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Abstract: Over the past few decades, unmanned surface vehicles (USV) have drawn a lot of attention.
But because of the wind, waves, currents, and other sporadic disturbances, it is challenging to
understand and collect correct data about USV dynamics. In this paper, the Modified backpropagation
neural network (BPNN) is suggested to address this issue. The experiment was conducted in the
Qinghuai River, and the receiver collected the data. The modified BPNN outperforms the conventional
BPNN in terms of ship trajectory forecasting and the rate of convergence. The updated BPNN can
accurately predict the rotational velocity during the propeller’s acceleration and stability stages at
various rpms.

Keywords: underwater surface vehicle (USV); backpropagation neural network (BPNN); additional
momentum method; adaptive learning rate method; vehicle dynamics

1. Introduction

Unmanned surface vehicles (USVs) have recently garnered significant interest from
researchers and developers. Compared to traditional manned vehicles, the USV’s ability
to operate in severely hazardous environments is one of its most remarkable advantages.
USVs can perform tasks that conventional ships cannot achieve in terrible ocean environ-
ments and other situations. At the same time, these types of ships are of great importance
for national defense security and environmental monitoring. However, controlling Un-
manned surface vehicles is a notoriously challenging task that remains poorly understood
due to various uncontrollable phenomena, including wind, wave, current, and other ran-
dom disturbances. The unpredictability and dynamic nature of these external forces render
the control of USVs particularly intricate. This is further compounded by the complex
interactions between these disturbances and the vehicle’s dynamic characteristics. To
compound the matter even further, USVs are often required to perform precise maneuvers
in cluttered environments, which requires a high level of control authority and adaptability.
To address these challenges, researchers have been exploring innovative control strategies
that can enhance USV performance in hostile environments. These strategies often combine
traditional control techniques with advanced algorithms and machine learning methods
to develop more robust and adaptive control systems. Additionally, the use of simulation
platforms has become an essential tool for testing and validating these control strategies
before deploying them in real-world scenarios. In Antonelli’s research, it has been shown
that using artificial intelligence algorithms for data processing has certain pattern recog-
nition capabilities and can be analyzed without a physical model. However, this method
currently lacks a comprehensive scientific explanation and cannot be falsified. However,
he believes that data-driven artificial intelligence algorithms are still very worthwhile to
study [1].

Numerous studies have been conducted to explore the control methods of Unmanned
Surface Vehicles (USVs). The identification of the dynamic coefficient of the unmanned
vessel plays a decisive role in the accurate motion control and automatic driving of the
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unmanned vessel, especially in the case of external interference. At present, no unmanned
vessel can have accurate control ability in complex waters, which is also one of the prob-
lems of dynamic identification of hydrodynamic coefficients. The most common technique
for handling an indescribable system from input–output data is system identification. In
the process of system identification, Nagumo and Noda utilized continuous least squares
estimation with error-correcting training [2]. Holzhuter employed recursive least square
estimation to identify ship dynamics [3]. Kallstrom and Astrom demonstrated the use
of recursive estimation of maximum likelihood in ship steering motion in 1981 [4], yield-
ing well-predicted outcomes. To anticipate motion variables, hydrodynamic force, vehicle
speed, and current direction, Yoon and Rhee suggested the extended Kalman filter approach
and modified Bryson–Frazier smoother [5]. Shin et al. combined Particle Swarm Optimiza-
tion (PSO) with an adaptive control technique to anticipate the trajectory of autonomous
surface vehicles [6]. Additionally, Selvam described a frequency domain identification
system for linear steering equations in ships’ maneuvering under calm seas [7].

Daniele’s research shows that it is very difficult to establish the dynamics model of both
USV and ROV. The system delay problem of the dynamic system and the interference of
the external environment lead to the failure of accurate control. Therefore, adaptive control
algorithms, especially data-driven algorithms, are needed to solve these problems [8].
The dynamic model of ship dynamics poses a formidable nonlinear challenge due to the
influence of wind, ocean currents, and various arbitrary disturbances. The nonlinear issue
that emerged last year was successfully addressed through the application of Artificial
Neural Networks (ANN). In order to tackle the system identification challenges posed
by large oil tankers, Rajesh and Bhattacharyya proposed an artificial neural network
approach [9]. The network was trained using the Levenberg–Marquardt algorithm, and
multiple hidden neuron densities were evaluated to determine the optimal configuration.
Oskin et al. introduced Recurrent Neural Networks (RNN) for identifying both linear and
nonlinear behaviors in ship dynamics [10]. Additionally, Pan et al. employed an effective
Neural Network (NN) method to track the movements of autonomous surface vehicles
with unknown ship dynamics [11]. This series of studies provides crucial insights and
innovative approaches for understanding and addressing the complexity of ship dynamics.

This study utilized a Back Propagation Neural Network (BPNN) to address the non-
linear dynamics problem of Autonomous Underwater Vehicles (AUVs). The benefit of the
BPNN is that it has a robust non-linear mapping capability and a flexible network topology,
making it ideally suited to the problem of vessel dynamic system identification. However,
the traditional bp neural network has the ability of self-adaptation and self-learning and
has strong nonlinear mapping ability, but it also has some defects such as slow convergence
and easy fall into the local optimal solution. The additional inertia method and the adapted
learning rate method are also chosen to improve the BPNN method in order to minimize
these shortcomings. The training data comes from actual experiments that were conducted
in the Qing-Huai river.

In order to study the motion control ability of the BPNN algorithm in USV, the
algorithm is designed to take the speed of the left and right thrusters as input and output
the surge velocity, swing velocity, rotation velocity, and trajectory through black box
calculation, which can realize the motion control solution of USV. The above parameters
are selected as input and output because these data can be obtained on the experimental
model or can be calculated. This study includes two hidden layers. Through the expert
experience method, the weight of the hidden layer is assigned, and the various parameters
are correlated.

2. USV Dynamic System
2.1. Deepsea Warriors uBoat (YL1300M)

We propose the following development requirements for the USV to be able to perform
algorithm verification in a real environment. The real ship is shown in Figure 1.
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Figure 1. The design of the YL1300M.

a. The body of the YL1300M is shaped to be more streamlined in order to reduce resis-
tance.

b. The YL1300M must have good stability in order for the USV to function in a freshwater
and inshore environment.

c. The vessel features a sizable storage area for carrying a variety of tools and supplies.
d. The boat’s upper deck features a sizable cover that can be used to disassemble and

repair equipment.
e. There are two electric propulsion modules in the car. Due to the lack of a rudder and

gimbaled thruster on the YL1300M, the steering motion can be produced by altering
the RPM (revolutions per minute) of the two primary thrusters.

The YuanLi-1300M measures 1.3 m in length, 0.64 m in width, and 0.55 m in height.
The vehicle is equipped with various sensors, including two differential GPS units located
at the bow and stern, respectively, as well as an electronic compass capable of measuring
position, speed, and heading angle.

2.2. USV Dynamic Model

In Marco’s paper, the rigid-body dynamics equations for the UUV are described.
He described the motion of the vehicle as an equation of six degrees of freedom. When
considering the influence of the external environment, the coupling relationship is ignored
and only the simplified uncoupling model is considered [12]. In order to characterize the
motion of the USV in a simple manner, the three degrees of freedom (surge, sway, and yaw)
in horizontal planar motion are taken into account in this work. The USV and its coordinate
frame are described in Figure 2 using the nomenclature proposed by Fossen [13].
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The u, v, and V indicate the upsurge, swing, and overall speed of the USV in a body-
fixed frame, respectively while the xi, yi denote the north and east direction of the USV in
the inertial frame, respectively. In addition, ψ and β denote the heading angle and course
angle of the USV, respectively while X represents the side slip angle.
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The kinematic model of the USV can be expressed as follows [14]:

.
η = R(η) · v, (1)

v = (u, v, r)T , (2)

η = (xi, yi, ψ), (3)

R(η) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

, (4)

where indicates the velocity vector v, the position vector η, and the rotation matrix R(η)
that maps the vector from the object’s fixed coordinate system to the inertial coordinate
system.

The surface vehicle’s planar dynamic model can be explained as follows:

M
.
v + C(v)v + D(v)v = f , (5)

where M indicates the mass matrix, which consists of the body’s mass and included mass,
C(v) indicates the Coriolis and centripetal matrices, D(v) indicates the damping coefficient
matrix and the present matrix Equation (6). Given that the YL1300M ‘s propulsion system
is a differential thruster type, Sonnenburg et al. describe it as follows [15]:

f =

τX
τY
τN

 =

 Tport + Tstbd
0(

Tport − Tstbd
)

B/2

, (6)

where Tport and Tstbd denote the port side thruster’s thrust force and the starboard side
thruster, respectively. B the beam of the YL1300M.

Consequently, the following is an illustration of the three degrees of freedom nonlinear
dynamic motion equations:

(m − X .
u)

.
u − m(xGr2 + vr) + Y .

vvr +
Y.

r + N.
r

2
r2 + Xuu + Xu|u||u|u = τX , (7)

(m − Y .
v)

.
v + (mxG − Y.

r)
.
r + (m − X .

u)ur + Yvv + Yrr + Y|v|v|v|v + Y|r|r|r|r = τY, (8)

(mxG − N .
v)

.
v − (Izz − N.

r)
.
r + mxGur − Y .

vuv −
Y.

r + N.
r

2
ur + X .

uuv + Nvv + Nrr + N|v|v|v|v + N|r|r|r|r = τN , (9)

where X(·), Y(·), and N(·) in Equations (7)–(9) represent constant hydrodynamic coefficients,
which are partial derivatives of surge, sway force, and yaw moment, respectively.

3. Neural Network
3.1. The Back Propagation Neural Network Principle

In 1986, the back propagation neural network (BPNN) was proposed by Rumelhart
and colleagues and McClelland. The input layer, hidden layer, and output layer of the
BPNN are depicted in Figure 3. The relationship between the number of the input layer,
hidden layer, and output layer may be understood using the empirical formula given by
Li et al. [16]:

M =
√

N + K + φ, (10)

where indicates the hidden layer’s unit number, N the input layer’s unit number, K the
output layer unit number, and φ a constant number that falls within the (1, 10). φ is set to 5.
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Figure 3. A BP neural network.

Back propagation and forward propagation are two of the methods used in BPNN. The
outcome of the neural network can be obtained during this process to be contrasted with
the intended data; this discrepancy is regarded as an error and is employed in the backward
propagation process to generate the loss function valve. The input data is propagated from
the input layer to the output layer. Using optimization techniques, the link weights and
threshold can be changed to reduce the loss function.

As can be demonstrated in Figure 4, Assume n input signals are propagated in a neural
unit j, and the following is the way the result can be determined:

Oj = f

(
n

∑
i=1

xiwij − θj

)
, (11)

where wij represents the value of the weight coefficient of friction, θj the neural unit’s
threshold, f (·) an activation function, and the Sigmoid function are used, as shown below:

f (X) =
1

1 + exp(−X)
, (12)
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Substituting Equation (12) into Equation (11) and the output Oj can be expressed as:

Oj =
1

1 + exp
(

n
∑

i=1
xiwij − θj

) . (13)



J. Mar. Sci. Eng. 2024, 12, 297 6 of 15

The neural network’s i-th output value is compared to the real value, and the difference
is known as the unit error of the output layer. Its error function is depicted below:

Ei =
1
2

k

∑
k=1

(yd,k − yk)
2, (14)

where yd,k and yk denote expected value and real value of neural unit k, respectively, within
the output layer. The entire mistake E for m samples of training is expressed as follows:

E =
1
m

i

∑
i=1

Ei. (15)

The malfunction indicator is obtained layer-by-layer via recursive propagation and
the weights will be adjusted to reduce the error. The next will show that how to adjust
weights to decrease the error. In the p-th iteration, the mistaken indioncate of the output
layer of neuronal cells unit k is as follows:

ek(p) = yd,k(p)− yk(p). (16)

Then the error will be utilized to modulate the weight in the next iteration and can be
shown as:

wjk(p + 1) = wjk(p) + ∆wjk(p). (17)

However, Equation (17) is not able to maintain the accumulation of the learning
experience which means the velocity of the convergence is slow. This paper adopts the
additional momentum method, which is as follows:

wjk(p + 1) = wjk(p) + ∆wjk(p) + α
[
wjk(p)− wjk(p − 1)

]
, (18)

where α denotes the rate of the momentum learning.
The adjusting part of the weight ∆wjk(p) can be calculated as:

∆wjk(p) = η × yi(p)× λk(p), (19)

where η denotes the learning rate, yi(p) the output signal of neuron unit j, and λk(p) the
error gradient of neuron unit k.

The standard η is belonging to (0, 1), but the η is difficult to determine, if the η is too
large which result in generating the oscillation in the learning process while the η is too
small which cause the velocity of convergence become slowly. The adaptive learning rate
method is adopted which can be shown as follow:

η(t) = ηmax − (ηmax − ηmin)×
t

tmax
, (20)

where ηmax indicates the highest rate of learning, ηmin the lowest possible rate of learning,
tmax the greatest quantity of iteration, and t the current number of iteration.

The error gradient can be calculated as:

λk(p) =
∂yk(p)
∂Xk(p)

× δk(p), (21)

where Xk(p) denotes the neural unit’s weighted input k, δk(p) the error of the neural unit k.
If neural unit k is in the output layer,

δk(p) = ek(p). (22)
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Figure 5 demonstrates the error gradient’s back-propagation process for a unit and the
error of the neuron can be written as:

δK(P) =
l

∑
i=1

(δi(p)× wki(p)), (23)

where l denotes the result of the layer’s neural unit count.
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In Equation (21):

∂yk(p)
∂Xk(p)

=
∂
{

1
1+exp[−Xk(p)]

}
∂Xk(p)

=
exp[−Xk(p)]

{1 + exp[−Xk(p)]}2 = yk(p)× [1 − yk(p)]. (24)

Substitute Equations (21)–(23) into Equation (24):
When the output layer’s neural unit k:

λk(p) = yk(p)× [1 − yk(p)]× ek(p). (25)

When the hidden layer’s neural unit k:

λk(p) = yk(p)× [1 − yk(p)]×
l

∑
i=1

δi(p)wki(p). (26)

3.2. BPNN for Dynamic Model Identification

According to Equations (7)–(9), The thruster force determines the surge velocity, sway
velocity, rotational velocity, and trajectory. The RAND function in Matlab is used to assign
random weight values and thresholds in the range of −1 to 1. The magnitudes of the
thruster forces are contingent upon the rotational velocity of the propeller. Hence, the
variables included as inputs in this study are the left RPM and right RPM, whereas the
variables considered as outputs are the surge velocity, sway velocity, rotational velocity,
and trajectory. The Levenberg–Marquardt (LM) backpropagation algorithm is utilized for
the purpose of error minimization. The LM backpropagation algorithm is a very efficient
technique utilized in neural networks and has gained significant recognition in academic
research (Hagan and Menhaj, 1994; Suri et al., 2002) [17,18]. The threshold values and
weight values are updated using the additional momentum method in conjunction with
the LM backpropagation algorithm. In the context of computer simulation, a training set
consisting of 70% of the available data is employed to train the Backpropagation Neural
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Network (BPNN), while a separate testing set comprising 30% of the data is used to evaluate
the performance of the trained BPNN.

This article uses the LM algorithm as a calculation method to minimize errors in
the improved BPNN algorithm, which is an estimation method for minimizing regres-
sion parameters in nonlinear regression. This method is a combination of the steepest
descent method and linearization method. When facing the identification of hydrodynamic
coefficients for USVs, it has better calculation speed and the ability to solve nonlinear
equations.

4. Experimental Setup and Simulation Results

In order to realize the experimental demonstration of the improved BPNN algorithm,
we prepared a USV, which is equipped with a propeller that can feedback the speed.
At the same time, it is also equipped with a wealth of sensors, including GPS, attitude
sensors, electronic compass, and other sensors, which can provide us with track, heading
Angle, speed, Roll, Pitch, Yaw, and other data. The USV ship is equipped with a radio
communication radio, which can transmit these data to the shore control software at
a frequency of 5 Hz in real time and can display and store the data in real time. The
topological relationship of the ship control system is shown in Figure 6.
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The investigation was carried out in Nanjing’s Qing-Huai River, as shown in Figure 7.
It is worth noting that wind and current were consistently present at this particular site.
Figure 8 displays the YL1300M expeditions throughout the Qing-Huai river. The turning
experiments for the unmanned surface vehicle were conducted by varying the revolution
speed of the propeller. The selection of distinct revolution speeds for the left and right
propellers is evident in Table 1. Initially, the vehicle came to a halt on the water, utilizing
the distinct revolutions per minute (RPM) of both the left and right propellers to push
the YL1300M. This enabled the acquisition of rotation performance data under intricate
circumstances. The neural network was trained using 70% of the available data, while the
remaining 30% was reserved for testing purposes.

Table 1. The different revolution speeds of the propeller were operated in experiments.

Left (RPM) Right (RPM) Left (RPM) Right (RPM) Left (RPM) Right (RPM)

−100 0 0 −100 −100 −100
−200 0 0 −200 −200 −200
−300 0 0 −300 −300 −300
−400 0 0 −400 −400 −400
−500 0 0 −500 −500 −500
−600 0 0 −600 −600 −600
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Table 1. Cont.

Left (RPM) Right (RPM) Left (RPM) Right (RPM) Left (RPM) Right (RPM)

−700 0 0 −700 −700 −700
−800 0 0 −800 −800 −800
−900 0 0 −900 −900 −900
−1000 0 0 −1000 −1000 −1000

100 0 0 100 100 100
200 0 0 200 200 200
300 0 0 300 300 300
400 0 0 400 400 400
500 0 0 500 500 500
600 0 0 600 600 600
700 0 0 700 700 700
800 0 0 800 800 800
900 0 0 900 900 900

1000 0 0 1000 1000 1000
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Figure 9 provides a visual representation of the YL1300M ‘s trajectory under varying
propeller revolution speeds. The insightful depiction allows us to observe how the left
and right propellers contribute to the vehicle’s movement at rotational speeds of 100 rpm,
500 rpm, and 1000 rpm. In the left column, a sequence of three images elucidates the
trajectory of the left propeller, while the right column concurrently showcases the trajectory
of the right propeller at the same rotational speeds. It becomes evident that the YL1300M‘s
path deviates from the anticipated conventional circular trajectory. The images in the
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left column exhibit the subtle nuances in the trajectory as the propeller revolution speeds
increase. At 100 rpm, the trajectory seems relatively stable, maintaining a certain symmetry.
However, as the rotational speed escalates to 500 rpm and 1000 rpm, we begin to observe
deviations in the circular path, hinting at the influence of external factors or system dynam-
ics. Interestingly, the right column reveals a complementary set of images illustrating the
trajectory under negative rotational speeds (−100 rpm, −500 rpm, and −1000 rpm). This
adds a layer of complexity to the analysis, as negative rotational speeds might introduce
counteracting forces, potentially affecting the overall stability and direction of the YL1300M.
The visual representation in Figure 8 not only captures the expected circular trajectory
but also unveils subtle deviations and nuances induced by varying propeller revolution
speeds. This nuanced analysis provides valuable insights into the dynamic behavior of
the YL1300M, shedding light on potential factors influencing its trajectory under different
operational conditions.
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Due to the influence of wind and current, the actual trajectory deviates from a circular
path and instead takes the form of a linear or spiral trajectory. When the propellant’s velocity
of rotation is low, the trajectory of the vehicle resembles a straight line. The lateral velocity
is significantly smaller in comparison to the velocity of the current, resulting in the current
exerting a dominant influence on the vehicle’s motion. Consequently, the ship moves in
accordance with the current, leading to a linear trajectory. When the rotational velocity
of the propeller reaches a high magnitude, the resulting path followed by the ship can be
described as a spiral progression. The surge speeds and sway speeds exceed the magnitude
of the current velocity, resulting in a ship’s motion characterized by a combination of
circular trajectory and forward movement. Furthermore, the overall trajectory of the
movement aligns with the direction of the current, as depicted in Figure 7. The predictive
trajectory determined by the modified BPNN is represented by the blue dotted lines, while
the traditional BPNN is represented by the yellow dotted lines. Table 2 demonstrates that
the modified Backpropagation Neural Network (BPNN) has superior predictive capabilities
for trajectory estimation compared to the conventional BPNN. This approach also exhibits
a strong compatibility with the actual trajectory of the vehicle in the presence of wind
and current. Furthermore, the modified backpropagation neural network (BPNN) exhibits
a higher rate of convergence compared to the original BPNN. Hence, the utilization of
the additional momentum method and adaptive learning rate method in enhancing the
BPNN yields superior results in predicting the motion of vehicles. There are three types
of track types in the experiment: smooth curve without turning, one turning circle, and
multiple turning circles. After the experimental demonstration, BPNN can still predict more
accurately in the first two working conditions, but when encountering multiple groups
of rotation or the greater the curvature, BPNN will completely predict out of control. In
contrast, the modified BPNN algorithm has better adaptability, and the effect is far superior
to the traditional BPNN.

Table 2. The standard deviation of error at different RPM.

100 RPM 500 RPM 1000 RPM

X (m) Y (m) X (m) Y (m) X (m) Y (m)

Traditional BPNN 0.055 0.033 0.139 0.151 0.147 0.325

Modified BPNN 0.048 0.028 0.121 0.147 0.133 0.287

−100 RPM −500 RPM −1000 RPM

X (m) Y (m) X (m) Y (m) X (m) Y (m)

Traditional BPNN 0.062 0.103 0.118 0.103 0.138 0.289

Modified BPNN 0.044 0.088 0.105 0.096 0.115 0.244

Figure 10 offers a comprehensive visualization of the interplay between empirical
observations and predictive data, meticulously acquired through the sophisticated applica-
tion of a refined Backpropagation Neural Network (BPNN) operating across a spectrum of
propeller revolution speeds. The deliberate alignment of the six images in Figure 9 mirrors
the arrangement in Figure 8, facilitating a detailed comparative analysis. The discernible
rhythmic behavior captured in the data is a consequence of the inherent noise introduced
during the meticulous process of data collection. In response to this challenge, the Gaussian
filter technique emerges as a pivotal tool, systematically employed to mitigate and filter
out noise from the dataset. The outcome is depicted graphically by the red line, unveiling a
nuanced narrative delineated by two distinctive phases: acceleration and stability.
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Within the intricate interplay of data and model predictions, it becomes evident
that the forecasted data elegantly conforms to the intricate dynamics of both acceleration
and stabilization stages. However, an analytical eye acknowledges a peak in the error
rate, reaching a maximum of 11.33%. This nuanced observation underscores the inherent
complexity of the system and hints at potential areas for refinement in the predictive
modeling process. Nevertheless, the overall accuracy of the improved Backpropagation
Neural Network (BPNN) in delineating the complete rotational speed process across the
diverse spectrum of propeller revolution speeds remains notably high, showcasing the
model’s capacity for capturing and interpreting the intricate dynamics of the propulsion
system. The data and curves in Figures 9 and 10 and Table 2 significantly show that the
improved BPNN algorithm is relatively reliable in predicting different propeller speeds
and track stability.

Transitioning to Figures 11–13, these visual representations intricately dissect the
surge velocities and sway velocities observed across varying propeller revolution speeds.
The rhythmic patterns discernible in both surge and sway velocities are attributed to the
intricate interplay of factors, intertwined with the rotational speed of the propeller. The
meticulous projection of these patterns is encapsulated by the green dotted lines, serving
as visual overlays that encapsulate the predicted values and patterns extrapolated from the
empirical data obtained under distinct propeller revolution speeds. The analysis extends to
the amplitude of the predicted values, revealing an admirable alignment with the actual
observed values. The meticulous calibration of the predictive model is further emphasized
by the recorded maximum inaccuracy rate of 8.9%. This attests to the model’s robustness,
demonstrating a commendable efficacy in navigating the complexities of forecasting surge
and sway velocities even under dynamically intricate conditions. The multifaceted analysis
presented in Figures 10–13 encapsulates the synergy between empirical data and predictive
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modeling, shedding light on the intricate dynamics of the propulsion system under varying
operational conditions. The nuances observed in the rhythmic behavior and predictive
accuracy offer valuable insights for future refinements, emphasizing the perpetual pursuit
of precision and understanding in the realm of marine propulsion systems.
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5. Conclusions

This study focused on the identification of a three-degree-of-freedom unmanned sur-
face vehicle named YL1300M. Due to the influence of wind, ocean currents, and various
unpredictable disruptions, researchers decided to employ a neural network in order to
accurately discern and analyze the dynamics of ships. The Backpropagation Neural Net-
work (BPNN) is a valuable approach for addressing complex nonlinear problems, while it
does possess certain limitations. The traditional backpropagation neural network (BPNN)
was enhanced by using the additional momentum method and the adaptive learning rate
approach. Avoiding local minima is a challenging task that can enhance the convergence
speed and precision of conventional Backpropagation Neural Networks (BPNNs). The
findings indicate:

(1) The modified BPNN exhibits enhanced convergence speed and superior ship trajectory
prediction capabilities compared to the conventional BPNN. The calculated trajectories
of the propeller at various rotational speeds exhibit a strong correlation with the actual
trajectories.

(2) The improved BPNN demonstrates effective estimation capabilities for the rotational
velocity throughout both the acceleration and stability stages at various revolutions
per minute (rpm) of the propeller. Furthermore, reliable predictions have been made
for the acceleration of an increase and sway, in comparison to their actual values.

For the dynamic coefficient of the USV, the trajectory of the receiver and the main
engine rotation speed are predicted by the improved BPNN algorithm. Compared with the
traditional BNPP algorithm, the proposed algorithm has a larger lift, but still has a higher
error when compared with the actual data of the real ship. By analysis, it is thought that
there may be unreliable data when acquiring real-time data, or the weight allocation of the
algorithm needs to be adjusted. Further studies could be made on this basis in the future.
At the same time, the improved idea of this algorithm can be extended to other engineering
fields, such as unmanned aerial vehicles, and inverted pendulums, especially in the scenes
where the coefficients of nonlinear kinematic equations need to be recognized. The future
identification algorithm based on data-driven dataless models will inevitably have more
and wider applications.
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