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Abstract: The feature matching of the near-bottom visual SLAM is influenced by underwater raised
sediments, resulting in tracking loss. In this paper, the novel visual SLAM system is proposed in the
underwater raised sediments environment. The underwater images are firstly classified based on the
color recognition method by adding the weights of pixel location to reduce the interference of similar
colors on the seabed. The improved adaptive median filter method is proposed to filter the classified
images by using the mean value of the filter window border as the discriminant condition to retain
the original features of the image. The filtered images are finally processed by the tracking module
to obtain the trajectory of underwater vehicles and the seafloor maps. The datasets of seamount
areas captured in the western Pacific Ocean are processed by the improved visual SLAM system.
The keyframes, mapping points, and feature point matching pairs extracted from the improved
visual SLAM system are improved by 5.2%, 11.2%, and 4.5% compared with that of the ORB-SLAM3
system, respectively. The improved visual SLAM system has the advantage of robustness to dynamic
disturbances, which is of practical application in underwater vehicles operated in near-bottom areas
such as seamounts and nodules.

Keywords: underwater visual SLAM; underwater raised sediments environment; image pre-processing;
color recognition; adaptive median filter

1. Introduction

Underwater inspection and surveys are important underwater applications such as
seafloor resource exploration. Visual technology is widely used for Underwater inspection
and surveys. Deep-sea mining and seafloor oil and gas exploration utilized by AUVs are
popular topics to research [1–3]. Wang uses a robust Real-Time AUV Self-Localization
method for deep-sea exploration [4]. Hong presents a portable autonomous underwater ve-
hicle (AUV) named Shark for vision-based underwater inspection [5]. Chemisky conducts
a review of the close-range optical methods for the underwater oil and gas industry [6].
Stenius presents the application of AUVs for seaweed farm inspection [7]. Underwater
visual localization technology such as underwater visual SLAM is one of the key tech-
nologies for underwater inspection tasks. Underwater visual SLAM is utilized for the
trajectory localization of underwater vehicles and the construction of the surrounding envi-
ronment by feature matching and tracking the captured video images in the underwater
scene [8,9]. Underwater navigation is necessary for the operation of autonomous underwa-
ter vehicles [10]. The position of the underwater vehicle is a prerequisite for underwater
navigation [11]. Due to the absence of GPS information in the underwater environment,
underwater localization is difficult and has been extensively investigated. Multi-sensor
information fusion is commonly applied to obtain the position information of autonomous
underwater vehicles. A passive inverted Ultra-Short Baseline (piUSBL) positioning system
is proposed by Wang [12], which provides accurate and instantaneous positioning for
small Autonomous Underwater Vehicles (AUVs) by single-beacon tracking at low cost and
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power consumption. The acoustic image processing based on multi-beam bathymetric
sonar data is utilized in underwater terrain-aided navigation, which is more stable when
direction error is more significant than 10◦, and the accuracy is approximately 50% better.
At the same time, noise and scale vary in the real-time images compared with the terrain
contour matching algorithm [13]. In addition to using additional sensor information to
aid navigation, improved underwater navigation algorithms are also proposed for under-
water localization [14–16]. However, accumulated errors are unavoidable in traditional
integrated navigation methods, and devices such as DVL and USBL fail in near-bottom
environments. Machine vision can work steadily for long periods with tiny cumulative
time errors [17,18]. Thus, underwater visual SLAM has been developed and applied for
location awareness of the underwater environment and assisted navigation in recent years,
which has excellent potential for unmanned surveys and free cruising applications [19–23].
The application of underwater SLAM is widely studied. Issartel uses SLAM technology for
the underwater military to achieve underwater hiding for tasks [24]. Zhang utilizes BSLAM
(Bathymetric Particle Filter SLAM) which is accurate and fast for oceanographic surveys,
demining, and seabed mappings [25]. Yang proposes a SLAM localization algorithm using
forward-looking sonar for deep-sea mining [26]. Mahajan proposed a pilot aid using visual
SLAM for seabed surveying applications [27].

Joshi verifies and analyzes multiple visual algorithms in the underwater environ-
ment, such as OKVIS, SVO, ROVIO, VINS-Mono, and ORB-SLAM3, based on the datasets
tested [28]. The Fugu-f (Fugu flexible) system is presented to provide visual localization
in submarine tasks such as navigation, surveying, and mapping under good visibility
with the main advantages of robustness and flexibility [29]. An omnidirectional and
positioning-tolerant miniaturized prototype AUV docking system based on the integrated
visual navigation and docking algorithm is proposed to solve the planar-type docking
issues in a transparent water environment [30]. Although underwater visual SLAM has
been used for AUV navigation tasks, it is not always feasible for all cases due to limitations
in underwater image quality. A keyframe-based monocular visual odometry method is
proposed by adding a re-tracking mechanism to enhance optical flow tracking, realizing a
robust vision-based underwater localization in the turbid underwater environment [31].
However, underwater raised sediments sometimes occur in near-bottom environments.
The feature matching of visual SLAM is affected by the randomness of motion direction of
the underwater raised sediments. There are few studies on this influence.

When visual SLAM is affected by the external environment, there are two main
solutions: adding sensors or image pre-processing [32]. Since the role of visual SLAM is
auxiliary rather than central in underwater navigation, the solution of adding sensors for
visual SLAM is not adopted in underwater navigation. Image pre-processing for visual
SLAM includes two parts: image classification and image denoising.

Because the raised sediment phenomenon is occasional and does not always exist,
image classification can reduce the computational effort to increase real-time performance,
which is essential for visual SLAM. Image classification methods use underwater image
features such as color, texture, shape, and spatial distribution to classify images. Mittal
uses deep learning and image color analysis to classify underwater photographs and rec-
ognize numerous things, such as fish, plankton, coral reefs, submarines, and the gestures
of sea divers [33]. Mahmood proposes a new image feature (called ResFeats) extracted
from images’ textures and shapes. ResFeats has state-of-the-art classification accuracies
on MLC, Benthoz15, EILAT, and RSMAS datasets compared with the traditional CNN
method [34]. Lopez-Vazquez designs a pipeline using integrated spatial distribution and
temporal dynamics information to perform well in mobile and sessile megafauna recogni-
tion and classification tasks [35]. The accuracy value of the classification method reaches
76.18% in deep-sea videos taken at 260 m depth in the Barents Sea. As the underwater
raised sediments have the characteristics of noticeable color difference with seawater and
strong randomness of shape and spatial distribution, the color features of the underwater
image are utilized for image classification. However, the color of the underwater raised
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sediments is similar to that of the sea floor in the near-bottom environment, affecting image
classification. There are few studies for image classification based on image color features
in near-bottom environments.

The images that need to be denoised are obtained through image classification. The
image-denoising methods include learning-based and filtering-based [36]. Deep learning
techniques such as convolutional neural networks (CNN) are widely utilized for the image-
denoising method of learning [37]. Pang proposed a data augmentation technique called
corrupted-to-corrupted (R2R) to achieve unsupervised image denoising. The method
is competitive to representative supervised image denoising [38]. Li proposes a self-
supervised image denoising (SSID) method for real-world sRGB images to seek spatially
adaptive supervision on real-world sRGB photographs [39]. Dasari uses GAN architecture
and histogram equalization to enhance the underwater images. The 2186 real-world
underwater images are used for verification [40]. Raj uses SURF (Speeded-Up Robust
Features) and SVM (Support Vector Machines) algorithms to attain maximum accuracy
in underwater image classification [41]. Moghimi uses a two-step image enhancement
method which includes color correction and a convolutional neural network (CNN) with
deep learning capability to realize the underwater image quality enhancement [42].

However, underwater raised sediments are often random and unknown during un-
derwater operations. The background has also changed due to the movement of under-
water vehicles. There are not enough sample sets to train and learn underwater image
classification and denoising in an underwater survey task when the operating area is un-
known. Terrestrial training models are directly used whose results are not good. Therefore,
filtering-based methods are utilized for image denoising. There are extensive studies on
filtering-based image-denoising methods [43]. Kumar proposes different median filter
methods to eliminate salt-and-pepper noise [44]. Sagar presents a circular adaptive median
filter (CAMF) to denoise salt-and-pepper noise of varying noise densities for magnetic
resonance imaging (MRI) images [45]. It can be seen that the primary filter-based methods
are effective for salt-and-pepper noise. The underwater raised sediments are similar to
salt-and-pepper noise in terms of significant color differences. However, there is a big dif-
ference in size and shape. There is little research on underwater raised sediments denoised
through filter-based methods.

In this paper, an improved visual SLAM system is proposed to reduce the impact of
the underwater raised sediments to the feature matching of the visual SLAM to improve the
robustness of the visual SLAM. The weights of pixel position are added to improve the color
recognition method in HSV color space for image classification to reduce the interference
of similar colors on the seabed to improve the real-time of the visual SLAM. An improved
adaptive median filtering method is proposed by utilizing the mean value of the window
border pixels as a filtering criterion, which enhances the retained feature information of
the classified images to retain more original features of the images to improve the success
rate of feature matching. The filtered images are finally processed by the tracking module
to obtain the trajectory of underwater vehicles and the seafloor maps. The video datasets
captured in the western Pacific Ocean at 3000 m depth are processed by the improved
visual SLAM system. Keyframes, mapping points, and feature point matching pairs are
extracted from the improved visual SLAM system, which improved by 5.2%, 11.2%, and
4.5%, respectively. The improved visual SLAM system has the advantage of robustness to
dynamic disturbances such as underwater raised sediments, water bubbles, etc., which
is of practical application in underwater vehicles operated in near-bottom areas such as
seamounts, rockfall, and nodules.

This paper is organized as follows. Section 2 describes the underwater raised sedi-
ments phenomenon and proposes a novel visual SLAM system in the underwater raised
sediments environment. Section 3 presents the image classification and denoising methods
to achieve image pre-processing. Then, image classification and quality evaluation results
are obtained to verify the effectiveness of the methods. Section 4 shows the experimental
tests and results. Section 5 presents the conclusions of the paper.
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2. The Visual SLAM System for Underwater Raised Sediments Environment Establishment

Underwater images taken by the autonomous underwater vehicles while working at a
depth of 3000 m in the western Pacific seamount area are shown in Figure 1. Underwater no-
raised sediment images that expressed different areas during the movement and operation
of autonomous underwater vehicles are shown in Figure 1, respectively. The seamount
area is shown in Figure 1a, the rockfall area is shown in Figure 1b, and the nodules area
is shown in Figure 1c. The images of the underwater different areas are clear and rich
in texture detail. When the autonomous underwater vehicles operate in the seamount
area near the bottom, the localization of the low-cost autonomous underwater vehicles
is realized generally by an inertial navigation system (INS) with IMU as the core sensor
and integrated navigation assisted by underwater acoustic equipment such as Doppler
velocity log(DVL) and ultra-short baseline (USBL). However, there is a dead band due to
the installation position of the Doppler velocity log(DVL) on the low-cost autonomous
underwater vehicles that are too close to the seabed. The ultra-short baseline (USBL) is
disturbed by bubbles generated by propeller disturbance. Underwater acoustic equipment
fails when it moves and inspects underwater near-bottom seamount areas. Because the
images taken in the underwater seamount area are clear and texture features are sufficient,
the visual localization method is utilized instead of underwater acoustic equipment to
assist integrated navigation.
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Figure 1. No raised sediment environment in the underwater area. (a) The seamount area; (b) the
rockfall area; and (c) the nodules area.

Due to the movement of the underwater vehicle and the disturbance of the propeller
near the bottom, the underwater raised sediments will sometimes be generated in near-
bottom areas in Figure 2. The degrees of the underwater raised sediments are different
in different areas. The underwater raised sediment in the seamount area is light degree
shown in Figure 2a, the underwater raised sediment occupies a small part of the images,
and most of the feature information of the underwater images is retained compared with
the origin images; the underwater raised sediment in the rockfall area is medium degree
shown in Figure 2b, the underwater raised sediment takes up most of the images, and
most of the feature information of the underwater images are influenced by the underwater
raised sediments; and the underwater raised sediment in the area of the nodule is heavy
degree shown in Figure 2c, and there is fog dust apart from line dust. Few of the feature
information is retained in underwater images. The impact of underwater raised sediments
on visual localization techniques such as ORB-SLAM3 is mainly divided into two parts:
the original images are obscured by the underwater raised sediments, reducing the feature
information. Image recovery techniques are generally used to recover characteristics, but
image recovery techniques require accurate image information, which is often unknown in
the underwater near-bottom environment; the direction of motion of underwater raised
sediments is random and different from the motion direction of underwater vehicles. When
the degree of underwater dust increases, it will cause a reduction in the number of feature
point-matching pairs due to the directional consistency detection of the tracking module.
Therefore, image pre-processing is necessary to remove raised sediments which can increase
feature point matching pairs and increase the robustness of visual SLAM.
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Figure 2. Different degrees of the raised sediments in different areas. (a) Light degree in the seamount
area; (b) medium degree in the rockfall area; and (c) heavy degree in the nodules area.

An improved visual SLAM system is proposed for visual localization in the underwa-
ter raised sediments environment. The block diagram of the improved underwater visual
SLAM system is shown in Figure 3. The monocular video is extracted frame by frame
into an image stream, and each image is classified as to whether or not it has to be pre-
processed. The improved adaptive median filtering algorithm is then utilized to perform
image denoising on the raised sediment images. The ORB feature points are retrieved from
pre-processed images, and the matching between the initial frame and the current frame
is achieved by performing monocular initialization using the Homography matrix or the
Fundamental matrix. The pose of the initialization is obtained by Epipolar Geometry. The
matching feature point pairs are then projected into 3D map points using triangulate. Via
tracking the motion model or key frame, feature matching is conducted. Then, the pose
of the current frame is estimated by PnP (Perspective-n-Point) such as DLT (Direct Linear
Transform), and optimized by the Back-end Optimization such as BA (Bundle Adjustment).
The Loop Closure Detection is not necessary, as the underwater vehicle does not return to
its starting point in the underwater exploration task.
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3. Underwater Raised Sediments Image Pre-Processing Method

The underwater raised sediments image pre-processing method consists of image
classification and image denoising, which removes dynamic interference in underwater
images. The proposed image classification method is presented in Section 3.1. The un-
derwater images are classified based on the color recognition method in HSV color space
to obtain the images that need to be denoised by adding the weights of pixel location to
reduce the interference of similar colors on the seabed. The improved adaptive median
filtering method is proposed in Section 3.2. The improved adaptive median filter method is
proposed to denoise the classified images by using the mean value of the filter window bor-
der as the discriminant condition to reduce the disturbance of underwater raised sediments
and to retain the original features of the image. The filtered image quality assessment is
shown in Section 3.3 through Mean Gradient (MG), Structural Similarity (SSIM), and Peak
Signal-to-Noise Ratio (PSNR) methods.

3.1. The Proposed Image Classification Method

The flowchart of the proposed image classification method is shown in Figure 4, where
the dotted box indicates the proposed image classification method. The original underwater
images are first converted to HSV color space. The location weight values are set by the
application scenes added in color recognition to reduce the interference of similar colors
on the seabed. When the color recognition value of the image exceeds the discriminant
threshold, the image needs to be filtered; otherwise, the original image is retained. The
classified images are entered into the filter module, and the remaining images are entered
directly into the tracking module.
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The color space of an image includes RGB (Red, Green, and Blue) color space, CMY
(Cyan, Magenta, and Yellow) color space, and HSV (Hue, Saturation, and Value) color
space, etc. The CMY color space is used to represent a printed image and the digital images
commonly use RGB color space and HSV color space. The RGB color space is the most used
way to describe electronic images, but parameter changes in RGB can cause significant
color changes. Therefore, it is not suitable for classifying images by color. Conversely, the
HSV color space can be used to classify underwater images by setting a parameter range
for the color.

Images are classified based on the color and location of the underwater raised sedi-
ments to determine if the images need to be denoised. The color of the underwater raised
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sediments is different from the water, so the image classification can be realized through
color recognition. However, since the seabed’s color is similar to that of the underwater
raised sediments, location is also necessary to determine the color weights. Depending on
the camera mounting angle and distance from the bottom, underwater-raised sediments
in near-bottom images suspended in seawater are present in the image’s upper half, not
the seafloor’s lower half. Therefore, the yellow pixel weight for the seawater is ωa, and
the yellow pixel weight for the seabed is ωb, ωa ≫ ωb, The size of the photo is m ∗ n, and
the pixel point location is expressed by (i, j), and the location weight ω is expressed in
Equation (1):

ω =


ωa 0.4m < i < m

ωb 0 < i < 0.4m
(1)

The images captured by the underwater camera are stored in RGB color space. RGB
color space uses a linear combination of three-color components to represent color. But
in color recognition, any color is highly correlated with these three components, so it is
not intuitive to continuously change colors, and these three components need to change
to adjust the color of the image. Therefore, we need to convert the RGB into HSV color
space expressed in Equation (2). The color component value of a pixel point is R, G, B,
respectively; max is the maximum of the three color components, min is the minimum of
the three color components, V is the luminance Value, S is the Saturation, and H is the hue.
Color is only highly correlated with Hue. Adjusting Saturation and Value will result in
similar colors. 

max = max(R, G, B)
min = min(R, G, B)
V = max(R, G, B)
S = (max − min)/max
i f (R = max)H = (G − B)/(max − min) ∗ 60
i f (G = max)H = 120 + (B − R)/(max − min) ∗ 60
i f (B = max)H = 240 + (R − G)/(max − min) ∗ 60
i f (H < 0)H = H + 360

(2)

The original purpose of image classification was to reduce the amount of computation.
The purpose of the increase in position weights is to increase the accuracy of image classifi-
cation based on color. The limitations of the positional weights are such that it is not able to
correctly classify all images, but the ORB-SLAM3 system itself is robust to images that are
not correctly classified. The range of values for the color of underwater raised sediments is
set in Equation (3): 

0.12 < H < 0.15
S < 0.3
0.5 < V < 0.81

(3)

where H is expressed using radians.
k is a Boolean value, if the HSV value of the pixel satisfies Equation (3), the value kij is

1; otherwise, it is 0. ω is the position weight, K is the number of pixels identified by adding
the position weight, and ρ is the discriminant threshold.

K = ∑ ωkij (4)

When K > ρ, the image is considered to need image noise denoising, otherwise the
original image is kept.

For the underwater videos of the different areas, 2000 underwater images were ex-
tracted at 15 fps, respectively. Let discriminant threshold ρ = 10, 15, 20, 25, 30, there are
classification results shown in Tables 1–3. The ‘real’ respects the true results which are used
to compare. The title of Need-Denoising shows the number of classified images. The title of
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Original shows the number of the remaining images. Accuracy is obtained by the number
of correctly detected images divided by the total number of images.

Table 1. Classification results of the 2000 underwater images in the seamounts area.

Discriminant Threshold Need-Denoising Original Accuracy

10 868 1132 75.4%
15 454 1546 96.1%
20 296 1704 95.9%
25 112 1888 86.7%
30 23 1977 82.3%

Real 377 1623 -

Table 2. Classification results of the 2000 underwater images in the rockfall area.

Discriminant Threshold Need-Denoising Original Accuracy

10 1267 733 64.8%
15 942 1158 81.1%
20 603 1704 98.0%
25 430 1570 93.4%
30 224 1776 83.1%

Real 563 1437 -

Table 3. Classification results of the 2000 underwater images in the nodules area.

Discriminant Threshold Need-Denoising Original Accuracy

10 184 1816 84.8%
15 112 1888 81.2%
20 47 1953 78.0%
25 32 1968 77.2%
30 2 1998 75.7%

Real 488 1437 -

The image classification in the seamount area has high accuracy, when ρ = 15 or 20.
The real number of Need-Denoising images in the rockfall area is more than that in the
seamount area. The number of Need-Denoising images in the rockfall area is more than
the real number because the underwater raised sediment takes up most of the images.
During the underwater operation of an underwater vehicle, underwater raised sediments
are not present at every moment, so not all the images need to be denoised. The image
classification method proposed in this paper can significantly reduce the computational
effort and retain original image features.

3.2. The Improved Adaptive Median Filtering Method

The flowchart of the improved adaptive median filtering method is shown in Figure 5,
where the dotted box indicates the improved adaptive median filtering method. One pixel
in the classified image is chosen, and the filter window length is initialized (set in 3). The
mean value of the window border is compared with the mean value of the background,
which is the mean value of the image. The window length is determined through the
compared result based on the Pauta criterion. The mean value of the window border
is utilized for the filter discriminant condition, which is compared with the value of the
chosen pixel to decide whether to filter or not. The median value of the filter window is
used to replace the filtered pixel. Otherwise, the original value is retained. Then, the next
pixel repeats the same steps until the end of the loop. The filtered image is entered in the
tracking module at last.
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Underwater-raised sediments are small in the image, and the color is significantly
different from seawater. Due to the relative motion of underwater raised sediments and
underwater vehicles, there is a smear in the underwater image, as shown in Figure 2. The
smear can be seen as a kind of line salt-and-pepper noise. Adaptive median filtering can
effectively filter out salt-and-pepper noise of different sizes through adaptive window
size. The original adaptive median filter is more suitable for granular noise. This paper
proposes an improved adaptive median filter for line noise. The window size is determined
according to the mean pixel value of the window border compared with the mean pixel
value of the background. Then, the center point is compared with the mean pixel value of
the window border to decide whether to filter or retain. If the filter is decided, the filtered
pixel points are replaced by the median value within the window. The improved adaptive
filtering has a better effect of denoising the line noise.

The underwater raised sediments are small in the image, and the color is significantly
different from seawater. Due to the relative motion of underwater raised sediments and
underwater vehicles, there is a smear in the underwater image, as shown in Figure 2. The
smear can be seen as a kind of line salt-and-pepper noise. Adaptive median filtering can
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effectively filter out salt-and-pepper noise of different sizes through adaptive window
size. The original adaptive median filter is more suitable for granular noise. This paper
proposes an improved adaptive median filter for line noise. The window size is determined
according to the mean pixel value of the window border compared with the mean pixel
value of the background. Then, the center point is compared with the mean pixel value of
the window border to decide whether to filter or retain. If the filter is decided, the filtered
pixel points are replaced by the median value within the window. The improved adaptive
filtering has a better effect of denoising the line noise.

1. Filter window size determination

The size of the filter window should be chosen to be as small as possible to retain more
feature information about the underwater images. Thus, an adaptive filter method for the
selection of filter window size is applied. The window is a square, and the initial value of
the window length nw is 3. The gray value of the center point pij is shown in the cell of the
window, as shown in Figure 6. The gray value of the center point pij is 171, and the pixels
are sorted from most minor to most significant, as shown in Figure 7. The maximum gray
value Zmax of the window is 171, the maximum gray value Zmin of the window is 113, and
the median gray value Zmed of the window is 118. The mean gray value of the window
border wij is 139.5. The mean of the background grayscale value is ub, and the standard
deviation of the background grayscale value is σb. According to the Pauta criterion, if
wij − ub < 3σb, determine the window length nw and enter the filtering session. Otherwise,
add 2 to the window length nw and perform a new cycle until the window length nw is
determined. The maximum value of the window length is nmax. When nw = nmax, the
filtering session is entered directly.
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2. Filtering session

The method of mean value filtering is a common method for image denoising. How-
ever, the method of median filtering has less computational effort which increases the
real-time performance of ORB-SLAM3, and the image processed by median filtering retains
more feature information compared to mean filtering to improve the stability of the ORB-
SLAM3. Therefore, the method of median filtering is applied for the underwater image
denoising. The gray value of the center point pij is gij, the mean gray value of the window
border is uw in Figure 8, and the standard deviation of the background grayscale value is
σw. According to the Pauta criterion, if gij − uw < 3σw, the gray value of the center point
gij is replaced by the median gray value of the window Zmed, otherwise the original value
gij is retained.
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3.3. The Filtered Image Quality Assessment

The assessment of image quality focuses on three aspects. Firstly, measuring whether
the sharpness and contrast of the images are effectively improved, is generally evaluated
by the Mean Gradient (MG). Secondly, detecting whether the enhanced images retain the
information of the original image as much as possible, which generally uses Structural Sim-
ilarity (SSIM) and Peak Signal-to-Noise Ratio (PSNR) to calculate the structural similarity
of the images. Finally, visually analyze the denoising effect by observing the images before
and after processing.

(1) Mean Gradient (MG) is used to measure the contrast of images, and the larger the
mean gradient, the greater the contrast.

MG =

H−1
∑

i=1

W−1
∑

j=1

√(
pi,j − pi+1,j

)2
+

(
pi,j − pi,j−1

)2

√
2(H − 1)(W − 1)

(5)

where pi,j denotes the pixel value at position (i, j) and the image size is H ∗ W.

(2) Structural Similarity (SSIM) is applied to evaluate the pixel correlation between the
processed and original images.

SSIM =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (6)

where µx and µy are the mean of the two images, σx and σy are the standard deviations,
while σxy is the covariance of the two images, and C1 C2 are constants.

(3) Peak Signal-to-Noise Ratio (PSNR) reflects the degree of similarity between the pro-
cessed and original images and is similar to the SSIM function.

PSNR = 10lg
(2ε − 1)2

MSE
(7)

MSE is the Mean Square Error (MSE) of the two images before and after processing
and ϵ is the number of pixel bits in binary, which is taken as 8.

The assessment of image quality focuses on three aspects. Firstly, measuring whether
the sharpness and contrast of the images are effectively improved, is generally evaluated by
the Mean Gradient (MG). Secondly, detect whether the enhanced images retain the informa-
tion of the original image as much as possible, which generally uses Structural Similarity
(SSIM) and Peak Signal-to-Noise Ratio (PSNR) to calculate the structural similarity of the
images. Finally, visually analyze the denoising effect by observing the images before and
after processing.

Because the degree of underwater raised sediments is severe in the rockfall and
nodules areas, the feature matching of ORB-SLAM3 is affected leading to initialization
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failure. The effectiveness of image pre-processing and the enhancement of ORB-SLAM3 is
validated in the seamount area.

An original color image of underwater raised sediments is shown in Figure 9a, and
its grayscale image is shown in Figure 9b. The results of the traditional adaptive median
filter (TAMF) and improved adaptive median filter (IAMF) on the original grayscale image
are shown in Figures 9c and 9d, respectively. The image quality assessment results are
shown in Table 4. The metrics are the three assessment methods. The TAMF and IAMF
are the abbreviations of the two filter methods. The improvement is calculated by the
difference value of the two filter methods divided by the value of the traditional adaptive
median filter. The image contrast is significantly improved by 106.7%. Image similarity is
improved by 4.6%, and image quality by 1.1%. More image similarity means more original
information preserved, which can be seen by observing the images directly. The improved
adaptive median filter has a better denoising effect on the line noise than the traditional
adaptive median filter.
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Figure 9. Improved adaptive median filtering results in the seamount area. (a) Original color image;
(b) original grayscale image; (c) traditional adaptive median filtering; and (d) improved adaptive
median filtering.

Table 4. Image quality assessment results in the seamount area.

Metrics TAMF IAMF Improvement

MG 1.3761 2.8451 106.7%
SSIM 0.9164 0.9591 4.6%
PSNR 81.60 85.10 1.1%

4. Experimental Verification and Analysis

The experimental environment is shown in Section 4.1. The experimental procedures
and results are shown in Section 4.2. The datasets of seamount areas captured in the western
Pacific Ocean are processed by the improved visual SLAM system. The initialization is
recorded, which proves that the improved system is easy to succeed. The keyframes,
mapping points, and feature point matching pairs extracted from the improved visual
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SLAM system are improved by 5.2%, 11.2%, and 4.5% compared with that of the ORB-
SLAM3 system, respectively. The improved visual SLAM system has the advantage of
robustness to dynamic disturbances such as underwater raised sediments, water bubbles,
etc., which is of practical application in underwater vehicles operated in near-bottom areas
such as seamounts, rockfall, and nodules.

4.1. The Experimental Environment for the Seamount Images

The experimental environment is shown in Table 5. ORB-SLAM3 is the popular visual
SLAM method, which is selected for the comparison system. The SLAM operating system
is Ubuntu 20.04, and the image-processing operating system is Windows 10. The image
processing program software is MatLab R2022a, and the computer CPU is Ryzen7.

Table 5. Experimental test environment for the seamount images.

Related Devices Model

Visual SLAM ORB-SLAM3
SLAM operating system Ubuntu 20.04

Image processing operating system Windows 10
Image processing program software MatLab R2022a

CPU Ryzen7

4.2. Experimental Procedures and Results for the Seamount Images

The experimental tests were conducted using the videos captured by ROV in the
seamount area at a frame rate of 15 fps, with 2000 consecutive frames each to form image
datasets. ORB-SLAM3 is the famous monocular vision SLAM system being used for
comparison. The datasets are processed under proposed visual SLAM systems. The
initialization phase, mapping, and trajectory are recorded. The number of keyframes,
matched point pairs, and map points are extracted. The analysis was performed according
to the experimental results.

The initialization phase is recorded in Figures 10 and 11. The tests are carried out
several times, where Test 1 and Test 2 are the two representative tests. Initialization failure
occurred in the initialization phase due to the influence of underwater raised sediments
under the ORB-SLAM3 system in Figure 10. There are not enough feature points matched
to finish the initialization in Figure 10. The feature of the seamount image is not richer than
the terrestrial environment. Initialization failure occurs when other dynamic disturbances
exist, such as water bubbles and underwater raised sediments. Initialization was rapidly
successful due to image pre-processing for the underwater raised sediments under the
proposed system in Figure 11. Initialization under the proposed system is easy to succeed
in the underwater raised sediments environment.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 14 of 20 
 

 

Table 5. Experimental test environment for the seamount images. 

Related Devices Model 
Visual SLAM ORB-SLAM3 

SLAM operating system Ubuntu 20.04 
Image processing operating system Windows 10 
Image processing program software MatLab R2022a 

CPU Ryzen7 

4.2. Experimental Procedures and Results for the Seamount Images 
The experimental tests were conducted using the videos captured by ROV in the sea-

mount area at a frame rate of 15 fps, with 2000 consecutive frames each to form image 
datasets. ORB-SLAM3 is the famous monocular vision SLAM system being used for com-
parison. The datasets are processed under proposed visual SLAM systems. The initializa-
tion phase, mapping, and trajectory are recorded. The number of keyframes, matched 
point pairs, and map points are extracted. The analysis was performed according to the 
experimental results. 

The initialization phase is recorded in Figures 10 and 11. The tests are carried out 
several times, where Test 1 and Test 2 are the two representative tests. Initialization failure 
occurred in the initialization phase due to the influence of underwater raised sediments 
under the ORB-SLAM3 system in Figure 10. There are not enough feature points matched 
to finish the initialization in Figure 10. The feature of the seamount image is not richer 
than the terrestrial environment. Initialization failure occurs when other dynamic disturb-
ances exist, such as water bubbles and underwater raised sediments. Initialization was 
rapidly successful due to image pre-processing for the underwater raised sediments un-
der the proposed system in Figure 11. Initialization under the proposed system is easy to 
succeed in the underwater raised sediments environment. 

  
(a) (b) 

Figure 10. Initialization failure under ORB-SLAM3 system. (a) Initialization failure in Test 1. (b) 
Initialization failure in Test 2. 

Mapping and trajectory in the initialization phase under the proposed system were 
recorded in Figure 12. Mapping and trajectory in the end phase under the ORB-SLAM3 
system were recorded in Figure 13. Mapping and trajectory in the end phase under the 
proposed system were recorded in Figure 14. Different representative moments were rec-
orded continuously such as moment 1 and moment 2 in Figures 12–14. Mapping and tra-
jectory under the proposed system are more obtained than the ORB-SLAM3 system, 
which can be seen from the number of keyframes and map points. The underwater raised 
sediment images in the datasets processed by the proposed system caused matching point 
pairs to increase. Increasing matched point pairs provides more accurate tracking, which 
is proved by more keyframes and mapping points obtained. 

Figure 10. Initialization failure under ORB-SLAM3 system. (a) Initialization failure in Test 1.
(b) Initialization failure in Test 2.



J. Mar. Sci. Eng. 2024, 12, 716 14 of 19J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 15 of 20 
 

 

  
(a) (b) 

Figure 11. Initialization success under the proposed system. (a) Initialization success in Test 1. (b) 
Initialization success in Test 2. 

  
(a) (b) 

Figure 12. Mapping and trajectory in the initialization phase under the proposed system. (a) Mo-
ment 1. (b) Moment 2. 

 
 

(a) (b) 

Figure 13. Mapping and trajectory in the end phase under the ORB-SLAM3 system. (a) Moment 1. 
(b) Moment 2. 

  
(a) Moment 1 (b) Moment 2 

Figure 14. Mapping and trajectory in the end phase under the proposed system. (a) Moment 1. (b) 
Moment 2. 
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(b) Initialization success in Test 2.

Mapping and trajectory in the initialization phase under the proposed system were
recorded in Figure 12. Mapping and trajectory in the end phase under the ORB-SLAM3
system were recorded in Figure 13. Mapping and trajectory in the end phase under the
proposed system were recorded in Figure 14. Different representative moments were
recorded continuously such as moment 1 and moment 2 in Figures 12–14. Mapping and
trajectory under the proposed system are more obtained than the ORB-SLAM3 system,
which can be seen from the number of keyframes and map points. The underwater raised
sediment images in the datasets processed by the proposed system caused matching point
pairs to increase. Increasing matched point pairs provides more accurate tracking, which is
proved by more keyframes and mapping points obtained.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 15 of 20 
 

 

  
(a) (b) 

Figure 11. Initialization success under the proposed system. (a) Initialization success in Test 1. (b) 
Initialization success in Test 2. 

  
(a) (b) 

Figure 12. Mapping and trajectory in the initialization phase under the proposed system. (a) Mo-
ment 1. (b) Moment 2. 

 
 

(a) (b) 

Figure 13. Mapping and trajectory in the end phase under the ORB-SLAM3 system. (a) Moment 1. 
(b) Moment 2. 

  
(a) Moment 1 (b) Moment 2 

Figure 14. Mapping and trajectory in the end phase under the proposed system. (a) Moment 1. (b) 
Moment 2. 

Figure 12. Mapping and trajectory in the initialization phase under the proposed system. (a) Moment 1.
(b) Moment 2.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 15 of 20 
 

 

  
(a) (b) 

Figure 11. Initialization success under the proposed system. (a) Initialization success in Test 1. (b) 
Initialization success in Test 2. 

  
(a) (b) 

Figure 12. Mapping and trajectory in the initialization phase under the proposed system. (a) Mo-
ment 1. (b) Moment 2. 

 
 

(a) (b) 

Figure 13. Mapping and trajectory in the end phase under the ORB-SLAM3 system. (a) Moment 1. 
(b) Moment 2. 

  
(a) Moment 1 (b) Moment 2 

Figure 14. Mapping and trajectory in the end phase under the proposed system. (a) Moment 1. (b) 
Moment 2. 

Figure 13. Mapping and trajectory in the end phase under the ORB-SLAM3 system. (a) Moment 1.
(b) Moment 2.



J. Mar. Sci. Eng. 2024, 12, 716 15 of 19

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 15 of 20 

(a) (b) 

Figure 11. Initialization success under the proposed system. (a) Initialization success in Test 1. (b) 
Initialization success in Test 2. 

(a) (b) 

Figure 12. Mapping and trajectory in the initialization phase under the proposed system. (a) Mo-
ment 1. (b) Moment 2. 

(a) (b) 

Figure 13. Mapping and trajectory in the end phase under the ORB-SLAM3 system. (a) Moment 1. 
(b) Moment 2. 

(a) (b)

Figure 14. Mapping and trajectory in the end phase under the proposed system. (a) Moment 1. (b) 
Moment 2. 

Figure 14. Mapping and trajectory in the end phase under the proposed system. (a) Moment 1.
(b) Moment 2.

The number of match point pairs (Matches) under both systems is shown in Figure 15.
The number of match point pairs of the proposed system is shown in Figure 15a; the number
of match point pairs of the ORB-SLAM3 system is shown in Figure 15b. The statistical
results of match point pairs are shown in Table 6. The title of Max is the maximum value
of the match point pairs; the title of Min is the minimum value of the match point pairs;
the title of Average is the average value of the match point pairs; and the improvement is
calculated by the difference value of the two systems divided by the corresponding value
of the ORB-SLAM3. The proposed system decreased the impact of the underwater raised
sediments on the matching phase. The average of the match point pairs under the proposed
system improved by 4.5% compared with ORB-SLAM3. Due to the rapid initialization
speed, the running time is long under the same datasets. The improvement of the match
point pairs proves the effectiveness of the improved system in reducing the impact of the
underwater raised sediments environment.
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Table 6. Statistical results of match point pairs.

Number ORB-SLAM3 Proposed

Max 503 490
Min 82 90

Average 292.05 305.14
Improvement - 4.5%

The number of mapping points (MPs) and keyframes (KFs) under both systems
is shown in Figures 16 and 17, respectively. The statistical results of mapping points
and keyframes are shown in Tables 7 and 8, respectively. The length of available data
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under the proposed system is 2167, and the length of available data under ORB-SLAM3
is 1171. It means the proposed system has a faster initialization than ORB-SLAM3 with
the same datasets captured in the underwater raised sediments environment. The number
of mapping points improved by 11.5%, and the number of mapping points improved by
5.2%. More matching point pairs provide more rich information for the mapping phase
resulting in more mapping points obtained. The number of keyframes has increased less
because the selection of keyframes is rigorous. More mapping points and keyframes mean
the proposed system has robustness in the underwater raised sediments environment.
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5. Conclusions

The underwater images are classified by the improved color recognition method to
reduce the computation of image pre-processing to improve the real-time of the proposed
SLAM system. The improved adaptive median filtering is proposed to denoise the classified
images to reduce the effect of underwater raised sediments on feature matching of the
SLAM system to improve the robustness of the proposed SLAM system. The MG of the
filtered images is improved by 106.7% compared with those filtered by the traditional
adaptive median filtering, SSIM by 4.6%, and PSNR by 1.1%, resulting in more information
on the original features being retained compared with the traditional adaptive median filter.
The filtered images are finally processed by the tracking module to obtain the trajectory
of underwater vehicles and the seafloor maps. The datasets of the video captured from
the seamount of the western Pacific Ocean at 3000 m depth are processed in the improved
visual SLAM system. Keyframes, mapping points, and feature point matching pairs are
extracted from the improved visual SLAM system by 5.2%, 11.2%, and 4.5% compared
with ORB-SLAM3, respectively. The improved visual SLAM system has robustness in near-
bottom environments such as seamounts, rockfall, and nodules, which is less impacted by
dynamic disturbances such as water bubbles and underwater raised sediments.

In future work, the parameters of image classification and image denoising are adap-
tive for different underwater investigation tasks. The parameters of the proposed method
are prior and set by the known underwater operating environments and the mounting
locations of cameras. However, it is difficult to cope with an unknown environment un-
derwater. The proposed SLAM is a loose-coupling system, in which the visual localization
is realized by the pre-processed images imported into the tracking methods. The tight-
coupling system will be studied in future work, in which the impact of underwater raised
sediments is reduced by optimizing the feature matching phase within SLAM.
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