
Citation: Agud-Albesa, L.; Garrido,

N.; Juan, A.A.; Llorens, A.;

Oltra-Crespo, S. A Weighted and

Epsilon-Constraint Biased-

Randomized Algorithm for the

Biobjective TOP with Prioritized

Nodes. Computation 2024, 12, 84.

https://doi.org/10.3390/

computation12040084

Academic Editor: Demos T. Tsahalis

Received: 14 March 2024

Revised: 15 April 2024

Accepted: 17 April 2024

Published: 20 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

A Weighted and Epsilon-Constraint Biased-Randomized
Algorithm for the Biobjective TOP with Prioritized Nodes
Lucia Agud-Albesa 1 , Neus Garrido 2 , Angel A. Juan 3,* , Almudena Llorens 1 and Sandra Oltra-Crespo 4

1 Department of Applied Mathematics, Universitat Politècnica de València, 03801 Alcoy, Spain;
lagudal@mat.upv.es (L.A.-A.); alllopa@upv.edu.es (A.L.)

2 Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, 46022 Valencia, Spain
3 Center for Research in Production Management and Engineering, Universitat Politècnica de València,

03801 Alcoy, Spain
4 Technological Institute of Informatics, Universitat Politècnica de València, 03801 Alcoy, Spain;

soltra@mat.upv.es
* Correspondence: ajuanp@upv.es

Abstract: This paper addresses a multiobjective version of the Team Orienteering Problem (TOP). The
TOP focuses on selecting a subset of customers for maximum rewards while considering time and fleet
size constraints. This study extends the TOP by considering two objectives: maximizing total rewards
from customer visits and maximizing visits to prioritized nodes. The MultiObjective TOP (MO-TOP)
is formulated mathematically to concurrently tackle these objectives. A multistart biased-randomized
algorithm is proposed to solve MO-TOP, integrating exploration and exploitation techniques. The
algorithm employs a constructive heuristic defining biefficiency to select edges for routing plans.
Through iterative exploration from various starting points, the algorithm converges to high-quality
solutions. The Pareto frontier for the MO-TOP is generated using the weighted method, epsilon-
constraint method, and Epsilon-Modified Method. Computational experiments validate the proposed
approach’s effectiveness, illustrating its ability to generate diverse and high-quality solutions on the
Pareto frontier. The algorithms demonstrate the ability to optimize rewards and prioritize node visits,
offering valuable insights for real-world decision making in team orienteering applications.

Keywords: team orienteering problem; heuristics; biased-randomized algorithms; multiobjective
optimization; Pareto frontier

1. Introduction

The TOP was introduced by Chao et al. [1] as a multivehicle extension of the Ori-
enteering Problem (OP) described in Golden et al. [2], and it has many applications in
different areas, such as smart cities, humanitarian logistics, or military logistics [3]. One of
the main differences between the TOP and the popular vehicle routing problem (VRP) is
that the former does not require visiting all customers due to the fixed size of the fleet of
vehicles. Also, in the case of the TOP, the focus is on maximizing the total reward collected
by visiting customers, while the capacity constraint is centered on the maximum travel time
per route instead of on the loading characteristics of each vehicle in the fleet. Also, while in
the VRP it is usually assumed that the origin and the destination depots are represented by
the same node, in the case of the TOP, it is usual to assign each depot to a different node. In
this paper, a variant of the classical TOP is considered by introducing two different types of
nodes: prioritized nodes (PN) and nonprioritized nodes. They are represented in Figure 1
with triangles and circles, respectively.
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Figure 1. A basic schema of the multiobjective TOP considered in this paper.

One of the restrictions to take into account is the maximum length or duration of
any route. The goal in the classical TOP is to maximize the total reward obtained when
visiting a collection of nodes of the initial set using the available fleet of vehicles. The
total reward is reached by the sum of the rewards of each of the routes that constitute
the total solution. In general, the travel times and the rewards are deterministic variables.
A wide range of examples can be considered as a deterministic TOP; hence, the existing
literature for this kind of deterministic study is very extensive [4]. In addition to the
introduction of prioritized nodes in the original TOP, the main contribution of this work is
the proposal of a novel methodology that allows us to optimize both the rewards obtained
from the nodes visited and the number of prioritized nodes visited. In order to achieve
this goal, the proposed methodology combines biased-randomized heuristics with the
epsilon-constraint method.

The rest of this paper is structured as follows: Section 2 provides a review of the classi-
cal TOP. Section 3 introduces a formal definition of the deterministic TOP, and then more
details are given on the specific MO-TOP analyzed in this work. Section 4 describes three
solution approaches that have been applied to solve the mathematical model introduced in
the previous section. The computational experiments and the final results are described in
Section 5. Finally, conclusions and future lines are summarized in Section 6.

2. Related Work

Vansteenwegen et al. [5] conducted an extensive review that thoroughly investigates
the Orienteering Problem, including several of its variants. Their analysis shows the
predominant themes in the existing literature, primarily revolving around practical appli-
cations such as technician routing, city logistics, athlete recruitment, and military logistics.
These applications demand efficient problem-solving approaches. However, the review
raises concerns regarding the current solving methodologies, noting their time-consuming
nature, particularly when dealing with large-scale instances. While previous research on
the TOP primarily leans towards deterministic versions, it fails to address the uncertainties
inherent in real-world scenarios, including varying weather conditions and unexpected
road obstacles. Hence, Panadero et al. [6] discuss a more realistic approach, suggesting
the utilization of historical data to model random elements within the system. This can
be achieved through the incorporation of best-fit probability distributions or empirical
ones. Only a limited number of prior studies have ventured into stochastic versions of
TOP, integrating optimization with simulation techniques [7]. The scientific literature
predominantly focuses on deterministic versions of the TOP. For example, Archetti et al. [8]
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tackle the TOP using various algorithms, such as a generalized tabu search and a variable
neighborhood search algorithm. Their experiments reveal that the latter yields superior
results. Similarly, Ke et al. [9] introduce an ant colony optimization algorithm for the TOP,
highlighting the advantages of combining different randomized methods to expedite the
discovery of near-optimal solutions. Vansteenwegen et al. [10] propose a guided local
search, emphasizing the importance of diversification procedures to enhance solutions.
In a different research line, Vansteenwegen et al. [11] introduce an iterated local search
meta-heuristic for the TOP with time windows, achieving solutions with a narrow average
gap of 1.8% compared with established benchmarks. Souffriau et al. [12] approach the TOP
with a path relinking heuristic, resulting in promising outcomes with a tiny average gap of
0.04% relative to benchmarks.

In a distinct context, Tricoire et al. [13] explore the multiperiod TOP, integrating a
variable neighborhood search algorithm with an exact algorithm. These authors address the
classic TOP and compare their solutions with benchmark results, achieving solutions with
an average gap of 1.0%. Souffriau et al. [14] tackle the TOP by combining an iterated local
search framework with a greedy randomized adaptive search procedure, resulting in solu-
tions with an average gap of 5.2% with respect to benchmark results. Verbeeck et al. [15]
explore the time-dependent OP and propose an algorithm merging ant colony optimiza-
tion principles with a time-dependent local search algorithm, providing solutions with
a minimal gap of 1.4%. Meanwhile, Vidal et al. [16] focus on a vehicle routing problem
closely related to the TOP, introducing a neighborhood search approach that yields solu-
tions with an average gap of merely 0.1%. They also emphasize the advantages of hybrid
solving approaches. Paolucci et al. [17] present a hybrid problem combining a vehicle
routing problem with the TOP, aiming to optimize location-allocation for maximum re-
wards. Their approach involves a cluster-first and route-second decomposition, enhanced
by variable neighborhood search incorporating a simulated annealing acceptance rule.
Estrada-Moreno et al. [18] address a biobjective TOP with a soft constraint related to driv-
ing range, employing a biased-randomized algorithm penalizing routes exceeding the
range. This approach outperforms other methods for a hard-constrained TOP. Ruiz-Meza
et al. [19] apply the TOP in the tourism industry, concentrating on crafting group routes
to maximize traveler preferences. They propose metaheuristics for problem resolution
and compare results derived from an exact method. Likewise, Sankaran et al. [20] explore
the TOP with multiple depots, presenting an attention-based model for resolution. Their
approach is validated through comparisons with various reconnaissance scenarios, show-
ing the efficacy of their data generation methodology when juxtaposed against heuristics,
machine learning, and exact solvers. Similarly, Panadero et al. [21] propose a simheuristic
algorithm for solving a stochastic TOP and perform a set of experiments to show that their
approach outperforms the standard sample average approximation method.

Other authors have conducted studies in different fields using multiobjective functions
to achieve their objectives. Wattanasaeng and Ransikarbum [22] have two objectives: an
economic one (associated with utility distances between plant locations) and a risk-based
cost objective for locating plants within an industrial park. Mohammadi et al. [23] aim
to suggest an optimal configuration for an intelligent supply chain handling multiple
perishable products, employing a vendor-managed inventory strategy augmented by IoT
technologies. This approach aims to overcome the hurdles typically encountered in conven-
tional supply chains. For that reason, they have objective function total costs and delivery
times. Ref. [24] introduce a biobjective mixed-integer linear model addressing the vaccine
distribution chain problem. It concurrently accounts for economic and social objectives.
Also, in the field of tourism and maritime supply chains, there are recent studies, as can be
seen in Shojatalab et al. [25] and Elmi et al. [26], both using an epsilon-constraint approach.
A myriad of challenges across diverse domains, including those previously elucidated
and the one under consideration in this study, necessitate the concurrent optimization of
multiple objectives or goals. In the study conducted by Banerjee et al. [27], metaheuristic
algorithms exhibited their robustness and efficacy in addressing challenges associated with
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multiobjective optimization. Various multiobjective optimization techniques are employed,
including the weighted sum approach and the epsilon-constraint technique. In the context
of the wireless body area network (WBAN), Memarian et al. [28] present a reactive routing
protocol for WBANs that combines a fuzzy heuristic with a metaheuristic learning model.

3. Formal Description of the MultiObjective TOP

In this section, we consider the mathematical model of the deterministic TOP and
extend the model to a MultiObjective TOP. As previously stated, the goal of the MO-TOP is
to find the visiting routes that maximize both the rewards obtained from each visited node
and the total number of priority nodes considered, simultaneously. Obviously, the number
of finding routes depends on the number of available vehicles. The presented model is
based on the formulation proposed in Evers et al. [29] (please refer to the summary table of
nomenclatures located at the end of this article). The network is characterized by a directed
graph G = (N′, E), consisting of N′ nodes and E edge connections. N′ is composed of
the origin depot (node 0), the destination depot (node n + 1), and the intermediate nodes
denoted as N = {1, 2, . . . , n}, so N′ = {0, 1, 2, . . . , n + 1}. E represents the set of connection
edges between these nodes and it is defined as E = {(i, j)/i, j ∈ N′, i ̸= j}. Within this
framework, we define a set D, comprising homogeneous vehicles. Each vehicle, represented
as d ∈ D, embarks on its journey from the origin depot, provides services to designated
intermediate nodes, and ultimately concludes its route at the destination depot.

In the deterministic formulation of the TOP, it is common to assume that the travel
time for each edge is a positive constant, i.e., tij = tji > 0, ∀i, j ∈ N. Through this work,
the Euclidean distance between nodes i and j is used as an estimate for this time. Notice
that each vehicle sets out on its route and can only serve specific nodes due to a constraint
on maximum travel time, tmax. Moreover, each vehicle must reach the destination depot
within the allocated travel time. The act of servicing the intermediate nodes during the
initial pass leads to the acquisition of a reward, symbolized as ui ≥ 0. Note that the origin
and the destination depots do not yield any associated rewards. For every edge (i, j) ∈ E
and each vehicle d ∈ D, we introduce binary variables xd

ij, which take on a value of 1 if

vehicle d traverses edge (i, j) and 0 otherwise. Additionally, we introduce the variable yd
i

to indicate the position of node i in the tour made by vehicle d and consider the binary
variable zi, which is equal to 1 if node i is priority and 0 if it is not priority. Based on these
definitions, a mathematical model of the deterministic MO-TOP is given next:


max ∑

d∈D
∑

(i,j)∈E
ujxd

ij

max ∑
d∈D

∑
(i,j)∈E

zjxd
ij

(1)

s.t. ∑
d∈D

∑
i∈N′

xd
ij ≤ 1 ∀j ∈ N (2)

yd
i − yd

j + 1 ≤ (1− xd
ij)|N| ∀i, j ∈ N, ∀d ∈ D (3)

∑
(i,j)∈E

tijxd
ij ≤ tmax ∀d ∈ D (4)

∑
i∈N′

xd
ij = ∑

h∈N′
xd

jh ∀d ∈ D, ∀j ∈ N (5)

∑
j∈N

xd
0j = 1 ∀d ∈ D (6)

∑
j∈N

xd
jn+1 = 1 ∀d ∈ D (7)



Computation 2024, 12, 84 5 of 20

yd
j ≥ 0 ∀j ∈ N, ∀d ∈ D (8)

xd
ij ∈ {0, 1} ∀i, j ∈ E, ∀d ∈ D (9)

zj ∈ {0, 1} ∀j ∈ N (10)

Equation (1) represents the multiobjective function aimed at maximization. Con-
straints (2) guarantee that each node is serviced no more than once. Constraints (3) act as a
preventive measure against the formation of sub-tours. Constraints (4) stipulate that the to-
tal travel time for each vehicle must not exceed its predetermined threshold. Constraints (5)
serve as a balance constraint for the flow, ensuring that any arrival at a node must be offset
by a departure. Constraints (6) and (7) specify that all vehicles must initiate their journeys
from the original depot (node 0), and subsequently, after traversing their routes, arrive at
the destination depot (node n + 1). Lastly, constraints (8)–(10) show the characteristics and
implications of the variables yd

j , xd
ij, and zj.

4. Alternative Approaches for Solving the MO-TOP

In this paper, several alternative ways to solve the MultiObjective TOP described
above are introduced: the Weighted Average Method (WAM), the Ponderate Weighted Av-
erage Method (POWAM), the epsilon-constraint method (ECM), and the Epsilon-Modified
Method (EMM). Their main characteristics and algorithms are described below.

4.1. The Weighted Average Method and the Ponderate Weighted Average Method

This subsection provides the general framework of the WAM (Algorithm 1) to solve
the MO-TOP and the weight considered in the objective function for obtaining the POWAM.
This method is extensively employed in the optimization of multiobjective functions. The
objective is to discover solutions that meet various criteria, and the weighted average
serves as a prevalent technique for amalgamating these criteria into a unified aggregated
objective function. The fundamental concept behind the weighted average entails assigning
a weight to each objective, thereby representing its relative significance in the decision-
making process. Subsequently, a comprehensive score is computed for each solution by
multiplying the values of the objectives by their respective weights and then summing them.
The Weighted Average Method proves especially valuable when tackling optimization
problems where it is unfeasible to identify a singular solution that concurrently optimizes
all objectives. Instead, it empowers decision-makers to ascertain solutions that adeptly
strike a balance among the diverse objectives, taking into account their preferences and
constraints. As mentioned earlier, the considered objective function aims to maximize
both rewards and the number of priority nodes visited. Hence, it can be represented as
a biobjective function. This function is constructed through a normalized convex linear
combination, as expressed in Equation (11) below:

max ∑
d∈D

∑
(i,j)∈A

ληujxd
ij + (1− η)zjxd

ij, η ∈ [0, 1], λ ∈ R. (11)

The constraints have been previously described in Equations (2) to (10). Notice that the
real factor λ in Equation (11) depends on the magnitude of the rewards considered in the
instances. Normalizing the rewards in the biobjective function ensures that the quantities
to be compared fall within a similar range, and therefore, one does not weight more than
the other. In particular, for λ = 1, the WAM is obtained, while for other values of λ, the
POWAM is taken.

We initiate the solution-finding process by employing a constructive heuristic. Given
the intricacies of the TOP problem, this heuristic accounts for the following factors: (i) the
origin and destination nodes may not be the same; (ii) there is no strict requirement to
visit all nodes; (iii) there are priority nodes which should be visited; and (iv) the con-
struction of the routing plan takes into consideration not just time or distance savings but
also the collected rewards. Hence, the heuristic starts by generating an initial ‘dummy’
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solution, where each location is connected to both the origin and destination depots.
Subsequently, these dummy routes undergo an iterative merging process. During this
phase, the heuristic seeks to combine routes as much as possible while ensuring that the
total travel time for each route remains within the defined threshold. To facilitate route
merging in the original algorithm, a list of potential merging edges is created, sorted in
descending order of efficiency. The efficiency associated with an edge (i, j) is computed as
eij = α · sij + (1− α) · (ui + uj), where sij = ti(n+1) + t0j − tij represents the time-based
savings obtained with the merge, and ui + uj reflects the combined reward from nodes i and
j. Note that in the POWAM, the efficiency was considered with already weighted data. The
parameter α, falling within the range [0, 1], is contingent on the diversity of rewards among
nodes and necessitates empirical fine-tuning. In scenarios with substantial reward diversity,
α tends to approach zero, while in more homogeneous scenarios, α gravitates toward one.
To determine the optimal α for each scenario, the constructive heuristic is executed 21 times,
with α ranging from 0 to 1 in increments of step 0.05 during each iteration. Once this
merging process is completed, an initial solution is obtained. The core idea of the WAM
is to introduce a new criterion to sort the initial edges list according to efficiency values
and priority nodes for each value of η ∈ [0, 1] with increments of 0.05. For this purpose, the
biefficiency values are defined by

bij = γeij + (1− γ)(zi + zj), γ ∈ [0, 1], (12)

where γ runs in the same way as α. The optimal α and γ are determined experimentally
by choosing the ones that provide the greater value of the biobjective function. Then, the
constructive heuristic is executed for each value of η. The initial solution is established
when the merging process is completed. Now, by systematically examining solutions from
different starting points, the algorithm converges towards a refined set of high-quality
solutions using a biased-randomized algorithm [30]. In the end, a near-optimal (or at
least high-quality) solution is provided. This solution returns both the rewards and the
priority nodes visited on those routes. The Algorithm 1 illustrates the main steps of the
WAM-based code. Notice that, for values of γ = 1 in Equation (12), the usual efficiency
list in the constructive algorithm is obtained, while for η = 1 or η = 0 in Equation (11), the
multiobjective function is simplified as a single-objective function. Moreover, for η = λ = 1
the multiobjective function is the usual function to maximize in the TOP. Therefore, running
the new algorithm implemented here gives the same results.

Hence, the proposed algorithm aims to find a good solution for each value of η in
Equation (11). To achieve this, the algorithm runs α and γ a total of 21 times from 0 to 1,
generating the best solution experimentally for each combination of α and γ. This process
involves sorting the biefficiency list for each combination, allowing for the exploration
of different approximations to the solution during the merging process. Once a solution
maximizing the objective function for each η is obtained, the algorithm proceeds (from
line 13 to the end) to further improve it using a multistart biased-randomized algorithm.
This improvement is achieved by temporarily changing the biefficiency list for a while
(elapsed-time), ultimately returning the best solution (Best_Sol). Note that each time a
solution is constructed, the algorithm identifies all possible routes that comply with the
imposed restrictions starting from the dummy solution. These routes are then sorted based
on the total biobjective value obtained from each one. Finally, the solution is constructed
by selecting as many routes as the fleet size allows. Additionally, notice that the only
distinction between the POWAM and the WAM approaches lies in the consideration of
reward values, whether weighted or not, respectively.
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Algorithm 1 WAM/POWAM
Input: Data
Output: Best_Sol

1: for η = 0 : 0.05 : 1 do
2: initialize(Best_Sol)
3: for γ = 0 : 0.05 : 1 do
4: for α = 0 : 0.05 : 1 do
5: generate and sort bi-efficiency list
6: Sol ← merging(dummy solution)
7: if Sol(bi-objective) > Best_Sol(bi-objective) then
8: Best_Sol ← Sol, α, γ
9: end if

10: end for
11: end for
12: while elapsed ≤ test.maxTime do
13: New_Sol← update(BRA,bi-efficiency list)
14: if New_Sol(bi-objective) > Best_Sol(bi-objective) then
15: Best_Sol← New_Sol
16: end if
17: end while
18: return Best_Sol
19: end for
20: end

4.2. The Epsilon-Constraint Method
The epsilon-constraint method (ECM, Algorithm 2) is a powerful technique em-

ployed in multiobjective optimization to address decision-making problems with con-
flicting objectives [25,26]. In the field of optimization, the challenge lies in identifying
solutions that offer a balanced trade-off among multiple objectives. The ECM facilitates the
transformation of a multiobjective problem into a single-objective problem by introducing
supplementary constraints. This method involves designating one objective as the primary
focus and treating the remaining objectives as constraints. The term ‘epsilon’ denotes a
small positive value that defines the acceptable deviation from the optimal value for the
secondary objectives. In the ECM, one objective function is maximized, in this case the
rewards, and the total priority nodes visited are counted and stored. Then, this initial
objective function is again maximized while the other objective function, the priority nodes
visited, becomes a constraint where the value counted initially must be exceeded by a
certain quantity (ε). It should be noted that both optimization problems have been solved
with the aforementioned algorithm. Despite optimizing the same single-objective function
in both cases (rewards), the biefficiency list is used to construct the solutions. In order to
determine the optimal α and γ related to the biefficiency list, we follow the same process
explained previously. However, the solutions to both problems have not been constructed
following the same criteria even though in both cases the rewards are maximized. While in
the first step the biefficiency list selected is the one that generates the highest rewards, in
the second step, the list that provides the highest number of priority nodes visited is taken.
In the first step, the objective function is given by

max ∑
d∈D

∑
(i,j)∈A

ujxd
ij

subject to the constraints described in Equations (2) to (10). The NP value of this solution is
stored, PN∗ = ∑

d∈D
∑

(i,j)∈A
ujzd

ij. Also, in the second part, the objective function is the same,

with the constraints mentioned above but adding a new one:

∑
d∈D

∑
(i,j)∈A

ujzd
ij ≥ PN∗ + ε, (13)

where ε ranges from 0 to max ∑
d∈D

∑
(i,j)∈A

ujzd
ij − PN∗ for saving computational cost.
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Algorithm 2 ECM
Input: Data
Output: Best_Sol

1: initialize(Best_Sol_1)
2: for γ = 0 : 0.05 : 1 do
3: for α = 0 : 0.05 : 1 do
4: generate and sort bi-efficiency list
5: Sol_1← merging(dummy solution)
6: if Sol_1(reward) > Best_Sol_1(reward) then
7: Best_Sol_1← Sol_1, α, γ
8: end if
9: end for

10: end for
11: while elapsed ≤ test.maxTime do
12: New_Sol_1← update(BRA,bi-efficiency list)
13: if New_Sol_1(reward) > Best_Sol_1(reward) then
14: Best_Sol_1← New_Sol_1
15: end if
16: end while
17: initialize(Best_Sol_2)
18: for γ = 0 : 0.05 : 1 do
19: for α = 0 : 0.05 : 1 do
20: generate and sort bi-efficiency list
21: Sol_2← merging(dummy solution)
22: if Sol_2(PN) > Best_Sol_2(PN) then
23: Best_Sol_2← Sol_2, α, γ
24: end if
25: end for
26: end for
27: while elapsed ≤ test.maxTime do
28: New_Sol_2← update(BRA,bi-efficiency list)
29: if New_Sol_2(PN) > Best_Sol_2(PN) then
30: Best_Sol_2← New_Sol_2
31: maxPN← Best_Sol_2(PN)
32: end if
33: end while
34: for ε = 0 : 1 : maxPN do
35: initialize(Best_Sol)
36: for γ = 0 : 0.05 : 1 do
37: for α = 0 : 0.05 : 1 do
38: generate and sort bi-efficiency list
39: Sol_3← merging(dummy solution)
40: if Sol_3(PN) > Best_Sol(PN)& Sol_3(PN) ≥ Sol_1(PN) + ε then
41: Best_Sol← Sol_3, α, γ
42: end if
43: end for
44: end for
45: while elapsed ≤ test.maxTime do
46: New_Sol_3← update(BRA, biefficiency list)
47: if New_Sol_3(reward) > Best_Sol(reward)andNew_Sol_3(PN) ≥ Sol_1(PN) + ε then
48: Best_Sol← New_Sol_3
49: end if
50: end while
51: return Best_Sol
52: end for
53: end

The main structure is shown in Algorithm 2 and described next. In the first step (from
line 2 to line 16), the constructive algorithm by Panadero et al. [31] is used to optimize
the rewards of the visited nodes. Similar to the previous algorithm, it searches for the
combination of α and γ whose associated biefficiency list obtains the maximum rewards
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on the proposed routes. From this solution, better approximations are sought using a
multistart biased-randomized algorithm, where the biefficiency list is rearranged during a
period (from line 17 to 33). Next, the maximum number of priority nodes that can be visited
(maxPN) is obtained using the same constructive algorithm (from lines 34 to 51). This value
is determined to ensure that the algorithm does not perform unnecessary iterations. Finally,
the best approximation to the solution is built, providing both rewards and priority node
values. For each value of ε between 0 and maxPN, solutions are obtained. The coefficients
that provide the biefficiency list ensuring a higher reward for each ε are determined. Among
these solutions that verify the ε constraint, the one that provides the highest reward is
retained. This solution is further improved with a multistart biased-randomized algorithm,
where the biefficiency list is reordered.

Two ways are developed to ensure that the epsilon-constraint is verified:

• Epsilon-Constraint Positional Method (ECPM): The procedure to generate a solution
that satisfies the new constraint where ε is involved starts by constructing a list of
routes ordered by reward. Then, the list is separated into two: one auxiliary solution
of the fleet size and the other with the rest of the routes. The auxiliary solution will
be the solution of the problem in case it verifies the constraint. Otherwise, the one
with the lowest reward is replaced by one of the rest that has a higher PN than it.
Recursively, all the positions of the auxiliary solution are run through until a solution
is found or the list has been completed.

• Epsilon-Constraint Sublists Method (ECSM): In this other implementation, once the
above list of routes has been constructed, the possible sublists of fleet size are generated.
Of all of them, the one with the highest reward that verifies the restriction is chosen.

The solutions given by these approaches for solving the MO-TOP lead to different
results, as shown in Section 5.

4.3. The Epsilon-Modified Method

Based on the Absolute Priority (Lexicographic) Method, the Epsilon-Modified Method
(EMM, Algorithm 3) described in this section is structured in two steps as independent
problems. Firstly, the rewards are considered as the objective function. In the second
problem, the priority nodes constitute the new objective function, and the reward achieved
in the first step is added as a new constraint that we will relax when the value of epsilon
increases. In the context of the multiobjective optimization problem being considered,
the EMM is applied as follows: first, a single-objective constructive algorithm is applied
to maximize only the rewards, while the total visited priority nodes in the provided
solution are counted. Subsequently, a reformulation of the previous algorithm is applied to
maximize the visited priority nodes with a new ε-constraint. The added constraint involves
the reward of the new solution that must be higher than the previous reward unless by a
certain quantity ε, which varies between 0 and the previous reward. As in the ECM, in the
first step, the objective function is given by

max ∑
d∈D

∑
(i,j)∈A

ujxd
ij

subject to the same constraints described above. However, in the second part, the objective
function is

max ∑
d∈D

∑
(i,j)∈A

ujzd
ij

adding the following constraint:

∑
d∈D

∑
(i,j)∈A

ujxd
ij ≥ max ∑

d∈D
∑

(i,j)∈A
ujxd

ij − ε, (14)
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where ε ranges from 0 to max ∑
d∈D

∑
(i,j)∈A

ujxd
ij. In both steps of the EMM, the biefficiency list

is considered with the same purpose. An optimal solution for each ε is obtained through
21 executions. Notice that, while the objective in the first part is to maximize the total
reward obtained by visiting the nodes, the structure of the algorithm remains the same as in
the epsilon-constraint method. The difference lies in how the solutions are obtained in the
second part. For each value of ε between 0 and the maximum value of the reward calculated
before with 21 iterations, the constructive algorithm is used again to maximize the number
of priority nodes visited. As long as the solution obtained verifies the ε constraint, we use a
multistart biased-randomized algorithm to reorder the biefficiency list, ensuring that these
new solutions satisfy the added restriction. The best solution is then returned.

Algorithm 3 EMM
Input: Data
Output: Best_Sol

1: initialize(Best_Sol_1)
2: for γ = 0 : 0.05 : 1 do
3: for α = 0 : 0.05 : 1 do
4: generate and sort bi-efficiency list
5: Sol_1← merging(dummy solution)
6: if Sol_1(reward) > Best_Sol_1(reward) then
7: Best_Sol_1← Sol_1, α, γ
8: end if
9: end for

10: end for
11: while elapsed ≤ test.maxTime do
12: New_Sol_1← update(BRA,bi-efficiency list)
13: if New_Sol_1(reward) > Best_Sol_1(reward) then
14: Best_Sol_1← New_Sol_1
15: end if
16: end while
17: for ε = 0 : Best_Sol_1(reward) do
18: initialize(Best_Sol)
19: for γ = 0 : 0.05 : 1 do
20: for α = 0 : 0.05 : 1 do
21: generate and sort bi-efficiency list
22: Sol ← merging(dummy solution)
23: if Sol(PN) > Best_Sol(PN)& Sol(rewards) ≥ Sol_1(reward)− ε then
24: Best_Sol← Sol, α, γ
25: end if
26: end for
27: end for
28: while elapsed ≤ test.maxTime do
29: New_Sol← update(BRA,bi-efficiency list)
30: if New_Sol(PN) > Best_Sol(PN)andNew_Sol(reward) ≥ Sol_1(reward) − ε

then
31: Best_Sol← New_Sol
32: end if
33: end while
34: return Best_Sol
35: end for
36: end

5. Computational Experiments

A comprehensive overview of the numerical instances addressed through the five
previously mentioned approaches is shown in this section. The aim is to assess and compare
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the set of obtained solutions. All the algorithms were programmed in Python and run on a
workstation with an Intel Core i5-11400 11th Generation and 32 GB of RAM. The maximum
computational time for solving each instance is limited to 200 s. To assess the effectiveness
of the proposed solution methods for the TOP, we extended to the biobjective case the
widely used benchmark introduced by Chao et al. [1]. This benchmark is a standard choice
in the literature for evaluating algorithms designed to address the classical version of the
TOP. It is categorized into seven subsets, totaling 320 instances in total, each identified by
the nomenclature pa.b.c. Here, a denotes the subset identifier, b signifies the number of
vehicles, and c represents the maximum driving range. In our experiments, we choose three
of the seven subsets and add a new attribute to each instance related to the priority of the
node. This is performed by selecting as a ‘prioritized node’ one out of three nodes in the
list of nodes. Moreover, when tackling instances that share the same network, our selection
was given to those with the greatest number of available vehicles, exactly b = 4 vehicles.
We exclusively considered instances possessing a ‘sufficient’ driving range, ensuring the
capability to reach the farthest node in each instance. This selection strategy guarantees a
diverse and representative set of scenarios for a comprehensive evaluation of the proposed
solution approaches.

In a multiobjective optimization scenario, distinct, and sometimes competing, objec-
tives must be optimized simultaneously. The primary aim is to discover a set of solutions
representing Pareto optimal solutions, i.e., solutions where no single objective can be en-
hanced without compromising another. The solutions obtained for each instance are shown
using a Pareto frontier for the different values of the coefficient η employed in the case of
the POWAM and the WAM (Equation (11)), the different values of ε considered in the ECM
(Equation (13)), and the EMM (Equation (14)). The abscissa axis represents the reward
obtained and the ordinate axis represents the number of priority nodes visited. From the
Pareto frontier, the decision-maker will be able to select the best solutions according to
his/her utility function, taking into account the combination of reward values and priority
nodes visited. As expected, the achieved reward decreases as more prioritized nodes are
forced to be visited in the solution and vice versa. Notice that the first example, p4.4.c,
has a total of 100 nodes, including the two depots, from which 33 are prioritized nodes.
Similarly, the second instance, p5.4.c, has a total of 66 nodes, including depots, from which
21 are prioritized. The last instance, p7.4.c, has 102 total nodes, and 34 of them are priority
nodes. For each instance, parameter c was varied in two ways, where the unique difference
between cases is tmax, where tmax is the maximum time allowed by each vehicle in the
fleet to complete a route.

In order to illustrate the routes traveled in each of the solutions obtained, the following
graphs are presented. Specifically, for instance, for p5.4.r, we display the routes obtained
with the EMM for ε = 43 and ε = 129, corresponding to the restriction (14), in Figure 2.
Additionally, routes related to the POWAM are depicted in Figure 3 for η = 0.1 and η = 0.5
in Equation (11).

The WAM and the POWAM were executed with λ ∈ 0.1, 1, corresponding to the
normalized (POWAM) and not-normalized (WAM) biobjective functions, respectively.
One of the purposes of reward weighting is to balance the two elements that form the
multiobjective function. Tables 1–3 display the numerical results for some of the selected
examples. For each instance and method, the obtained reward and the PN are shown for the
solution corresponding to each η or ε. These solutions are also represented in Figures 4–9.
Additionally, the Pareto frontiers, which consist of the best solutions regardless of the
method, are highlighted in red. Specifically, Figures 4 and 5 pertain to the results in Table 1,
Figures 6 and 7 correspond to Table 2, and Figures 8 and 9 depict the results in Table 3.

The main purpose of this work is to provide a framework for comparing five different
multiobjective approaches. Let us remark that when looking at the Pareto frontiers, all five
methods provide, at least in some of the examples, the best solution. Note that the extreme
values of the frontiers could be assimilated as solutions to single-objective optimization
problems. The points located on the left side of the graphs maximize the total number
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of prioritized nodes visited, while those on the right side maximize the total reward. It
can be observed that the ECSM contributes more to the Pareto frontier of examples p7.4.c
(Figures 8 and 9), whose fundamental difference with respect to the other examples is
that the maximum time per route is greater and the distribution of the nodes in the XY
plane is more uniform. However, in the examples corresponding to p5.4.c, whose route
time is the smallest of the examples studied, the POWAM is the one that provides the
best results and therefore the one that contributes the most points to the Pareto frontier in
Figures 6 and 7. Finally, in Figures 4 and 5, it is observed that all methods contribute to the
Pareto frontiers, with the exception of ECSM, which might require a longer routing time.
As a consequence, we cannot determine a dominant method with respect to the others,
as they all contribute to the Pareto frontiers of the different examples. Therefore, it is up
to the user to choose the method to be used depending on the objectives to be achieved.
Furthermore, for a better comprehension of the variability of the results with the different
methods here implemented, the values are shown by the box plots in Figures 10 and 11. To
facilitate the visualization of the data distribution, the values of rewards and priority nodes
visited are shown separately in Figures 10 and 11, respectively. Example p4.4.o. is taken as
a reference, being the results obtained with the other examples similar.

Figure 2. Graph for the instance p5.4.r with the EMM.

Figure 3. Graph for the instance p5.4.r with the POWAM.
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Table 1. Numerical results of instances p44o and p44r.

Instance p44o

Reward_WAM P_nodes_WAM Reward_POWAM P_nodes_POWAM Reward_EMM P_nodes_EMM Reward_ECPM P_nodes_ECPM Reward_ECSM P_nodes_ECSM

500 28 447 31 840 19 650 14 702 18
805 21 481 31 778 18 608 16 702 18
827 20 481 31 766 23 599 16 702 18
817 18 481 31 707 21 744 17 810 18
827 15 660 29 665 22 739 19 769 18
825 15 631 29 628 25 672 21 672 21
830 14 687 23 588 23 562 20 681 20
812 14 700 23 536 29 531 21 667 21
799 11 687 23 520 29 708 23 663 23
771 10 837 15 551 29 687 24 663 23
802 13 849 15 528 29 654 25 633 24
786 12 837 15 547 20 667 25 609 25
802 13 848 14 549 29 614 31 613 26
792 12 837 14 534 29 600 31 651 27
812 14 838 14 551 29 597 31 812 14
809 12 837 15 527 29 600 31 812 14
802 13 847 13 458 30
825 12 847 13 534 29
802 13 847 13 546 29
802 13 840 13 512 29
812 14 837 14 541 29

Instance p44r

Reward_WAM P_nodes_WAM Reward_POWAM P_nodes_POWAM Reward_EMM P_nodes_EMM Reward_ECPM P_nodes_ECPM Reward_ECSM P_nodes_ECSM

604 31 570 31 989 22 572 18 861 23
887 27 636 31 918 23 901 21 861 23
887 27 636 31 871 28 902 22 861 23
903 28 613 33 830 29 901 21 861 23
943 20 825 29 777 30 900 22 861 23
948 21 833 29 759 29 748 24 918 22
965 21 900 26 735 29 719 25 744 26
947 17 833 29 680 28 751 29 734 24
947 22 900 26 592 31 819 30 796 26
946 18 900 26 545 31 819 30 788 26
951 16 894 23 587 31 867 28 751 27
947 17 902 24 594 31 888 31 703 28
951 16 881 24 561 31 863 30 732 29
947 17 930 17 532 31 834 21 649 30
972 17 931 19 576 31 947 17
947 17 933 22 647 31
947 17 909 21 625 31
947 17 916 20 641 31
954 17 918 19 579 31
947 17 900 23 625 31
947 17 923 17 513 31

Table 2. Numerical results of instances p54q and p54r.

Instance p54q

Reward_WAM P_nodes_WAM Reward_POWAM P_nodes_POWAM Reward_EMM P_nodes_EMM Reward_ECPM P_nodes_ECPM Reward_ECSM P_nodes_ECSM

535 19 535 19 795 12 645 14 640 13
795 12 580 19 795 12 695 13 635 13
795 12 570 19 725 14 690 14 630 14
795 12 580 19 740 14 675 15 620 15
795 12 580 19 645 15 650 18 590 16
795 12 580 19 600 16 650 18 595 17
790 12 680 16 570 19 650 18 595 18
795 12 755 14 535 19 600 20 580 19
795 12 785 12 535 19
780 11 795 12 535 19
795 12 785 12 535 19
795 12 785 12 535 19
775 11 785 11 535 19
795 12 785 12 535 19
770 12 785 12 535 19
770 12 770 12 535 19
795 12 770 12 535 19
770 10 785 11 535 19
770 10 780 10 535 19
795 12 780 11 535 19
795 12 785 12 535 19

Instance p54r

Reward_WAM P_nodes_WAM Reward_POWAM P_nodes_POWAM Reward_EMM P_nodes_EMM Reward_ECPM P_nodes_ECPM Reward_ECSM P_nodes_ECSM

670 20 665 20 855 12 750 12 730 12
775 18 715 20 815 15 725 11 710 13
840 15 715 20 780 17 740 12 710 15
850 14 715 20 730 19 725 14 710 16
860 11 715 20 725 20 735 15 640 16
855 12 755 19 665 20 715 15 630 18
860 11 755 19 705 20 705 16 670 19
855 12 765 18 575 19 775 17 670 20
855 13 765 19 625 20 860 10 855 12
860 9 780 17 625 20 860 10
865 10 860 14 630 20 860 10
855 12 855 14 655 20
865 10 845 14 670 20
860 11 860 12 630 20
860 11 850 13 670 20
855 12 850 14 625 20
860 10 855 11 630 20
850 11 860 11 625 20
855 9 855 11 625 20
860 9 855 13 670 20
865 10 865 11 625 20
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Table 3. Numerical results of instances p74q and p74r.

Instance p74q

Reward_WAM P_nodes_WAM Reward_POWAM P_nodes_POWAM Reward_EMM P_nodes_EMM Reward_ECPM P_nodes_ECPM Reward_ECSM P_nodes_ECSM

496 20 377 23 742 15 708 17 699 17
704 16 533 20 702 16 708 17 699 17
700 14 534 20 685 17 689 15 699 17
700 14 655 18 630 17 632 17 699 17
700 14 655 18 628 18 653 19 699 17
697 14 687 17 591 20 638 18 675 18
733 13 655 18 591 20 626 19 665 19
733 13 689 17 584 20 640 20 733 13
733 13 687 17 619 20
733 13 687 17 607 20
733 13 689 17 607 20
733 13 698 16 607 20
733 13 698 16 591 20
733 13 701 15 607 20
733 13 701 15 607 20
733 13 711 12 607 20
733 13 748 13 607 20
733 13 739 12 607 20
733 13 742 13 607 20
733 13 747 13 584 20

Instance p74r

Reward_WAM P_nodes_WAM Reward_POWAM P_nodes_POWAM Reward_EMM P_nodes_EMM Reward_ECPM P_nodes_ECPM Reward_ECSM P_nodes_ECSM

592 22 377 23 702 16 705 15 672 16
690 21 533 20 670 16 688 17 702 15
693 12 534 20 643 21 709 14 688 17
693 12 655 18 653 19 678 17 688 17
693 12 655 18 562 19 677 17 688 17
698 11 687 17 627 22 691 17 691 17
698 11 655 18 627 22 530 18 530 18
698 11 689 17 593 22 619 17 737 17
700 10 687 17 580 22 595 19 704 18
698 9 687 17 588 22 579 19 690 21
705 12 689 17 588 22 593 20 700 10
700 10 698 16 627 22 700 10 700 10
700 12 698 16 592 22 700 10 700 10
700 10 698 16 588 22
693 12 701 15 588 22
702 10 701 15 588 22
700 10 711 12 588 22
700 10 748 13 588 22
705 9 739 12 588 22
705 9 742 13 485 22
700 10 747 13 588 22

Figure 4. Pareto frontier for the MO-TOP p44o.
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Figure 5. Pareto frontier for the MO-TOP p44r.

Figure 6. Pareto frontier for the MO-TOP p54q.
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Figure 7. Pareto frontier for the MO-TOP p54r.

Figure 8. Pareto frontier for the MO-TOP p74q.
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Figure 9. Pareto frontier for the MO-TOP p74r.

Figure 10. Solutions for the MO-TOP p44o using all the described methods for rewards.

It can be observed that there are some methods whose solutions offer more variability
compared with the others. This tool is intended to assist the customer’s decision making in
choosing which method to use for the resolution of their particular problem, depending on
whether they want to obtain a wider range of solutions or not. We can observe in Figure 10
that the medians are very close to the first or third quartile, depending on the method.
However, for the boxplot of priority nodes (Figure 11), a more balanced distribution is
observed for the WAM, ECPM, and ECSM.
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Figure 11. Solutions for the MO-TOP p44o using all the described methods for priority nodes visited.

6. Conclusions and Future Work

The present study has analyzed the Multiobjective Team Orienteering Problem with a
focus on prioritized nodes. Several distinct multiobjective optimization methodologies have
been considered: the Weighted Average Method, the Ponderate Weighted Average Method,
the epsilon-constraint method, and the Epsilon-Modified Method. This paper compares
their efficacy in maximizing rewards obtained from visited nodes while optimizing the total
number of prioritized nodes visited. In order to carry this out, a series of computational
experiments on an extended version of popular TOP instances has been carried out. The
Pareto frontiers generated by these methodologies illustrate the inherent trade-offs between
the rewards accrued and the number of prioritized nodes visited, providing decision-
makers with a spectrum of solutions catering to varying preferences and constraints.

The Weighted Average Method and its weighted counterpart POWAM demonstrated
their aptitude in providing solutions with distinct trade-offs between the number of priori-
tized nodes visited and the rewards obtained. The POWAM, in particular, exhibited greater
variability in solutions, offering a range of possibilities for decision-makers to explore based
on their objectives. In parallel, the epsilon-constraint method introduced a constraint-based
approach, allowing for the exploration of solutions where one objective was maximized
while the other stayed within predefined epsilon values. Finally, the Epsilon-Modified
Method maximized both values, adding a new relaxed constraint depending on epsilon.
These methods showcased alternative solutions based on epsilon values, presenting a
diversified set of trade-offs between rewards and prioritized nodes visited. A weighting
factor of λ = 0.1 has been employed in this study, demonstrating the effectiveness of
reward weighting in samples with high rewards. An area worth exploring further would
be the utilization of variable weighting factors tailored to the characteristics of the data
in each example. Additionally, investigating how to incorporate this reward weighting
into the ECM and EMM algorithms could be beneficial. Our comparative analysis signifies
that the choice of the most suitable method for addressing the MO-TOP with prioritized
nodes is contingent upon the decision-makers’ specific preferences, goals, and constraints.
Each method has distinct strengths and trade-offs, offering a range of solutions that cater
to different optimization priorities.

This paper focuses on the deterministic version of the MultiObjective TOP, considering
a generalization where the time of movement along each edge is invariant and is given
by the Euclidean distance. Considering a more realistic scenario, this MO-TOP can be
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specified to use dynamic time, in which the travel time of each vehicle is measured in real
time, allowing the incorporation of unexpected events. Some research lines that can be
explored further are the following ones: (i) the integration of machine learning techniques,
such as reinforcement learning, with traditional optimization algorithms could offer novel
approaches to solve dynamic instances of the MO-TOP; (ii) addressing practical constraints,
such as time windows, traffic congestion, vehicle capacities, and dynamic node prioriti-
zation, can render the models more applicable to real-world scenarios, making solutions
more feasible and adaptable; (iii) evaluating the applicability of MO-TOP models in diverse
sectors such as logistics, transportation, emergency response, and telecommunications
can provide valuable insights into specific use case scenarios, enabling tailored solutions
for real-world challenges; and (iv) the consideration of environmental impacts, such as
reducing carbon emissions or optimizing routes for energy efficiency, could be integrated
into MO-TOP models to address sustainability concerns.
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Nomenclature

N Set of intermediate nodes: i, j ∈ N = 1, 2, . . . , n
N′ Set of nodes including the initial and final depots: N′ = 0, 1, 2, . . . , n + 1
E Set of edges connecting the nodes: E = (i, j)/i, j ∈ N′, i ̸= j
G Graph of the network, G = (N′, E)
D Set of homogeneous vehicles d ∈ D
tij Travel time for each edge, tij = tji > 0, ∀i, j ∈ N
tmax Maximum travel time for each vehicle or route
ui Reward of the node i ∈ N
xd

ij Binary variable whose value is equal to 1 if vehicle d traverses edge (i, j)
yd

i Position of the node i in the tour made for the vehicle d
zi Binary variable whose value is equal to 1 if node i is priority
λ Weight for pondering the rewards in the biobjective function
α Convex linear combination constant in the efficiency value
γ Convex linear combination constant in the biefficiency value
η Convex linear combination constant in the biobjective function
sij Time-based savings associated to the edge (i, j), sij = ti(n+1) + t0j − tij
eij Efficiency value associated to the edge (i, j), eij = αsij + (1− α)(ui + uj)

bij Biefficiency value associated to the edge (i, j), bij = γeij + (1− γ)(zi + zj)

ε Deviation from the optimal value for the secondary objectives, ε > 0
PN∗ Total number of priority nodes being visited
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