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Abstract: In recent years, the artificial potential field has garnered significant attention in ship route
planning and traffic flow simulation. However, the traditional artificial potential field method faces
challenges in accurately simulating a ship’s customary route and navigating experience, leading
to significant deviations in prediction results. To address these issues, in this study, we propose
an innovative method for simulating and predicting ship traffic flow, building upon the artificial
potential field approach. We introduce an AIS track heat map based on the kernel density function
and enhance the artificial potential field model by incorporating factors, such as ship navigation
habits and ship size. Through a comparison of traffic flow changes before and after the construction
of a wind farm, the optimized model demonstrates its effectiveness in improving the accuracy of
prediction results.

Keywords: artificial potential field; trace heat map; customary route; route planning; kernel density

1. Introduction

As a common method for local path planning, the artificial potential field offers ad-
vantages in providing fast, convenient, and practical navigation solutions. However, most
existing artificial potential field path planning models are tailored to urban network con-
texts and do not directly translate to maritime settings. Few studies have comprehensively
addressed the impact of the navigation experience and customary routes on ship navigation.
With the emergence of extensive maritime data, it has become possible to infer customary
navigation behaviors and integrate subjective factors such as navigation experience into
route planning processes. This presents valuable datasets for reference, where navigation
experiences can be inferred to a certain extent. Subsequently, it opens up opportunities to
search for optimal trajectories based on past behaviors and current navigation contexts.

The objective of the research presented in this paper is to enhance an artificial potential
energy algorithm by introducing a customized route gravitational field that considers the
impact of historical experience on route planning. The contributions of this research are
twofold. Firstly, we refine the artificial potential field model, incorporating the effects of
navigation experience grounded in traditional methods. This model simulates and pre-
dicts navigation routes based on both conventional and current conditions, encompassing
obstacle avoidance. Secondly, the entire modeling framework undergoes testing in the
surrounding area of the Pinghaiwan Offshore Wind Farm, and its feasibility is assessed
through the practical implementation of the optimized model. The artificial potential field
model seamlessly integrates with actual geographic and maritime data. Moreover, the
refined sea navigation simulation model of the artificial potential field is fully aligned with
the spatiotemporal characteristics of the AIS system to mimic traffic flow.
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1.1. Related Work

In recent years, there have been many in-depth studies in the field of traffic flow
simulation and trajectory prediction. In order to solve the challenges inherent in the
complexity and dynamic growth of VTF time series, a new hierarchical method for VTF
prediction is proposed [1]. Considering the heterogeneity of traffic flows, a new “Space and
Channel Recalibration” (SCR) module was designed to analyze the correlation contribution
accurately [2]. A spatiotemporal traffic flow prediction model based on the combination of a
graph attention network (GAT) and bidirectional gated cycle unit (BiGRU) neural network
was proposed [3]. A dynamic remapping neural network (DMGNN) integrated with
traffic accidents is proposed for multi-step traffic flow prediction [4]. A Generic Dynamic
Graph Convolutional Network (GDGCN) for traffic flow prediction is proposed [5]. A
nuclear extreme learning machine (GA-KELM) improved by a genetic search algorithm
is proposed to exploit its potential to improve the prediction accuracy and generalization
performance [6]. Pso-bi is based on the combination of Particle Swarm Optimization (PSO)
and Bidirectional Long Short-Term Memory (Bi-LSTM) neural networks; this is the LSTM
short-term traffic flow prediction model [7]. The short-term traffic flow prediction model
is constructed by using a short-term memory network, and the mode aliasing problem
is solved by variational mode decomposition [8]. A new deep learning model, a graph
space–time channel unit (U-shaped network) is proposed to achieve accurate and reliable
traffic flow predictions [9]. This problem is dealt with by combining the idea of neural
ODEs and modeling the change rate of traffic flow on urban roads [10].

The general local path planning method should not be applied to the complex marine
navigation environment; some algorithms consider the speed and course of other ships
unchanged [11,12], but this is not completely appropriate in many situations. A valuable
alternative is provided by the artificial potential field, which has a simple structure; it is
also easy to understand and implement. This method abstracts and models environmental
information into a series of reference locations, and it is suitable for ship dynamic path
planning. The artificial potential field has been widely used in path planning and motion
simulation [13].

Over the past few years, several methods have been proposed to solve the problem
of unattainable goals [14]. The target unreachable problem can be solved by adjusting
the repulsion angle and safety distance factor [15]. An improved algorithm and objective
function solve the problem of the local optimal solution [16]. A new predictive artificial
potential field has been developed, using time information and predicted potential to
plan smoother paths and verify the accessibility of local minimum and other enhanced
special scenarios through simulation [17]. The improved artificial potential field method
takes the target along the exclusive equipotential surface along a shorter feasible path for
local optimization [18]. The local minimum point problem is overcome by introducing the
second virtual target attraction potential field [19].

Other studies also integrate other algorithms to make up for defects and expand the
advantages [20]. An improved artificial potential field method is combined with a cosine
adaptive genetic algorithm to realize trajectory optimization under an obstacle environment
and improve the efficiency [21]. A new AAPF method based on the APF method and ECPS
method solves the multi-objective obstacle avoidance problem by considering the influence
of uncertain factors [22]. The potential field method of complex motion alleviates the
problems of the obstacle avoidance environment when the degree of freedom increases
through the improved numerical algorithm of the Jacobian matrix [23]. The optimal
collision-free path planning of multi-object formation combines A * and multi-objective-
improved artificial potential field algorithms [24].

In general, compared with other algorithms, the artificial potential energy method
has a simple model structure, high precision, and a good simulation effect. It is, therefore,
suitable for sea traffic simulation.
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1.2. General Remarks

The above literature provides theoretical support for marine traffic-related construction
and track planning. The artificial potential field method is generally optimized among the
aforementioned works. The local optimal offset problem is also improved. However, there
are still some problems that affect its accuracy and reliability in the application of track
planning. The existing artificial potential field method can be used for ship autonomous
navigation and traffic flow simulation, but it is difficult to simulate ship customary routes
and customary navigation methods using this method. This study optimizes an artificial
potential field model based on an AIS trajectory thermal map to improve the accuracy of
traffic flow prediction. A kernel density function is innovatively introduced to optimize the
model, and a thermal map complements the approach by supporting visual representations
that facilitate the patterns that appear.

2. Traditional Artificial Potential Field Method

The traditional artificial potential field method originates from the physics concept
of potential energy. Its fundamental principle views the objects in space as pixels and
perceives the research space as a potential field environment. The target point exerts a
strong attractive force, compelling the research object to progressively move toward it.
Conversely, obstacles emit repulsive forces. The combination of attractive and repulsive
forces creates a potential energy gradient, causing the object to avoid regions of high
potential energy. By monitoring variations in the potential energy gradient, we can devise
an optimal obstacle avoidance path. A concise analysis of this principle is depicted in
Figure 1.
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In Figure 1, Fat is the global gravity generated by the goal, Fre is the repulsion generated
by the obstacle, and F is the resultant force of both. The object will move under the action
of this resultant force.

2.1. The Global Gravity

Let OS (own ship) denote a ship, which is located in a grid environment (x, y); the
global attraction can be obtained from Equation (1):

Fat = −α[(x − x1)
2 + (y − y1)

2] (1)

where α is the gravitational coefficient; (x, y) is the coordinate of OS; (x1, y1) is the coordinate
of the target point and the symbol represents the direction of the force (the attractive
force). According to the formula, Fa is inversely proportional to OS and the distance to the
target point.
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2.2. Obstacle Repulsive Field

When OS is in raster space (x, y), the repulsive field function is shown in Equation (2):

Fre =

{
N ×

(
1

dre2
− 1

Dre0

)
1

dre2
2 , dre2 ≤ Dre0

0, dre2 > Dre0
(2)

where N is the repulsive force directly proportional gain factor. dre2 represents the distance
from OS to the barrier boundary. Dre0 is a constant, representing the influence distance of
the repulsive field.

2.3. Comprehensive Force Field

The resultant force of the research object should be a vector synthesis of the global
gravitational force and the obstacle repulsion function. Therefore, the resultant force
equation (Equation (3)) is shown as follows:

F = Fat + Fre (3)

3. Improved Artificial Potential Field Method

Based on geographic information and historical AIS data, this study takes the cus-
tomary route as one of the factors to consider in path planning and improves the artificial
potential field model.

Considering that the gravitational force generated by different densities of customary
paths should be different, the nuclear density factor is introduced to provide a customary
path gravitational field. The denser the tracks, the greater the amount of gravity generated.
Therefore, the thermal map drawing based on AIS historical trajectory, which has the char-
acteristics of both two-dimensional spatial coordinates and density function, is introduced
and coincides with the elements needed for the construction of a gravitational field. The
purpose of this method is to fully mobilize the dynamic spatiotemporal characteristics of
the customary route and show them in the model.

The research program of model building is shown in Figure 2.
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3.1. Customary Route Gravitational Field

The common artificial potential field model does not consider the effect of the custom-
ary route on the ship’s navigation method. To model a customary-route-impacted potential
energy field, it is important to search for a route track based on a ship’s history. This can
be achieved by fully considering the characteristics of the maritime traffic channel within
a certain period, including the ship traffic flow characteristics, traffic flow density, and
change trends. By doing so, we can effectively analyze and understand the behavior of
ships sailing in the area.
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Let OS (own ship) denote a ship, which is located in a grid environment (x, y), and the
customary route gravity function is shown in Equation (4):

Far =

{
−σ

(
1

da2
− 1

Da0

)
WPhot, da2 ≤ Da0

0, da2 > Da0
(4)

Far represents the gravitational force generated by stress on a customary route. The
symbol σ is the customary airway gravity proportional gain factor, and its value is 14.4.
This is to correct the gravity of the customary route to ensure that the target receives enough
gravity within the range of the gravitational field while not affecting the leading role of
the global gravity and the main purpose of obstacle avoidance. Based on this calculation,
its value is obtained. da2 represents the distance between the OS and the customary route
path. Da0 is a constant, representing the influence of distance of habit. Examples of the
above concrete concepts are shown in Figure 3. When the subsequent path deviates far
from the original path, it means that the track has been substantially adjusted, the reference
value of the historical path is limited at this time, and the model no longer considers its
role. The establishment of the model is mainly influenced by global gravity. When there is
no significant change in the ship’s path on the customary route, the ships tend to travel on
the historically optimal path. When the planned route of a ship does not coincide much
with the customary route, the customary route has little influence on it.
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AIS data are classified according to different ship types. The influence of different
ship types on a route varies. Generally, larger ships tend to follow a certain track-driving
habit. Therefore, in this study, ships are divided into five classes based on their gross
tonnage. The model introduces a correlation coefficient of uppercase W, which is assigned
different values depending on the ship class. The assignment of W values is determined
through experimental debugging, and the feasibility of the model will be verified later.
Table 1 shows the values assigned to each ship class. Among them, the ship class is divided
according to the gross tonnage: first-class ships weigh more than 1600 gross tons, second-
class ships 600–1600 gross tons, third-class ships 200–600 gross tons, fourth-class ships
50–200 gross tons, and fifth-class ships less than 50 gross tons. For the above classification,
refer to IMO MT-69 (measuring convention).
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Table 1. Ship tonnage correlation coefficient W.

Class of Ship W

First-class ship 0.8
Second-class ship 0.9
Third-class ship 1.0

Fourth-class ship 1.1
Fifth-class ship 1.2

The density distribution of the customary route can be intuitively obtained through
the path heat map. The denser the path, the higher the thermal value. Through the three-
dimensional thermal map, we can intuitively see a curved surface formed by the density
function of the locus kernel. The three-dimensional heat map plane can be obtained by
intercepting part of the ballistic heat map, as shown in Figure 4.
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A three-dimensional coordinate system is established on the profile map (b). The
x and y axes correspond to the grid environment, and the z-axis represents the height
of the thermal value, which can also reflect the density degree of the path. As shown
in Figure 4b, the density of the path is positively correlated with the gravity generated
at this point, which, together with the relative distance Da2, determines the gravity of
the customary route. When the relative distance is certain, the greater the thermal value,
and the greater the attraction generated at this coordinate point. Therefore, the thermal
coefficient Phot is introduced into the formula, and the value of Phot is based on the thermal
value of the corresponding point of the customary route track, as shown in Table 2 (for
detailed division). Phot assignment was obtained through experimental debugging, and the
feasibility of the model will be verified later.

Table 2. Thermal coefficient Phot.

Thermal Value Partition Phot

Blue zone (zone 4) 0.8
Green Zone (zone 3) 1.0
Yellow zone (zone 2) 1.2

Red Zone (zone 1) 1.4

3.2. Obstacle Repulsive Field

When OS is in raster space (x, y), the repulsive field function is shown in Equation (5):

Fre =

{
N ∗

(
1

dre2
− 1

Dre0

)
1

dre2
2 (x − xr0)

m
(x − xr0)

n, dre2 ≤ Dre0

0, dre2 > Dre0
(5)
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where N is the repulsive force directly proportional to the gain factor. This is to correct the
repulsive force to ensure that the target has enough force when it is close to the obstacle
while not affecting the dominant role of global gravity. In addition, it should ensure that, in
the case of the gravitational field of the customary route and the repulsive force field of the
obstacle being present at the same time, the priority is to ensure that the obstacle is avoided.
Based on that, the calculations determined N = 800. dre2 represents the distance from OS to
the barrier boundary. dre2 represents the distance from OS to the barrier boundary. Dre0 is
a constant, representing the influence distance of the repulsive field. When the distance
between OS and the obstacle is greater than Dre0, the repulsive force is zero; that is, the
ship is not affected by the repulsive force when it remains at a safe distance from the
obstacle. Based on the principle of keeping 5–10 nautical miles between the ship and the
coast in the course of sailing, Dre0 = 5 n is any constant greater than zero, and (x − xr0)

m is
introduced as the distance factor, whose significance is to introduce the relative distance,
to ensure that the whole potential field is only globally minimum at the target point. The
introduced distance factor of the customary gravitational field, (x − xr0)

n, indicates that
ships preferentially follow the historical customary route in a certain range when avoiding
obstacles, where n << m ensures that the global gravitational field plays a leading role in
the comprehensive force field. The formula 1/Dre0 has the same meaning, which is to limit
the repulsive force range of obstacles, and its effect will not be considered in the model
once it is out of its radiation range, as shown in Figure 5.
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3.3. Velocity Force Repulsion Field

The ship should avoid not only static obstacles but also moving obstacles in the
process of sailing. In practical contexts, other ships within a certain range can be identified
as dynamic obstacles based on radar and other equipment to obtain real-time data and
imaging. We consider the moving ship to be a moving obstacle. When other ships break the
preset safety distance, the dynamic obstacle avoidance module in the model is mobilized,
and the obstacle boundary coordinates are picked up based on its image. The velocity
repulsive force field function is shown in Equation (6):

Urev =

{ 1
2 Rrev, drev ≤ Drev ∩ α ∈ (−1/2π, 1/2π)

0, else
(6)

And:
Rrev = 1/2φrev(v0 − v1)

2 (7)

In the formula, φrev is the velocity force proportional gain factor; v0 − v1 is the relative
velocity between the ship and the obstacle. dre2 represents the distance from OS to the
dynamic obstacle boundary. Drev is a constant, representing the influence distance of the
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velocity force repulsion field. When the distance between OS and the obstacle is greater
than Drev, the repulsive force is zero; that is, the ship is not affected by the repulsive force
when it remains at a safe distance from the obstacle. Based on the principle that ships
should maintain a distance of more than two nautical miles from visible obstacles, Drev = 2.
The direction of the relative velocity is opposite to that of the velocity force exclusion field.
α is the angle between the direction of the relative velocity and the vector composed of the
ship and the position of the obstacle. Only when α ∈ (−1/2π, 1/2π), OS is subjected to
the velocity repulsion field. By taking the derivative of the velocity repulsive force field,
the route boundary repulsive force function can be obtained. Equation (8) is as follows:

Frev =

{
φrevve0, drev ≤ Drev ∩ α ∈ (− 1

2π , 1
2π )

0, else
(8)

Join coefficient e0 for obstacles needed for the correlation coefficient. The maximum
angle range meaning lies in the direction and speed of the ship and the position of the
obstacles of the angle between the vector within the scope of radiation. The influence on the
speed force field still exists, and we consider the common obstacle avoidance and dynamic
obstacle avoidance modules, so the improved artificial potential field model can be set up.

3.4. The Global Gravity

When the target point and starting point are input in the raster space, the objec-
tive function potential field function (gravitational potential field function) is shown in
Equation (9):

Uat = 1/2α[(x − x1)
2 + (y − y1)

2] (9)

The global attraction is the negative gradient of the objective function, which can be
obtained from Equation (10):

Fat = −grad(Uat) = −α[(x − x1)
2 + (y − y1)

2] (10)

where α is the gravitational coefficient, α = 1/700; (x, y) is the coordinate of OS, (x1, y1)
is the coordinate of the target point, and the symbol represents the direction of the force
(the attractive force). According to the formula, Fat is inversely proportional to OS and the
distance to the target point.

3.5. Comprehensive Force Field

Based on previous research, the compound field in the whole raster space can be
obtained, which is the sum of the repulsive force field, customary route gravitational field,
and global gravitational field. Therefore, the resultant force equation (Equation (11)) is
shown as follows:

F = Far + Fre + Frev + Fat (11)

4. Simulation and Results

In this study, we select a certain sea area as the research object and carry out a case analysis.
The case study considered the Pinghaiwan Offshore Wind Farm (under construction)

in Putian City as a proof of concept. The planning site of Pinghaiwan Offshore Wind Farm
is divided into six areas, from A to F, and the site selection related to this study is denoted
by zones C and E. Zone C is a phase II and III project, which will be completed and put
into use in 2025, while zone E is a phase IV project, which is still under construction. The
specific regional planning of offshore wind farms is shown in Figure 6.
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Historical AIS data from July 2020 in the study area were selected (before the construc-
tion of wind farms in the C and E areas). We constructed the traffic flow simulation model
and verified its feasibility. A thermal map of the ship’s path is shown in Figure 7.
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4.1. Potential Energy Field Establishment

According to the historical AIS data, the customary route gravitational field is estab-
lished in the raster space region, as shown in Figure 8. It can be seen in Figure 8 that the
special point of the historical track generates attraction within a certain radiation range of
the surrounding region.
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Based on this customary route gravitational field, the partial derivative of its gravi-
tational function is obtained, and the gradients of the customary route gravitational field
in the x and y directions are obtained, respectively. After visualization, a gradient map of
the customary route gravitational field is obtained, as shown in Figure 9. The bulge corre-
sponds to the high potential energy, and the depression corresponds to the low potential
energy. Thus, a space environment with fluctuations is constructed. There will be some
paths that makes the OS transition from high potential energy to low potential energy.
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Taking the geographical information of the selected research area, the potential field
environment is set, and the barrier of the constructed wind farm is introduced to obtain
the repulsive force field, as shown in Figure 10. The special point position of the obstacle
in the figure will generate a repulsive force in the surrounding space within a certain
radiation range. Based on the above, the global gravity environment is established, as
shown in Figure 11. The height difference shown by the three-dimensional surface of the
concrete force field is the driving force for the target to advance from the starting point to
the endpoint. According to the resultant function shown, the resultant field constructed is
shown in Figure 12. The gradient of the force field in the x and y directions was calculated
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and visualized, and the visualized gradient function was obtained, as shown in Figure 13.
It is the visualization result of the complete potential field environment, showing a surface
with ups and downs; the high potential energy is convex, and the low potential energy is
concave. The overall trend is that the starting point is inclined to the target point, and there
are local fluctuations caused by the repulsion field of obstacles and the gravitational field
of the customary route. In this environment, the ship resembles a small ball placed on this
surface and always tends to move from high potential energy to low potential energy.
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4.2. Traffic Flow Simulation

Under the superposition of each potential energy field, the ship always tends to move
from high potential energy to low potential energy to achieve the avoidance goal and
obtain the desired planning path. The model is applied to the selected research area, and
OS path planning is carried out. A vector diagram of path planning is shown in Figure 14a.
The arrow in the figure points from high potential energy to low potential energy, which
represents the motion trend of OS. The blue trajectory is the simulated route of the improved
model, and the red trajectory is the simulated route of the traditional artificial potential
field model. It can be seen that the trajectory of the model before improvement features
a large turn, and there is the problem of the target being unreachable. The refined model
eliminates the issue of unreachable targets, ensuring smooth trajectories that align with
common navigation laws, thereby enhancing the accuracy and reliability of maritime traffic
flow simulations.
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In order to ensure the feasibility and applicability of the model proposed in this study,
the distribution of the model was applied to three different types of obstacles for testing to
simulate obstacle avoidance scenarios under different circumstances and to compare with
the traditional APF path planning method to verify the feasibility and superiority of the
model. The simulation experiment includes the following three scenarios:

(1) Complex U-shaped disorder.
The simulation scenario mainly aims at the problem that the traditional artificial

potential field method easily falls into a situation where it cannot escape when it encounters
U-shaped obstacles. The simulation results are shown in Figure 14b. In the figure, the blue
trajectory represents the traditional artificial potential field model path planning, and the
red trajectory represents the improved artificial potential field model path planning. The
results show that the simulation effect of the traditional model is not good, but the red
path obtained by the improved model can overcome the local limitations and reach the
destination relatively smoothly.

(2) The goal cannot be achieved.
In the traditional artificial potential field method, when the obstacle is close to the

target point, sometimes the object of study cannot reach the destination (as shown by the
blue trajectory in the figure) because the compound force fields cancel each other. After
improved path planning, we can adjust to deal with this situation and finally reach the
destination smoothly. The simulation results are shown in Figure 14c. In the figure, the
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blue trajectory represents traditional artificial potential field model path planning, and the
red trajectory represents improved artificial potential field model path planning.

(3) Smoothness optimization.
Compared with the result of traditional artificial potential energy path planning (blue

path), the improved path planning method (red path) can obtain a smoother path, which
has certain advantages. The simulation results are shown in Figure 14d.

4.3. Traffic Flow Simulation

OS navigates under the joint action of customary route gravitational field and global
gravity, offshore wind farm and dynamic ship comprehensive repulsion, etc. Under the
superposition of each potential energy field, the ship always tends to move from high
potential energy to low potential energy to achieve the avoidance goal and obtain the
desired planning path.

The above path planning model was applied to generate the ship simulation traffic
flow after the completion of area C of the offshore wind farm.

In this study, the generation of the ship model is mainly based on the analysis of
historical ship data. Based on a large amount of data in a certain period of time, a cumulative
comparison is carried out using the basic idea of the Monte Carlo algorithm for reference.

4.3.1. Ship Attribute Distribution

Based on historical AIS data, we can obtain AIS vessel-type codes and conduct statis-
tical analysis of the ship types. According to the business ownership of the ship and the
actual situation of the water area, the ship types are classified and counted. The statistical
results of ship type are shown in Figure 15a. The proportion of different ship types is
shown in Figure 15b.
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Figure 15. Traffic flow distribution characteristics: (a) ship-type statistics; (b) proportion of different
ship types.

According to the statistical results, the share of general cargo ships and dangerous-
goods ships in the region is large, at 78.6% and 17.6%, respectively, and the share of fishing
boats and other vessels is less than 5%. Therefore, this study is further based on the data
rules of general cargo ships and dangerous-goods ships.

Based on the analysis of ship size data in July 2021 in the research area for one
month, the probability density histogram of ship length is fitted according to the normal
distribution law, and the results are shown in Figure 16.
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The ship sailing speed data within one month in July 2021 in the study area were
analyzed; the probability density histogram of ship sailing speed was fitted according to
the normal distribution law, and the results are shown in Figure 17.
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4.3.2. Simulated Traffic Flow

The simulation time was set to 1 month, and the actual traffic flow generated by
historical AIS data was compared. Under the influence of the wind farm, the navigation
behavior of ships in the surrounding area changed. Figure 18a shows the actual traffic flow
status of the region after changes; Figure 18b shows the traffic flow simulation obtained
by using traditional artificial potential field simulations; and Figure 18c shows the traffic
flow simulation obtained by using the improved model. It can be seen that the traffic flow
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situation in Figure 18b is quite different from the actual traffic flow, while Figure 18c is
basically consistent with the actual traffic flow.

J. Mar. Sci. Eng. 2024, 12, 731 16 of 19 
 

 

4.3.2. Simulated Traffic Flow 
The simulation time was set to 1 month, and the actual traffic flow generated by his-

torical AIS data was compared. Under the influence of the wind farm, the navigation be-
havior of ships in the surrounding area changed. Figure 18a shows the actual traffic flow 
status of the region after changes; Figure 18b shows the traffic flow simulation obtained 
by using traditional artificial potential field simulations; and Figure 18c shows the traffic 
flow simulation obtained by using the improved model. It can be seen that the traffic flow 
situation in Figure 18b is quite different from the actual traffic flow, while Figure 18c is 
basically consistent with the actual traffic flow. 

 
(a) (b) 

 
(c) (d) 

Figure 18. Simulation traffic flow of Pinghaiwan Offshore Wind Farm: (a) actual traffic flow; (b) the 
traditional artificial potential field method simulates traffic flow; (c) the improved artificial potential 
field method is used to simulate traffic flow; and (d) simulation traffic flow (when zone E is com-
pleted). 

Table 3 shows the ratio and relative error of the traffic volume of each route in the 
total traffic volume in the simulation data and actual data. After comparison, it is found 
that the relative error is within the permissible range, and the simulation results of ship 
traffic can reproduce the ship traffic in the water area. The model is feasible for the simu-
lation of ship traffic flow. 

Table 3. The proportion of ship traffic volume on each route. 

Course Emulation Actual 
General cargo ship 17.6% 16.1% 

Dangerous-goods ship 15.8% 14.2% 

Figure 18. Simulation traffic flow of Pinghaiwan Offshore Wind Farm: (a) actual traffic flow; (b) the
traditional artificial potential field method simulates traffic flow; (c) the improved artificial po-
tential field method is used to simulate traffic flow; and (d) simulation traffic flow (when zone E
is completed).

Table 3 shows the ratio and relative error of the traffic volume of each route in the total
traffic volume in the simulation data and actual data. After comparison, it is found that the
relative error is within the permissible range, and the simulation results of ship traffic can
reproduce the ship traffic in the water area. The model is feasible for the simulation of ship
traffic flow.

Table 3. The proportion of ship traffic volume on each route.

Course Emulation Actual

General cargo ship 17.6% 16.1%
Dangerous-goods ship 15.8% 14.2%

Based on the analysis of the existing AIS historical data, the existing traffic flow path
was the most cost-effective and safe traffic flow state before the completion of area E, and
the figure shows the actual traffic flow before the completion of area E of the offshore wind
farm. The planned location of zone E of the offshore wind farm is shown in Table 4.
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Table 4. Planned location of area E of offshore wind farm.

Beacon Number Position

The vertices 1 25◦6′49.8′′ N, 119◦17′02.5′′ E
The vertices 2 25◦3′09.2′′ N, 119◦20′35.2′′ E
The vertices 3 25◦1′18.3′′ N, 119◦14′16.3′′ E
The vertices 4 25◦3′02.4′′ N, 119◦13′03.4′′ E

In conclusion, according to the path planning model mentioned above, a thermal map
of the simulated ship path after the completion of the E zone of Pinghaiwan Offshore Wind
Farm is generated, as shown in Figure 18d. The figure shows the simulated ship traffic flow
obtained by the ship traffic simulation model. In general, the simulation model reflects the
characteristics of the shipping route in the study area. Under the influence of the E zone of
the offshore wind farms, ships will navigate along a route far away from the wind farm, and
the customary route will also appear. Moreover, the newly built offshore wind farm has a
concentrated distribution in water area E, which has a great impact on ship navigation. The
prediction results show that after the wind E area construction characteristics of the ship
navigation route and track changed significantly, the ship’s track width was compressed,
the routes and ship average density increased, and because of the existence of the collision
between the ship and wind farm E area risk pressure, a ship close to the wind farm will
usually automatically slow down and must change course to adapt to the new environment
of the ship. The simulation results show that after the construction of the wind farm is
completed, due to the need to maintain a safe distance, the navigation path of the ship is
adjusted accordingly. The construction of offshore facilities will have a certain impact on
the navigation behavior of ships in nearby areas, which is in line with our expectation.

5. Discussion
5.1. Feasibility and Contribution

In this study, the artificial potential field model is optimized, and the model is applied
to sea traffic flow simulation and prediction. A raster space is constructed by combining
the AIS historical data and navigable environmental data in the water area, and a path
planning model combining customary routes, offshore wind farms, and moving ships is
proposed. In particular, the influence of the historical path on the potential energy field is
directly considered in the establishment of the habitual route gravitational field, rather than
being restricted by other conditions. With a different inertial path density, the adhesion
degree to subsequent path planning is also different. On this basis, the traditional artificial
potential field model considering only relative distance is improved, and its mathematical
model is optimized.

When multiple force fields are superimposed, or the planned path is close to the obsta-
cle, the traditional artificial potential energy model is prone to the problem of unreachable
targets. In this case, the repulsive force and gravity force received by the ship are of the
same magnitude and opposite direction, and the total potential energy field is in a stable
state, resulting in the ship being unable to approach the target point or escape from local
obstacles. To solve this problem, the current artificial potential energy method should be
further optimized. Aiming at the above problems, the mathematical model is improved,
and the distance factor and constant are introduced into the repulsive force function to
restrict the radiation range of the potential field. To confirm the dominance of the global
gravitational field, the problem of unreachable targets is avoided, a sufficient potential
energy drop is ensured, and the gravitational field coefficient of the customary route is
selected and introduced into the equation. The ship path simulation research based on
the new manual planning model fully considers the spatiotemporal characteristics of the
ship path, provides a certain guarantee for more efficient shipping, and is conducive to the
coordination of maritime construction and waterways. At the same time, the new artificial
potential field model has feasibility, which can be used in related research and provides a
basis for the further study of this path planning model.
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5.2. Limitations and Perspectives

The mathematical model of path planning is improved in this study, which solves
the problem where the traditional artificial potential field model is trapped in the local
optimal solution and cannot reach the destination, and a smoother planned path is obtained.
The experimental results show that this method has certain advantages and can provide
reference value for follow-up research. The data source in this study is AIS data configured
on ships. However, under existing conditions, not all ships can provide real-time data at
all times, especially for some small ships or areas where illegal smuggling is rampant and
where AIS compliance is poorly enforced. At the same time, AIS data may also have some
further issues. However, this is a problem of data sources and data quality. This study does
not focus on this aspect. In the future, we can continue to improve and optimize this.
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