
Citation: Li, M.; Wang, G.; Gao, Y.;

Gao, Y. An Infrared Ultra-Broadband

Absorber Based on MIM Structure.

Nanomaterials 2022, 12, 3477. https://

doi.org/10.3390/nano12193477

Academic Editor: Suchand Sandeep

Received: 18 September 2022

Accepted: 3 October 2022

Published: 4 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

An Infrared Ultra-Broadband Absorber Based on
MIM Structure
Meichen Li, Guan Wang, Yang Gao and Yachen Gao *

Electronic Engineering College, Heilongjiang University, Harbin 150080, China
* Correspondence: gaoyachen@hlju.edu.cn

Abstract: We designed an infrared ultra-broadband metal–insulator–metal (MIM)-based absorber
which is composed of a top layer with four different chromium (Cr) nano-rings, an intermediate media
of aluminum trioxide (Al2O3), and a bottom layer of tungsten (W). By using the finite-difference
time-domain (FDTD), the absorption performance of the absorber was studied theoretically. The
results indicate that the average absorption of the absorber can reach 94.84% in the wavelength range
of 800–3000 nm. The analysis of the electric and magnetic field indicates that the ultra-broadband
absorption rate results from the effect of local surface plasmon resonance (LSPR). After that, the effect
of structural parameters, metal and dielectric materials on the absorptivity of the absorber was also
discussed. Finally, the effect of incidence angle on absorption was investigated. It was found that it is
not sensitive to incidence angle; even when incidence angle is 30◦, average absorptivity can reach
90%. The absorber is easy to manufacture and simple in structure, and can be applied in infrared
detection and optical imaging.

Keywords: metamaterial; infrared; ultra-broadband absorption; local surface plasmon resonance

1. Introduction

Metamaterials (MMs) are artificial materials consisting of subwavelength periodic
arrays that have received widespread attention because they possess properties not found
in natural materials [1,2]. In 2008, Landy et al. first proposed a narrow-band perfect
metamaterial absorber, which is based on metal–insulator–metal (MIM) [3], demonstrating
that metamaterials can effectively absorb electromagnetic waves. Since then, the operating
region of the absorber has been extended from the microwave band to the visible [4],
infrared [5–8] and terahertz bands [9,10]. At the same time, various single-band [11],
dual-band [12], multi-band [13] broadband absorbers [14] have also been hot topics of
research. Especially, broadband absorbers have been extensively studied due to their
potential application in photovoltaic devices [15–17], communication [18,19], photoelectric
detection [20–23], solar Cell [24–26] and other areas [27]. In 2017, Dong Wu et al. proposed
a solar absorber consisting of tungsten spheres embedded in SiO2. In the wavelength
range of 435–1520 nm, the absorber can reach an average absorptivity of 99% and it is
polarization-independent [28]. In 2018, Dewang Huo et al. designed an absorber using TiN.
From 400 to 1500 nm, the absorber can attain an average of 99.6% absorption [29]. In 2019,
Wu Biao et al. proposed a Ti-Si-Ti trilayer-based structure with an absorption bandwidth of
1376 nm and a spectral average absorbance higher than 94% in the visible to near-infrared
band, and the absorber is polarization-independent and angle-insensitive [30]. In 2020,
Hailiang Li et al. used a cross-shaped structure composed of refractory metals Ti, TiN
and SiO2 to make a structure with an absorption bandwidth of 1182 nm, and the absorber
can absorb most of the solar energy [31]. In 2021, Shengxi Jiao et al. proposed a absorber
consisting of Ti-Al2O3-W. From 500 to 1800 nm, the absorber has an average absorption
of 94% [32]. From researchers’ studies above, we can find that metal nanostructures can
broaden the absorption spectra. However, the absorption bandwidth of these absorbers is
still limited, and it is necessary to broaden the bandwidth of the absorber further.
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In this paper, we proposed an ultra-broadband absorber composed of nano-rings
which is based on MIM structure, and studied theoretically the absorption properties of
the absorber by using the finite-difference time-domain (FDTD) method. The absorption
of the absorber can reach 94.84% in the wavelength range of 800–3000 nm. The proposed
absorber has a wider absorption bandwidth, insensitive to incidence angle, has a simple
structure and the manufacturing process of the structure is simple.

2. Structure and the Simulation Methods

Previous research has indicated that nano-rings can achieve broadband absorption,
and the average absorptivity can reach more than 90% [33]. So, in this paper, we designed
a new structure based on nano-rings to realize a much broader absorption range. The
structure of the proposed absorber is shown in Figure 1. One cell of the absorber is shown
in Figure 1a, comprising a top layer with four Cr nano-rings, a dielectric layer of Al2O3
and a bottom layer of W. The top view of the unit structure is shown in Figure 1b. The
four nano-rings are named ring 1, ring 2, ring 3 and ring 4. The structural parameters are
as follows: the thickness of the Cr nano-rings h1 = 200 nm, the thickness of Al2O3 h2 = 70
nm, the thickness of W h3 = 200 nm, the inner radius r1 = 130 nm and the outer radius
R1 = 240 nm for ring 1, the inner radius r2 = 60 nm and the outer radius R2 = 130 nm for
ring2, inner radius r3 = 70 nm and R3 = 150 nm for ring 3, the inner radius r4 = 80 nm and
outer radius R4 = 190 nm for ring 4, the distance between ring 1 and ring 2 d1 = 600 nm,
the distance between ring 1 and ring 3 d2 = 600 nm, the space period p = 1200 nm, and the
material properties of the above are referred to from Palik [34].
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Figure 1. (a) Structure diagram of one unit of absorber; (b) Top view of unit structure.

The absorption properties, electric and magnetic fields distribution of the absorber
are analyzed by using FDTD solution. The plane wave is incident vertically along the
z-axis direction [35]. The x and y directions are set as periodic boundary conditions. The
z direction is set as perfect matched layer (PML). Under oblique incidence, we choose the
Broadband Fixed Angle Source Technique (BFAST) mode. The absorption of the absorber
can be calculated by using the Equation (1) [36]:

A = 1− T(ω)− R(ω) (1)

where T(ω) represents transmission and R(ω) represents reflection, and R(ω) = |S11(ω)|2,
T(ω) = |S21(ω)|2, where S11 and S21 are the reflection and transmission coefficients of
the absorber, respectively. Since the thickness of W is 200 nm, which is sufficient to block
all transmissions in the operating wavelength range, the formula can be simplified as
A = 1− R(ω) = 1− |S11(ω)|2 [37].

3. Results and Discussion

The reflection spectrum, absorption spectrum and transmission spectrum of the ab-
sorber are displayed in Figure 2a. The average absorptivity of the absorber is 94.84% from
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800 to 3000 nm. There are five resonance peaks that can be seen from the spectra, which are
λ1 = 886 nm, λ2 = 1204 nm, λ3 = 1561 nm, λ4 = 2054 nm and λ5 = 2563 nm, with absorption
rates of 92.80%, 99.37%, 99.44%, 98.01% and 94.32%, respectively. The reflection spectra
of TE and TM polarization modes at normal incidence are shown in Figure 2b, where two
reflection spectra do not overlap, which is due to the fact that the absorber structural unit
is not completely symmetric. Moreover, in the wavelength range of 800–3000 nm, the
average absorptivity of the absorber for both TM and TE polarization states can reach 94%,
achieving broadband absorption in both polarization modes.
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In order to understand the physical mechanism of the ultra-broadband absorption,
at those five resonance peaks (λ1 = 886 nm, λ2 = 1204 nm, λ3 = 1561 nm, λ4 = 2054 nm
and λ5 = 2563 nm), the electric field distributions in the x–z and x–y planes are calculated
and given in Figures 3 and 4. As shown in Figure 3a,b at λ = 886 nm, the enhanced
electric field is mainly distributed at the interface of ring 2, ring 3, ring 4 and air, which
indicates that strong LSPR is generated, and abundant electrons concentrated surrounding
the Cr nano-rings, strengthening the electric field [38]. The principle of LSPR generation is
when the light incident on the nanostructures is composed of noble metals, if the incident
photon frequency suited the overall vibration frequency of metal nanostructures, the
nanostructures will have a strong absorption effect on the photon energy, and LSPR will
occur [39]. We can see from Figure 4a that there is a dipole resonance between ring 1 and
ring 2 (ring 3 and ring 4). When λ = 1203 nm, the electric field distributions of the absorber
are shown in Figure 3c,d and Figure 4b. It is obvious that the enhanced electric field is
mainly distributed at the interface of ring 1, ring 4 and air, as well as ring 2, ring 3 and
Al2O3. As shown in Figure 4b, we can also see the dipole resonance occurs between ring 1
and ring 2 (ring 3 and ring 4). While at the wavelengths of 1491 nm, 2054 nm and 2563 nm,
as shown in Figures 3e–j and 4c–e, LSPR is mainly distributed between the nano-rings and
the intermediate dielectric layer.
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Next, in order to further analyze the physical mechanisms of the absorber, we plotted
the magnetic distributions in the x–z plane at these five resonances peaks in Figure 5. As
shown in Figure 5a,b, the magnetic field at λ = 886 nm is concentrated in the dielectric
layer below the adjacent rings, indicating that LSPR is excited, and in Figure 5c,d, the
magnetic field at λ = 1204 nm is concentrated under ring 2 and ring 3, and the magnetic also
distributes below the adjacent rings, which indicates that ring 2, ring 3, ring 4 excite LSPR.
As shown in Figure 5e,f, at λ = 1561 nm, the magnetic field is mainly distributed under
ring 2, ring 3, and ring 4. Compared with Figure 5a,b, the magnetic field concentrated
in the dielectric layer below the adjacent rings is weakened, however, the magnetic field
under ring 2, ring 3, and ring 4 is enhanced, indicating two different ways of resonance.
As shown in Figure 5g,h, the magnetic field at λ = 2054 nm is mainly distributed under
ring 2 and ring 4, and a small portion of the magnetic field is distributed under ring 1.
Compared with Figure 5c,d, the magnetic field under ring 2, ring 4 is significantly enhanced.
In Figure 5i,j, at λ = 2563 nm, the magnetic field is mainly concentrated below ring 1 and
ring 4. Compared with Figure 5e–h, the magnetic field under nano-rings are significantly
enhanced. By the above analysis, the magnetic field distributions of these five resonance
peaks are different, indicating that every resonance peak has a different resonance way.
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In addition to the physical mechanism of the ultra-broadband absorption, the influence
of structural parameters on the absorption properties of broadband absorber is also studied.
Specifically, we studied how the absorption spectrum changes with the thickness of the
Cr nano-rings h1, the thickness of Al2O3 h2, the distance between ring 1 and ring 2 d1 and
the distance between ring 1 and ring 3 d2.

Figure 6a shows the effect of the distance d1 between ring 1 and ring 2 (ring 3 and
ring 4) on the absorption spectrum. It is obvious that the absorption spectra almost overlap
as d1 changes from 560 nm to 640 nm with a step of 20 nm. Similarly, Figure 6b shows
the effect of different distances d2 between ring 1 and ring 3 (ring 2 and ring 4) on the
absorption properties, which has the same trend as that in Figure 6a. This is due to the
fact that the distance between adjacent rings is large, which leads to weak coupling of
plasmon resonance, so the spectral shift is not obvious with the change of d1 and d2. Next,
we demonstrated the effect of h1, h2 on the absorption properties of the absorber. When h1
increases from 180 nm to 220 nm in steps of 10 nm, the absorption spectrum is shown in
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Figure 6c. From the figure, we can see the average absorptivity of the absorber does not
change much. In other words, h1 has little influence on the absorption properties. Figure 6d
illustrates the absorption spectra whereas h2 increases from 60 to 80 nm. It can be found
that the average absorption rate of the absorber increases first, reaches the maximum for
the absorber when h2 = 70 nm, and then decreases. By optimizing the parameters, the
average absorption rate of the absorber can be maximized, when d1 = 600 nm, d2 = 600 nm,
h1 = 200 nm, h2 = 70 nm.
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As different metal materials’ plasma and collision frequencies are different, the ab-
sorption performance of the absorber will also different. Therefore, we selected four metal
materials, respectively, silver (Ag), tungsten (W), titanium (Ti) and chromium (Cr), to study
absorption performance of the absorber. Figure 7a shows the absorption spectra with these
metal materials. From 800 to 3000 nm, we can clearly see that the average absorption rate
of the absorber is very low when the top metal is Ag, W and Ti, and the resonance bands of
Ag and W are single, which cannot achieve continuous broadband absorption. When the
top metal is Ti, the absorber has a broader bandwidth, but it cannot achieve continuous
high absorption (above 90%) in the work wavelength of the absorber. However, compared
with other metals, when the top layer was chosen as Cr, the average absorption rate can
reach the highest. In addition, the refractive index imaginary part of Cr is large, which
makes Cr show strong light absorption [40], and it also has a higher melting point and
lower price which makes it the most optimal top metal for the absorber. Next, we analyzed
the influence of the different intermediate media layer on the absorber. Figure 7b shows the
absorption spectra versus SiO2 and Al2O3. The absorption spectrum for Al2O3 shows wider
absorption bandwidth and higher average absorption rate in the working wavelength than
SiO2. This demonstrates that the dielectric layer with different refractive index (n) can
influence the optical properties of the absorber. In this study, Al2O3 is recognized as the
dielectric material for its higher average absorption rate.
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In addition, an ideal broadband absorber should be able to operate at a wide range of
oblique incidence angles. Therefore, we studied the effect of different oblique incidence
angle on the absorption performance of the absorber. We can see from Figure 8a,b, when
the oblique incidence angles increase from 0◦ to 30◦ under the TE and TM polarization,
from 800 to 3000 nm, the average absorption rate of the absorber can still reach more than
90%, which indicates the absorber is insensitive to incident angle.
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For comparison, the absorption properties of our design and reported similar absorber
are list in Table 1. It can be found that, compared with the other absorber, the proposed
absorber has wider absorption band.

Table 1. Comparisons of the designed absorber with previous absorbers.

References Materials Used Pattern Absorption Band (>90%) (nm)

[28] TiN, Al2O3 Cone 400–1500 (1100)
[29] Ti, SiO2 Elliptical 456–1832 (1376)
[41] Ti, SiO2, Au Circular 900–1825 (925)
[32] W, Al2O3, Ti Elliptical 500–1800 (1300)
[42] TiN, TiO2 Circular 316–1426 (1110)
proposed Cr, Al2O3, W Ring 800–3000 (2200)
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In order to facilitate the production of the proposed absorber later. The proposed
preparation method is as follows: the dielectric layer of Al2O3 can be formed on W substrate
by thermal evaporation. Next, nano-rings masks with the same structure as proposed are
made, placed on a 200 nm thick photoresist, etched with standard photolithography, then
coated with Cr by thermal evaporation, and finally, the excess photoresist rinsed off [43].

4. Conclusions

In summary, we designed an ultra-broadband absorber composed of Cr, Al2O3 and
W. The results show that the absorber has an average absorptivity of 94.84% in the wave-
length range of 800–3000 nm, and the ultra-broadband absorption originates from LSPR.
Moreover, the absorber is insensitive to incident angle. When the incident angle reaches
30◦, the absorptivity is still more than 90%. The proposed absorber has a wider absorption
bandwidth and great prospects for applications in infrared detection and optical imaging.
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