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Abstract: The electronic structure of 7/9-AGNR superlattices with up to eight unit cells has been
studied by means of state-of-the-art Density Functional Theory (DFT) and also by two model Hamil-
tonians, the first one including only local interactions (Hubbard model, Hu) while the second one is
extended to allow long-range Coulomb interactions (Pariser, Parr and Pople model, PPP). Both are
solved within mean field approximation. At this approximation level, our calculations show that
7/9 interfaces are better described by spin non-polarized solutions than by spin-polarized wavefunc-
tions. Consequently, both Hu and PPP Hamiltonians lead to electronic structures characterized by a
gap at the Fermi level that diminishes as the size of the system increases. DFT results show similar
trends although a detailed analysis of the density of states around the Fermi level shows quantitative
differences with both Hu and PPP models. Before improving model Hamiltonians, we interpret
the electronic structure obtained by DFT in terms of bands of topological states: topological states
localized at the system edges and extended bulk topological states that interact between them due
to the long-range Coulomb terms of Hamiltonian. After careful analysis of the interaction among
topological states, we find that the discrepancy between ab initio and model Hamiltonians can be
resolved considering a screened long-range interaction that is implemented by adding an exponential
cutoff to the interaction term of the PPP model. In this way, an adjusted cutoff distance λ = 2 allows
a good recovery of DFT results. In view of this, we conclude that the correct description of the density
of states around the Fermi level (Dirac point) needs the inclusion of long-range interactions well
beyond the Hubbard model but not completely unscreened as is the case for the PPP model.

Keywords: graphene; nano-ribbons; long-range effects

1. Introduction

Since its rediscovery in 2004 and isolation and investigation by a Manchester team
(very particularly by A.K. Geim and K.S. Novoselov, see Refs. [1,2]) graphene is offering
physicists and chemists an ever larger and richer field to test the body of knowledge
developed by researchers during the last one hundred years. Graphene, besides the
expectations regarding technological applications, is defying the community of condensed
matter physicists up to limits by no means anticipated [3]. Almost all experimental and
theoretical tools developed in that period are finding a place in the flourishing field of
graphene. Starting from its Dirac character at energies near the Fermi level, the novel
superconductivity observed in twisted bi-layers [3,4] along with zero-width bands which
suggests the high relevance of electron–electron interaction in defining what points to be
non-BCS superconductivity, as in high-temperature superconductors.

Changes in the chemical potential and a rearrangement of the low-energy excitations
at each integer filling of the Moiré flat bands are being identified. These spectroscopic
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features are a direct consequence of Coulomb interactions, which split the degenerate flat
bands into Hubbard sub-bands. The cascade of transitions reported up to now charac-
terizes the correlated high-temperature parent phase from which various insulating and
superconducting ground-state phases emerge at low temperatures in MATBG [5,6]. Af-
ter the discovery of these effects in twisted layered samples, experimental and theoretical
efforts are being addressed to characterize the samples trying to find out how this behavior
depends on filling, the number of layers and the twisting angle, the three variables that
seem to be crucial. The story, however, seems to be at the beginning, as recent experimental
work clearly indicates that there is no need to twist the layered sample [3] to produce the
superconductivity and other effects similar to those observed in twisted samples.

The first evidence of topological states in junctions of arm-chair graphene nanoribbons
(AGNR) of different width grown on Au(111) surfaces were reported in 2018 [7,8]. It was
also shown that these states can be described following a tight-binding model proposed
by Su, Schrieffer and Heeger (SSH) [8–10]. Combining theoretical analyses with already
developed bottom-up techniques they were able to produce and characterize graphene
samples with and without topological defects. Taking as a unit cell the junction 7/9-AGNR,
they studied various configurations ranging from an isolated 7–9 junction up to an infinite
linear arrangement of 7–9 units (See Figure 1 as an example containing four 7–9 junctions).
They chose the 7–9 unit because one of the two possible ways to join the two ribbons (just
the one shown in Figure 1) hosts an electronic topological state. Analysis of the effect
of interactions on these 7/9-AGNR superlattices deposited on Au(111) surfaces was also
conducted in the context of the Hu model [11].

Figure 1. Schematic representation of the 7/9-AGNR with two unit cells (we call this cluster C2).

In this work, we focus on the effects of long-range electronic interactions on the
coupling between topological states raised on free-standing 7/9-AGNRs superlattices.
More concretely, we consider finite 7/9-AGNR superlattices (as the own shown in Figure 1)
that are known to show topological defects at each 7–9 interface. Extensive calculations
of the electronic structure of 7/9-AGNR superlattices with up to eight unit cells using
PPP [12,13], Hu [14] (specifically, just to check the local limit of the previous model) and
B3LYP DFT [15–18] schemes have been undertaken. Although the band analysis can
be performed from a periodic system calculation, we work with finite systems, which
facilitate the analysis of molecular orbitals and edge effects. From the comparison of the
calculated density of states (DOS) around the Fermi level, the need to improve the long-
range interactions of the approximate PPP model Hamiltonian arises. We have been able to
propose a model of topological first-neighbors interacting states that correctly describes the
DOS in the neighborhood of the Fermi level. Using this simplified model, the electronic
structure of much larger systems can be precisely obtained.

2. Computational Methods

The Hamiltonians we shall use are the B3LYP ab initio DFT and the Pariser, Parr and
Pople (PPP). Both methods incorporate short and long-range electron–electron interaction
and were handled within the restricted or unrestricted approximations that have been in-
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tensively applied to investigate the electronic structure of polycyclic aromatic hydrocarbon
(PAH) [19].

DFT calculations were carried out using the B3LYP exchange-correlation functional [15–18]
and the basis set 6-31G* [20,21], using the Gaussian-16 computational package [22]. All
geometries have been optimized at B3LYP/6-31G* level. Polarized solutions are obtained
using the unrestricted approximation of both methods, which provide solutions with
Sz = 0 and < S >> 0. In place, non-polarized solutions are calculated using the restricted
approximation of both methods which provides solutions with Sz = 0 and S = 0. The
densities of states (DOS) were calculated either by means of Green functions (PPP) or with
Gaussian-16 and with the help of GaussSum [23] and Multiwfn [24] programs. We use an
artificial Gaussian broadening function, a half-width of 0.05 eV and the Mülliken method
to calculate the partial DOS (PDOS).

The PPP model Hamiltonian contains, besides the standard kinetic energy, both local
on-site and long-range Coulomb interactions and a single π orbital per carbon atom.
The non-interacting term incorporates two standard parameters, the orbital energy ϵ0 and
the hopping between nearest-neighbor pairs tij, namely,

Ĥ0 = ϵ0 ∑
i=1,N;σ

ĉ†
iσ ĉiσ + ∑

<ij>;σ
tij ĉ†

iσ ĉjσ , (1)

where the operator ĉ†
iσ creates an electron at site i with spin σ, N is the number of orbitals

and tij is the hopping between nearest-neighbor pairs <ij>.
In cases where the distance dij between nearest neighbor pairs significantly deviates

from the standard value, d0 = 1.41 Å, due, for instance, to defects or impurities, the hopping
parameter may be scaled using the following scaling law adequate for π orbital [25] namely,

tij =

(
d0

dij

)3

. (2)

Regarding the values of the model parameters, we use the well-tested set reported in
Ref. [26].

Within the Hartree–Fock approximation (HF), the interacting term of the PPP Hamil-
tonian is approximated by:

ĤHF
I−PPP = U ∑

i=1,N;σ

(
n̂iσ⟨n̂iσ⟩ −

1
2
⟨n̂iσ⟩⟨n̂iσ⟩

)

−1
2 ∑

i ̸=j
Vij

(
⟨n̂i⟩⟨n̂j⟩ − ∑

σ

⟨ĉ†
iσ ĉjσ⟩⟨ĉ†

iσ ĉjσ⟩ − 1

)

+∑
i ̸=j

Vij

(
n̂i⟨n̂j⟩ − ∑

σ

ĉ†
iσ ĉjσ⟨ĉ†

iσ ĉjσ⟩
)

. (3)

Here, n̂i = ∑
σ

n̂iσ and n̂iσ is the occupation number in the site i with spin σ. The first line

of this equation is the HF version of the Hubbard Hamiltonian (Hu), which only retains
local interactions. It is interesting to note the presence of non-diagonal terms in the third
parenthesis of the last equation. These terms introduce frustration in non-frustrated lattices.
This is surely the reason why the staggered polarization in the polarized configuration is
always smaller in the PPP than in the Hu model.

In incorporating the interaction Vij in the PPP model, one may choose the unscreened
Coulomb interaction [27] although it is a common practice to use interpolating formulae.
In the case of PAHs, that proposed by Ohno [28] has wide acceptance. We use that formula,
modified to incorporate a parameter λ that allows us to control the extent of the long-range
interactions. When 1

λ → 0 the unscreened Coulomb interaction is recovered:
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Vij = Ue−
dij
λ

[
1 +

(Udij

e2

)2
]−1/2

, (4)

where U = 8.36 eV, dij is the distance between i and j atoms, in Angstroms and e is the
electron charge. The parameter λ will be fixed in order to better reproduce ab initio DFT
results with the PPP model.

Supercells containing 2, 4, 6 and 8 unit cells were in most cases used to illustrate our
findings (see Figure 1 for a schematic representation of the unit cell). Other geometries
were occasionally used to reinforce a given argument. Geometries were optimized for non-
polarized wavefunctions at the B3LYP/6-31G* level. Optimized geometries do not differ
much from the bulk geometry of graphene and depend on the number of cells considered,
as seen in Table 1, where d1 and d2 are the lengths of the ribbons having widths 7 and
9, respectively.

Table 1. Geometrical structure of 7/9-AGNR superlattices with 2, 3, 4, 6 and 8 Cn)) unit cells calculated
by means of DFT. In addition, results for the energies (ε) of HOMO and LUMO (in Hartrees) and the
gap (in eV), are reported.

C2: 192 C’s C3: 288 C’s C4: 384 C’s C6: 576 C’s C8: 768 C’s

d1 (nm) 1.285 1.284 1.284 1.284 1.284
d2 (nm) 1.295 1.293 1.293 1.293 1.293
εHOMO −0.13783 −0.1333 −0.13234 −0.13198 −0.13187
εLUMO −0.12441 −0.1294 −0.13065 −0.13112 −0.13126
Gap 0.365 0.107 0.046 0.023 0.017

3. Results and Discussion
3.1. Checking Computational Approach

To guarantee the robustness of our results, four combinations of exchange-correlation
functional/basis sets were investigated. Specifically, an alternative PBEPBE [29] functional
and an extended 6-311G* [30] basis set were considered. Results are shown in Table 2.

Table 2. Several properties of 7/9-AGNR superlattice C2, calculated by means of DFT, using two
different functionals and two Gaussian basis sets. All energies are in Hartrees, except the gap which
is given in eV. See Figure 1 for d1 and d2 definitions.

B3LYP/6-31G* PBE/6-31G* B3LYP/6-311G* PBE/6-311G*

d1 (nm) 1.2845 1.2803 1.2828 1.2784
d2 (nm) 1.2947 1.2903 1.2929 1.2883
εHOMO −0.13783 −0.14419 −0.14661 −0.15097
εLUMO −0.12441 −0.12801 −0.13396 −0.13557
Gap 0.365 0.440 0.344 0.419
ESCF −7350.247114 −7342.011956 −7351.563136 −7343.186493

In the context of the present work, the most interesting property is the forbidden
gap. The results for four combinations of functional/basis sets are all within the range
0.344–0.440 eV. We guess that other sources of errors are more important than this difference.
Therefore, from this point on, the DFT calculations carried out in this work have been
conducted with the B3LYP/6-31G* choice. The relevance of solutions with polarization
versus those non-polarized, as well as the variation of the gap when the 7/9 interfaces are
formed or not has been analyzed for the case of two unit cells and their equivalents without
interfaces (7/7 and 9/9). Their spin densities are shown in Figure 2. Table 3 summarizes
our results.
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Table 3. Forbidden gap of ribbon C2 with and without polarization. The calculations were carried
out with B3LYP/6-31G* and the geometry of the non-polarized AGNR. For the sake of comparison,
results for ribbons without topological defects are also shown. All energies are in Hartrees, except the
gap which is given in eV.

7/9-AGRN Without Defect 7/7 Without Defect 9/9
Non-Polarized Polarized Non-Polarized Polarized Non-Polarized Polarized

EB3LYP −7350.24711 −7350.25368 −6435.41973 −6435.44606 −8266.25259 −8266.28214
εHOMO −0.13783 −0.14645 −0.13097 −0.15643 −0.13254 −0.16135
εLUMO −0.12441 −0.11571 −0.12859 −0.10275 −0.13032 −0.10104
Gap 0.365 0.836 0.065 1.460 0.060 1.640

∆EPol−NoPol 0.0066 0.0263 0.0295

It is clear that our calculations indicate that polarized solutions are more stable (see
Table 3) but the difference in stability with the non-polarized solutions is much smaller
when topological defects (7/9 interfaces) are present. This suggests that topological defects
tend to stabilize these solutions even at the DFT level. Also, polarized solutions, in general,
exhibit larger gaps due to an overestimation of exchange in the mean field solutions.

Therefore, hereafter as the number of cells increases, we shall focus on non-polarized
DFT solutions, which preserve S = 0 and provide a more adequate description of energies
next to the Fermi level. Likewise, the polarized defect-free solutions show a much larger
gap than solutions for the 7/9-AGNR system. Meanwhile, the non-polarized solutions
for 7/7 and 9/9 hardly show any gap; 7/9-AGNR shows a moderate gap (see Table 3).
However, we will show below that this gap closes when the size is increased.

Figure 2. Spin density of th e polarized solutions of 7/9, 7/7 and 9/9 AGNRs.

3.2. Characterizing Edge and Topological States

In order to study the effect of topological states rising up in the frontiers of 7/9-AGNR
superlattices, we calculate the partial density of states (PDOS) in the vicinity of the Fermi
level spatially discriminating the unit cells of the sample. Summing up all these PDOS
gives the total DOS of the system. Figure 3 shows PDOS for superstructures C1 to C8. Note,
that C1, the unit cell, includes 96 atoms. Partial densities of states for different C’s were
obtained by adding up the local density of states corresponding to each unit cell (a layer
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with 96 atoms) and its symmetrical relative to the center of the sample. Therefore, the red
curves in Figure 3 give the PDOS for the first cell in the sample and it is symmetrical (the
last unit cell). Blue curves give the PDOS for the second cell and it is symmetrical. Green
curves for the third cell and it is symmetrical and the orange curve for the fourth cell and it
is symmetrical.

Figure 3. Spatially decomposed density of states of 7/9-AGNR superlattices with one to eight unit
cells (C1–C8) calculated by means of B3LYP/6-31G* method. Partial densities of states (PDOS) were
obtained by adding up the local density of states on symmetrical Cs in contiguous layers of 96 atoms
(1–96, . . . , 289–384). For C1 to C4 the eigenvalues are shown with a dark green dotted line. Results
are given in the energy region where topological states show up, that is, between −4.8 and −2.4 eV
(the Fermi level is approximately at −3.6 eV).

We have three localized states corresponding to topological edge states, one just
at, one below and one above the Fermi level (red lines in the figure), which would be
modeled as a three-initially degenerated level system at the Fermi level with an effective
coupling between them that breaks the degeneracy. In addition, we have two broader
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bands, below and above the Fermi level, corresponding to topological bulk states. No gap
is present for the larger systems.

It is worth discussing in detail how the DOS around the Fermi level evolves with size.
For this purpose, we will use a tight-binding model consisting of localized states around
7/9 frontiers (topological states) plus one more localized state at each of the system ends.
The existence of localized states at the end of some GNR segments and at the junction
between two GNRs was already proposed based on a topological analysis [31,32]. We start
with the smallest superstructure C1. Although it is a special case because the ends of the
system are relatively close to each other, it is useful to describe it within the kinds of ideas
that will later be used to analyze larger sizes. A unit cell contains two 7/9 frontiers and
two edges. There are four states, two coming from the edge states, and two from states
localized at the frontiers, which are split by interactions amongst them due to the long-range
term of the Coulomb interaction, raising the four peaks seen in the first panel of Figure 3.
Two peaks correspond to states that are localized at edges (at Fermi level ±1.1 eV) and two
more that are localized around the 7/9 interfaces and appear closer to the Fermi level.

Going back to the results of Figure 3, we apply the same scheme to analyze C2. This
superstructure contains two unit cells, each one with two topological states, and each one
now brings only one edge state. So, we have six states that split into pairs below and
above the Fermi level. The pair of peaks far away from the Fermi level correspond to states
more localized at the edges of the sample so we call them edge states. Next, there are
two pairs of peaks, the first corresponding to states more localized at the first 7/9 frontier
and the pair of states closer to the Fermi level correspond to states localized around the
two internal frontiers of C2. The structure of peaks (red peaks in all panels) that rise from
it will stay for larger samples. In larger samples, it represents the DOS corresponding
to the edge units of the sample. However, the edge units will become less interacting as
the sample becomes larger, and then the peaks associated with it evolve to a three peaks
structure, doubly degenerated, one at the Fermi level and two additional peaks, one below
and another above it, like two isolated three sites open chain. We suggest that these peaks
correspond to topological edge states. From C3 to C8, the peak features around −4.5 and
−2.6 eV can be separated in pieces by the location of the states in the sample following the
same ideas. For C3 we have three unit cells. Therefore, we will see two edge units, that
provide the red peaks. In addition, we have two topological states in the central unit, which
gives the blue peaks. These two states are split by interactions between them and with edge
units. We call these states topological bulk states (See Figure 4). For C4, the peaks coming
from the edge units close to the Fermi level are already merged in only one peak at the
Fermi level because of the weakness of the interaction they suffer. Therefore, it will be so
for larger strips. Now we have four topological bulk states at the two central units. These
four topological bulk states can be described as a two-site chain, and each site represents a
unit with two interacting levels. This corresponds to the four split blue peaks around the
Fermi level. The characteristics of the molecular orbitals close to the Fermi level will help
present an analysis of the local densities of states. DFT results for the five HOMO of higher
energy in C4 are depicted in Figure 5. All of them contribute to different peaks of the PDOS.
The fourth (HOMO-3) and fifth state (HOMO-4) are clearly edge states that correspond to
the red peak in Figure 3 with energy around −4.5. The first state (HOMO-0) corresponds
also to an edge state with energy around the Fermi level (−3.6, red peak). The second and
third states (HOMO-1 and HOMO-2) correspond to blue peaks with energy around −4.2,
which are bulk states. For C6 and C8 the analysis follows the same way. The edge states,
red lines, remain almost unchanged in C6 (C8). Now, we have more central units that can
be modeled like a tight-binding chain with two-level sites that provide the peaks of blue,
green and orange. The results for C8 compare qualitatively well with results shown in [7]
for a similar superlattice grown on gold. Nevertheless, in our free-standing system, bands
are broader and localized peaks become separated.
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Figure 4. Schematic representation of topological bulk states localized at the internal boundaries of a
unit cell in the bulk. When further cells are added to the system, an extended chain with two levels
per unit cell is obtained.

Figure 5. Higher occupied molecular orbitals obtained for a C4 superlattice containing four unit cells.
First, fourth and fifth molecular orbitals are border states produced by the coupling of the edge state
with the two topological states at cluster ends, while second and third molecular orbitals appear from
the coupling of pure topological states at the central units. In brackets, their energy.

3.3. Tight-Binding Model for Localized States

A tight-binding scheme has been employed in the previous subsection to analyze
ab initio DFT results. Here, the whole simple model describing topological states will be
given, following the idea of SSH model [8,9]. In our model, superlattices present two states
T1 and T2 in bulk cells (see Figure 6) and three states B, T1 and T2 at both system ends.
The energy of all these states is the same ϵ0 = EF and they interact only with their first
neighbors (in fact, as stated below, the correct description of DOS using PPP requires the
screening of the Coulomb interaction up to distances of the order of a lattice parameter). In
order to reproduce the results of Figure 3, we take t0 = 0.7 eV, t = 0.6 eV and t1 = 0.3 eV.
Figure 7 shows results for the total DOS corresponding to C2 − C8 superlattices as it is
obtained using this tight-binding description of localized states. Also, we plot the weights
of the molecular orbitals in the tight binding model in order to compare them with results
shown in Figure 5 for the C4 superlattice (See Figure 8). Black circles and blue squares
correspond to states in the border with energies around −4.5 and −3.6 like HOMO-4 or
HOMO-3 and HOMO-0 in Figure 5. Red circles and green squares correspond to states in
the bulk with energies around −4.1 and −4.2, like HOMO-2 and HOMO-1 in Figure 5.
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Figure 6. Tight-binding model for topological states. 1 is the unit cell at the borders of the sample. It
contains three levels, one due to the border (B) and two due to the 7/9 frontiers (T1) and (T2). 2 is a
bulk cell that contains only (T1) and (T2) states. t0, t and t1 are the couplings between them.

Figure 7. Black lines show the total DOS for superlattices C1 to C8, calculated using the topological
tight-binding model with t0 = 0.7 eV, t = 0.6 eV and t1 = 0.3 eV. Red lines show the total DOS
obtained for the same systems using DFT.
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The limit of DOS for larger superlattices can be obtained using the topological tight-
binding model. Figure 9 shows the DOS for a C54 superlattice, where the bands of topolog-
ical states are clearly developed.

Figure 8. Molecular states of the tight binding model of topological states for C4. It has ten states.
t0 = 0.7 eV, t = 0.6 eV and t1 = 0.3 eV. See explanation in Section 3.3

Figure 9. Total DOS for a C54 superlattice, calculated using the topological tight-binding model with
t0 = 0.7 eV, t = 0.6 eV and t1 = 0.3 eV.
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3.4. A Screened PPP Model

It is interesting to wonder if this picture can be supported by the PPP model, mainly
concerning the electronic structure near to the Fermi level. Table 4 and Figure 10 shows
the forbidden gap obtained with PPP. We include, for completeness, results for polarized
solutions also, but we will focus finally on non-polarized solutions.

Table 4. Forbidden gap of 7/9-AGNR superlattice containing 1, 2, 4 and 8 unit cells (see Figure 1)
as calculated by solving the PPP and Hu Hamiltonians within the unrestricted approximation.
Calculations for polarized and non-polarized configurations were conducted. All results in eV.

Gap (eV) EUHF (eV)
Non-Polarized Polarised Non-Polarized Polarised

Nc PPP Hu PPP Hu PPP Hu PPP Hu

C1 3.616 0.597 * 4.893 −1037.562 −894.092 * −906.222
C2 2.085 0.173 3.035 4.841 −2078.726 −1792.47 −2079.175 −1815.905
C4 1.567 0.041 2.970 4.824 −4161.08 −3589.361 −4162.539 −3635.361
C8 0.088 0.003 3.069 4.819 −8092.643 −7183.256 −8095.469 −7273.997

* Non-existent.

Figure 10. Forbidden gap of 7/9-AGNR superlattice vs the number of unit cells C1, C2, C4, C8.
The results correspond to unrestricted non-polarized solutions of the PPP Hamiltonian including or
not the long-range interaction (black and red circles, respectively) using a standard non-optimized
geometry for the superlattice. Some results obtained by using the DFT-optimized geometry of
previous calculations (green rhombus) are also shown.

Let us compare the Hu and PPP model Hamiltonians. The main features of our results
are as follows: (i) The Hu model and non-polarized solutions lead to small gaps for any
size, a result which is in line with DFT results. (ii) The PPP model produces slightly larger
gaps, but they also tend to zero as size of the system increases. (iii) Polarized solutions
show a large gap in any case.

In principle, both Hu or PPP models lead to zero gaps for non-polarized solutions as
the size is increased. However, as Figure 11 shows, important differences relative to DFT
results arise. The Figure shows the variation of TDOS using PPP (red line) and Hu (black
line) models for C2 and C4 structures. Although the Hu interaction gives the DFT result
correctly at the Fermi level (a small gap for C2 and a peak for C4) around the Fermi level
the description is not that similar because it has a larger density of states than DFT. For the
PPP model, we obtain a much larger gap. Both facts are due to the incorrect representation
of the interaction between topological states coming from both models. Local interaction
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underestimates it and non-local interaction overestimates it. To improve these results,
we use the Vi,j screened potential, adjusting the λ factor. We have found that choosing
λ = 2 Å produces results that are qualitatively similar to DFT results (green line in the
figure). This screened interaction potential seems to represent more accurately the physics
of these strips. It is also consistent with the tight-binding model for topological states.

Figure 11. TDOS of 7/9-AGNR superlattice with 2 and 4 unit cells (C2 and C4), described by the Hu
model (black line), the PPP model (red line) and the exponentially screened PPP model (green line).

4. Final Remarks

The data presented in this work support the following conclusions and remarks:

(1) The combination of model Hamiltonian (Hu and PPP) calculations and ab initio
DFT allows for the identification of the effective range of electronic interactions in
free-standing 7/9-AGNR superlattices. In order to modulate the decay of the electron–
electron interaction, an exponential cutoff has been used. The inclusion of the λ
parameter is a crucial step for improving the agreement between PPP and DFT results,
particularly concerning the description of DOS around the Fermi level. We find that
λ = 2 Å, a value that is somewhat larger than the parameter lattice, improves the
resemblance between PPP and DFT DOS. Neither Hu nor unscreened long-range PPP
models seem to be appropriate for the inclusion of interactions in these systems.

(2) We have given a plausible route for the evolution of the system density of states in
going from the smallest C1 up to the largest superlattice C8. Localized states at 7/9
junctions evolve developing two kinds of states: three border states at each system
end corresponding to three peaks in DOS at energies around −4.5, E f = −3.6 and
−2.5 (more precisely, they come from a combination of one pure border state and two
topological states in the border unit cell) and bulk states that form two bands, one
between −4.5 and E f and a symmetric second one that lies above E f (they are linear
combinations of topological states originated at 7/9 junctions). All these features can
be described by a tight-binding model of two levels per unit cell, except at the border
unit cells where there are three states. The tight-binding model allows the precise
calculation of the DOS of very large superlattices that are beyond the capability of
ab initio methods.
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(3) Our results for free-standing nanoribbons compare qualitatively well with previous
results of similar systems deposited on Au (111) surfaces. Finite range interactions
imply a renormalization of bandwidths and separations between peaks.

(4) We guess that the screened PPP model can be successfully employed in a large
variety of geometric variations of defective free-standing nanoribbons allowing a
quick exploration of new systems.
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