfIrm−1,0 ≥ Irc and cotα < 4 (6b)

with Irc = (6.46P0.31 tanα0.5)1/(P+0.5).
In this equation, P is the permeability, H2% is the average of the highest 2% of incident

waves, Sd is the damage level, Nw is the number of waves and Irm−1,0 is the Iribarren
number using Tm−1,0 (the spectral mean energy period). Equation (6a,b) were applied for
the plunging and surging condition, respectively.

One of the most recent formulae for the calculation of rock stability number is Etemad-
Shahidi et al.’s [1], hereafter EBV, shown below:

Ns = 3.9CpNw
−1/10Sd

1/6 Ir−1/3
m−1,0 If Irm−1,0 ≥ 1.8 (surging waves) (7a)

Ns = 4.5CpNw
−1/10Sd

1/6 Ir−7/12
m−1,0 If Irm−1,0 < 1.8 (plunging waves) (7b)

where Cp is the coefficient of permeability defined as [1 + (Dn50c/Dn50)3/10]3/5 and Dn50c is
the median nominal size of the core material. An extensive database from different sources
was used to develop this formula. Moreover, this formula is based on the local significant
wave height and spectral mean energy period of the incident waves. In addition, instead of
permeability, it includes effects of the relative size of core material and is more accurate
than other formulae [1].

The main aim of this paper is to investigate effect of the wave obliquity/spreading and
extending EBV formula by considering the effect of wave angle and spreading coefficient.
To achieve this, first, all existing new reduction factors (Galland [13], Yu et al. [17], Wolters
and Van Gent [18] and Van Gent [19]) were examined (in combination with the EBV
formula).

For this purpose, the Van Gent [19] dataset (170 records) was used for the development
of the new reduction factor, and the Yu et al. [17] dataset (70 records) was used for its
evaluation.

2. Methodology

All the used tests are cumulative, while stability formulae are generally based on
rebuilt tests. Hence, they need to be adjusted to convert cumulative test results to rebuilt
ones first. This adjustment can be achieved by adjusting the number of waves (e.g., Van
der Meer and Sigurdarson, 2016). For each of the sea states, the Sd–Nw relationship can be
calculated using Equation (7a,b). The estimation of Nw1–2, the number of added waves in
test 2 (second test in a cumulative test series), which results in the same damage as that of
test 1, is required to convert the Nw of a cumulative test to that of a rebuilt one. Basically,
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Nw1–2 should be added to Nw2 before estimating the damage using stability formulae. For
surging waves, Equation (7a) can be written as:

Sd = 0.266 Ns
6 Cp

−6 Nw
0.6 Irm−1,0

2 if Irm−1,0 ≥ 1.8 (8)

Sd1~ Ns1
6 Nw1

0.6 Ir1m−1,0
2 (9)

Sd1~ Ns2
6 Nw1-2

0.6 Ir2m−1,0
2 (10)

Ns1
6 Nw1

0.6 Ir1 m−1,0
2 = Ns2

6 Nw1-2
0.6 Ir2 m−1,0

2 (11)

Nw1-2 = (Ns1/Ns2)10 (Ir1 m−1,0/Ir2 m−1,0)20/6 × Nw1 (12)

Ns2/Ns1 = k (as Hs2 = k Hs1), and assuming Ir1m−1,0 ≈ Ir2m−1,0 (constant wave steepness
test series), then Nw1–2/Nw1 = (1/k)10. k is commonly about 1.20, i.e., a 20% increase in the
wave height in the test series. For 1.10 < k < 1.30, the estimations of Nw1–2/Nw1 and ∆Sd are
listed in Table 2.

Table 2. The relation of Nw1–2/Nw1 and ∆Sd by assuming Nw1 = Nw2 and Ir1m−1,0 ≈ Ir2m−1,0.

k 1.10 1.15 1.20 1.25 1.30

Nw1–2/Nw1 (%) 39 25 16 11 7
∆Sd (%) 21.6 14.3 9.3 6.5 4

The second row shows that Nw1–2/Nw1 is about 16% (assuming k = 1.2). In other
words, the (cumulative) damage in the second test is due to Nw2 + 0.16 Nw1 = 1.16 Nw2.

The last row shows the change in the Sd if the tests were non-cumulative/rebuilt
(assuming that Nw1 = Nw2 and noting that Sd ~ Nw

0.6). For example, if k = 1.2, then
∆Sd = (1 + 0.16)0.6 − 1 = 9.3%. In other words, the damage in the second test is 9.3% more
than that in a rebuilt test (with the same number of waves), and Ns would differ about 20%.

The Van der Meer formula [21] can also be applied to such situations via the cumulative
damage method, which has been described in Van der Meer [24] and later in the Rock
Manual [25], and which has also been implemented in Breakwat. In fact, the method is
quite straightforward. The first sea state, characterised by a significant wave height Hs1,
mean period Tm1 and number of waves Nw1, yields a calculated damage level Sd1. The
second sea state would be defined by HS2, Tm2 and Nw2. The next step is to determine
the number of waves (Nw12) required for the second sea state to induce the same level of
damage (Sd1) caused by the first sea state. Subsequently, the damage for the second sea
state (Sd2) can be calculated by applying (Nw1–2 + Nw2) as the total number of waves.

More discussion about conversion of cumulative-to-rebuilt damage is described in
van der Meer and Sigurdarson [26].

After this modification, tests with very low damage levels (Sd < 2) and very high
damage levels (Sd > 12), which are less common in practice [25,27] (e.g., Rock Manual, 2007,
CEM, 2011), were excluded. In this way, a total of 77 records were selected for further
processing. A brief description of the range of governing parameters based on β (0◦, 15◦,
30◦, 45◦, 60◦, 70◦, 80◦ and 90◦) and S (0, 10, 25 and 40) ranges is presented in Tables 3 and 4,
respectively. Note that for the tests with directional spreading, the amount of directional
spreading is described by S, where S = 0 corresponds to long-crested waves.
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Table 3. Range of parameters used for formula development based on the β range.

Parameter
β

0 15 30 45 60 70 80 90

Nw 1000 1000 1000 1000 1000 1000 1000 1000
cotα 1.5 1.5 1.5 1.5 1.5, 2 1.5, 2 1.5, 2 1.5
D 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7
S 0–40 0–40 0–40 0–40 0–40 0–25 0–25 0–25
P 0.4, 0.5 0.4, 0.5 0.4, 0.5 0.1–0.5 0.1–0.5 0.1–0.5 0.1–0.5 0.1–0.5

som−1,0
(×10−2)

3–6 3–6 3–6 3–6 3–6 3–6 3–6 3–6

Irm−1,0 2.7–3.6 2.6–3.6 2.6–3.5 2.6–3.6 2.2–3.7 2.3- 4.0 2.2–3.0 3.1–3.5
h/Hs 3.4–10.5 3.0–14.7 3–8.0 2.6–11.0 2.4–14.5 2.7–11.3 4.6–6.5 5.5–5.9

Dn50c/Dn50 0.4–0.43 0.4–0.43 0.4–0.43 0–0.43 0–0.43 0–0.43 0–0.43 0.0–0.43
Sd 2–7.1 2.2–11.5 2.3–6.5 2.0–7.0 2.0–8.8 2–12 2.2–9.2 3.4–3.7
Ns 1.7–3.0 1.2–3.4 2.3–3.42 2.0–3.4 1.7–4.7 2.2–4.8 3.8–5.4 4.2–4.5

Table 4. Range of parameters used for formula development based on the S range.

Parameter
S

0 10 25 40

Nw 1000 1000 1000 1000
cotα 1.5, 2 1.5 1.5, 2 1.5
D 1.7 1.7 1.7 1.6
β 0–90 0–45 50–70 0–45
P 0.1–0.5 0.4 0.1–0.5 0.4

som−1,0
(×10−2)

3–6 3–6 3–6 3–6

Irm−1,0 2.2–4.0 2.6–2.7 2.2–3.3 2.6–2.7
h/Hs 2.4–14.7 3.0–4.0 5.3–14.1 3–3.76

Dn50c/Dn50 0.0–0.43 0.40 0.0–0.43 0.40
Sd 2–11.5 2–6.5 2.3–6.5 2.1–7.2
Ns 1.2–5.4 2.5–3.4 2.5–3.4 2.7–3.4

3. Results and Discussion

First, the Galland [13], Yu et al. [17], Wolters and Van Gent [18] and Van Gent [19]
reduction functions in combination with the EBV stability formula were evaluated. Then,
an attempt was made to find an appropriate and compatible reduction factor for the EBV
stability formula. Figures 2–5 show the comparison of observed and predicted stability
numbers using existing reduction factors. As seen, the Van Gent [9] one is more appropriate
compared to the other reduction factors. As discussed before and shown in Figure 1, for
β > 45, Yu et al. [17] and WV predict a much higher influence of the wave obliquity on
rock size (reduction in armour size) and stability number (increase in the stability number)
compared to Van Gent [19].

Next, we attempted to derive a compatible reduction factor for applications in combi-
nation with the EBV stability formula.

Figure 6a shows that the f (β) = Ns EBV/Ns Measured versus β. As seen Ns EBV/Ns Measured
is scattered. For example, Ns EBV/Ns Measured is between 0.4 and 0.8 for β = 60◦. Moreover,
some records for relatively small wave angles and long-crested waves (S = 0) result in
reduction factors larger than 1, and some data points at β = 0◦ are not close to 1. The
values larger than 1 for perpendicular waves are due to differences between the stability
expression and the data. The data point with a gamma value larger than 1 for a wave
angle of 15 degrees, larger than for perpendicular waves, is based on low damage values
(Sd = 2.2 for perpendicular waves). For low damage values, there is a natural larger relative
spreading in the results due to the dependency of the damage values on the (in)stability of
only a few stones.
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It should be mentioned that this is not because of using NS EBV for stability; the issue
exists when using other stability formulae. For example, in Figure 6b, the VSK formula
was applied and data points at β = 0◦ are not close to 1. It was found that to derive a more
appropriate and compatible reduction factor for the EBV stability formula, the Van Gent [19]
reduction function can be used with a modified cβ value. Using the Van Gent [19] approach,
the optimal cβ values are 0.54 and 0.44 for short- and long-crested waves, respectively.
Therefore, the reduction factor for the EBV stability formula can be proposed to be:

γβ EBV = (1 − cβ) cos2β + cβ cβ = 0.44 (0.54) for long (short) crested waves (13)
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Figure 6a shows the comparison of Van Gent [19] and the reduction factor calibrated
for the EBV formula versus β. As seen, using a modified cβ for application in combination
with the EBV stability expression indicates less influence of wave obliquity compared to
that suggested by Van Gent [19] in combination with another stability formula.

Figure 7 shows the comparison between the measured and predicted stability numbers
using the new wave obliquity reduction factor. As seen, the scatter in the data is reduced in
this way. In addition, most of the data points are concentrated on the line of the perfect
agreement when using EBV with a new reduction factor predicts the stability much better
than others’ formulae.
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The performances of the various formulae were also evaluated quantitatively using ac-
curacy metrics such as the normalised bias (NBias), the scatter index (SI) and the correlation
coefficient (CC), defined below:

NBias =
1
n

∑n
1 (pi −mi)

mi
× 100 (14)

SI =

√
1
n ∑n

i=1(pi −mi)2

mi
× 100 (15)

CC =
∑n

i=1 (pi − pi)(mi −mi)√
∑n

i=1 (mi −mi)
2 (p i − pi)

2
(16)

where pi and mi denote the predicted and measured values, respectively. The number of
measurements is n and the bar denotes the mean value.

Tables 5 and 6 display the accuracy metrics of the EBV stability formula using Van
Gent [19] and the new reduction factor based on the Van Gent [19] and Yu et al. [17] datasets,
respectively. As seen, the calibration of the coefficient in Equation (13) results in a negligible
bias.
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Table 5. Accuracy metrics of NS EBV using the new and Van Gent [19] wave obliquity reduction
factors, Van Gent [17] data.

Ns EBV/γB VG Ns EBV/γβ EBV Ns EBV/γβs EBV

NBias 16.4 −0.05 −0.05
SI 24 17.7 17.70
CC 0.83 0.80 0.80

Table 6. Accuracy metrics of NS EBV using the new and Van Gent [19] wave obliquity reduction
factors, Yu et al. [17] data.

Ns EBV/γB VG Ns EBV/γβ EBV Ns EBV/γβs EBV

NBias −13 −16.0 −15.70
SI 15 16.85 16.10
CC 0.77 0.82 0.81

As seen, the new suggested reduction factor (γβ EBV) considers the effect of wave
angle (quantitatively) and wave spreading for short- and long-crested waves (qualitatively).
Therefore, in the third step, a reduction coefficient (γβsEBV), which is a function of wave
angle and spreading qualitatively, will be investigated.

As discussed in Yu et al. [17] and Van Gent [19], unidirectional (long-crested) and
multidirectional (short-crested) oblique waves can affect the stability number differently.
They concluded that more spreading leads to reducing the influence of wave obliquity.
Here, the effects of wave directionality were reanalysed. Experiments by Yu et al. [17]
included only tests with S = 10 and S = 40 as a measure for directional spreading. The usual
minimum and maximum values of wave spreading are 0 and about 45, respectively. These
extreme values are covered in the used datasets but with no intermediate values. Based on
the available data, a linear function can be proposed for the estimation of cβ as a function
of S, i.e., cβ = 0.44 + 0.004S (γβsEBV = (1 − cβ) cos2β + cβ). This means that cβ varies linearly
between 0.44 for S = 0 and 0.60 for S = 40. In other words, the more spreading, the smaller
the effect of wave obliquity, which is physically sound as more spreading means that waves
are coming from different directions. As seen, γβsEBV considers the quantitative effect of
wave angle and wave spreading.

The accuracy metrics of this reduction factor for different datasets are shown in the
last column of Tables 5 and 6. As seen, the proposed formula provides reasonable results
for considering wave spreading in oblique waves. For more investigation, the accuracy
metrics (NBias and SI) of these reduction factors for different range of β and S are shown in
the Figures 8 and 9. It can be concluded that the new reduction factor has more accurate
prediction in almost all wave angles (except β = 30) and in all wave spreading situations
(except S = 10) than others. The accuracy in the prediction is seen also in the Figure 10 and
the scatter in the data is reduced in this way.
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Figure 11 displays the effects of wave direction and spreading on the reduction in
required armour size. As seen, an increase in wave spreading leads to a reduction in
required armour size. For example, for a wave angle of 40◦ and wave spreading of 30,
the reduction factor of the armour size is 0.8. Hence, the armour size calculated based on
Etemad-Shahidi et al. [1] can be decreased by 20%.
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4. Summary and Conclusions

One of the most recent formulae for estimating the stability of rock-armoured slopes
is Etemad-Shahidi et al. [1], or EBV. The aim of this study was to develop a suitable wave
obliquity reduction factor for the EBV stability formula. Hence, the influence of oblique
waves on the stability of the rock armour layer has been investigated based on the available
dataset. Data records of Yu et al. [17] and Van Gent [19], with damage levels in the range
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of 2 ≤ Sd ≤ 12, were selected. These studies show that the influence of oblique waves
on the stability of rock armour layers is significant, and the required armour size can be
reduced, compared to the perpendicular wave attack case. This effect can be considered
the reduction factor γβ for the required armour size which can reduce construction costs.
For example, a 15% reduction in armour size will result in about a 40% reduction in the
armour’s weight, which is significant.

All available γβ formulae were evaluated in combination with the EBV stability
formula using different datasets separately, and it was concluded that the Van Gent [19]
approach provides more accurate predictions than the others. Based on their approach, an
appropriate and compatible reduction factor for the EBV stability formula was developed,
which includes the effect of directional spreading explicitly for the first time. It was
concluded that the results are improved slightly by using the new and more physically
sound wave obliquity reduction factor.

In this study, one of the most recent formulae for estimating the stability of rock-
armoured slopes was extended by considering the effects of the wave angle and the
directional spreading coefficient. The results show that the prediction is more accurate
and reliable when using an expression calibrated for the mentioned stability formula. The
newly proposed reduction formula, γβsEBV = (1 − cβ) cos2β + cβ with cβ = 0.44 + 0.004S,
leads to an unbiased prediction and a 30% improvement in SI, with a coefficient of variation
of 19%. It should be noted that the effect of wave multi-directionality on stability has been
quantified explicitly for the first time.

Author Contributions: M.B.: Conceptualization, Writing—original draft Validation, Formal analysis.
A.E.-S.: Conceptualization, Methodology, Writing—review & editing, M.R.A.v.G.: Data curation,
Writing—review & editing, Conceptualization. All authors have read and agreed to the published
version of the manuscript.
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Nomenclature

Symbol Name Unit
α Structure slope angle [◦]
β Wave angle [◦]
CP Permeability coefficient [-]
CC Correlation coefficient [-]
∆ = (ρs/ρw) − 1 Relative buoyant mass density [-]

Dn50 = (M50/ρa)1/3 Armour equivalent cube length exceeded by 50%
of a sample by weight

[m]

D50 Equivalent spherical diameter [m]

Dn50c
Core equivalent cube length exceeded by 50% of a
sample by weight

[m]

EBV Etemad-Shahidi et al. [1] [-]

γβ EBV

New wave angle and spreading reduction factor which
is a function of β (quantitatively) and S (qualitatively)
for EBV formula

[-]

γβS EBV

New wave angle and spreading reduction factor which
is a function of β (quantitatively) and S (quantitatively)
for EBV formula

[-]

γBVG
Wave angle and spreading reduction factor suggested by
Van Gent [19]

[-]

Hm0 Significant wave height based on frequency domain analysis [m]
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H2% Average of the highest 2% of incident waves [m]
H50 Average of the 50 highest waves [m]
Hs Significant wave height at toe of the structure [m]
h Water depth
KD Hudson stability coefficient [-]
Irm−1,0 Iribarrn number based on Tm−1,0. [-]
Irc Transition Iribarrn number in VSK formula [-]
mi Measured values [-]
mi Average of the measured values [-]
M50 Median rock mass [kg]
n The number of observations [-]
Nw Number of wave attack [-]
Ns Stability number using Hs [-]
NS EBV Stability number calculated by EBV formula [-]
NS VSK Stability number calculated by VSK formula [-]
Ns Measured Measured stability number
N50 Stability number using H50 [-]
P Nominal permeability [-]
Pi Predicted values [-]
Rc Crest freeboard [m]
ρs Rock density [kg/m3]
ρw Water density [kg/m3]
Som = 2πHmo/gTom

2 Deep water wave steepness using Tom [-]
Som−1,0 Deep water mean wave steepness using T−1,0 [-]
Sd Damage level [-]
SI Scatter index [-]
Tm−1,0 = m−1/m0 Mean energy wave period based on frequency domain [s]
TP Peak wave period [s]
Tm Mean wave period [s]

Tm−1,0,deep
Mean energy wave period based on frequency domain analysis
in deep water

[s]

VSK Van Gent et al. [22] [-]
VG Van Gent [19]
WV Wolters and Van Gent [18] [-]
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