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Abstract: In this study, a Y2O3 insulator was fabricated via the sol–gel process and the effect of precur-
sors and annealing processes on its electrical performance was studied. Yttrium(III) acetate hydrate,
yttrium(III) nitrate tetrahydrate, yttrium isopropoxide oxide, and yttrium(III) tris (isopropoxide) were
used as precursors, and UV/ozone treatment and high-temperature annealing were performed to
obtain Y2O3 films from the precursors. The structure and surface morphologies of the films were
characterized via grazing-incidence X-ray diffraction and scanning probe microscopy. Chemical
component analysis was performed via X-ray spectroscopy. Electrical insulator characteristics were
analyzed based on current density versus electrical field data and frequency-dependent dielectric
constants. The Y2O3 films fabricated using the acetate precursor and subjected to the UV/ozone
treatment showed a uniform and flat surface morphology with the lowest number of oxygen vacancy
defects and unwanted byproducts. The corresponding fabricated capacitors showed the lowest
current density (Jg) value of 10−8 A/cm2 at 1 MV/cm and a stable dielectric constant in a frequency
range of 20 Hz–100 KHz. At 20 Hz, the dielectric constant was 12.28, which decreased to 10.5 at 105 Hz.
The results indicate that high-quality, high-k insulators can be fabricated for flexible electronics using
suitable precursors and the suggested low-temperature fabrication methods.

Keywords: sol–gel method; Y2O3; RRAM; gelation; UV/ozone

1. Introduction

Flexible electronics overcome the mechanical issues of conventional rigid electronics;
therefore, they are crucial for next-generation devices. They undergo deformation and
are thin, economical, and bio-implantable. Therefore, they have wide applicability, such
as in textiles, wearable sensors used to monitor health and detect bio-signals, rollable or
flexible displays, and flexible solar cells and piezoelectric energy harvesting systems used
to efficiently harvest energy [1–6].

These devices are fabricated using functional materials such as conductive polymers,
organic semiconductor, and amorphous silicon (Si) [5,6]. However, the thermal and chem-
ical instabilities of conductive polymers and organic semiconductors are unsuitable for
fabricating complementary metal-oxide semiconductor (CMOS) devices. Devices fabri-
cated using amorphous Si show poor performance. Therefore, metal oxides with higher
mobility, transmittance, thermal stability, and process compatibility are used for fabricating
CMOS devices. Metal oxides can be used to fabricate various devices such as conductors,
semiconductors, and insulators [7–13]. Dielectric materials are used as electrical insula-
tors as they are poor conductors of electricity. They are critical components in electronic
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devices, including transistors, resistive switching memory devices, ferroelectric memory de-
vices, neuromorphic devices, and conventional data-storage devices such as flash memory
devices [9–11,14–17].

High-quality functional metal-oxide devices, such as electrodes, semiconductors, and
insulators, are fabricated by the sol–gel process using a liquid-phase solution. This prepared
liquid-phase ink is used for spin coating, screening, and printing for large-area applications
at low cost and shorter processing times, without requiring high vacuum conditions [18,19].
However, high-temperature annealing must be performed to obtain metal oxides from
precursors at annealing temperatures higher than the deformation temperature of plastic
substrates [14–19]. Thus, depositing high-quality metal oxides on plastic substrates for
flexible electronics is difficult.

Herein, Y2O3 insulators were fabricated via the sol–gel process assisted by the ul-
traviolet (UV)/ozone treatment instead of high-temperature annealing. The UV/ozone
treatment successfully eliminated unwanted products and suppressed the formation of
oxygen vacancies, which can cause large variations in dielectric constants. In the sol–gel
system, the fast gelation leads to the formation of network chains and makes it hard to
form the uniform and flat films. Among different used precursors, the acetate precursor
delayed gelation and yielded a uniform and flat Y2O3 layer on the substrate. Indium tin
oxide (ITO)/Y2O3/Au capacitors were also fabricated on glass substrates using the acetate
precursor and UV/ozone-treatment-assisted photochemical annealing below 200 ◦C. These
capacitors had the lowest current density (Jg) of 10−8 A/cm2 at 1 MV/cm and stable di-
electric constant at 20 Hz–100 KHz. At 20 Hz, the dielectric constant was 12.28, which
decreased to 10.5 at 105 Hz. These results indicate that high-quality, high-k insulators can
be fabricated for flexible electronics using appropriate precursors and low-temperature
fabrication methods.

2. Materials and Methods

Yttrium(III) acetate hydrate, yttrium(III) nitrate tetrahydrate, yttrium isopropoxide
oxide, and yttrium(III) tris (isopropoxide) were used as precursors and purchased from
Sigma-Aldrich. These precursors were separately dissolved in 5 mL of 2-methoxymethanol
(Aldrich, St. Louis, MO, USA, 99.9%) with a concentration of 0.20 M. Then, 0.1 mL of
ethanolamine was added as a stabilizer to each solution, followed by sonication for 10 min
for complete mixing. The electrical characteristics of insulator layers were tested by fabricat-
ing ITO/Y2O3/Au capacitors. A glass substrate coated with ITO (Aldrich) was sonicated in
acetone and deionized water for 10 min to remove any undesirable residues. The remaining
impurities were removed using a nitrogen (N2) blower. The substrates were then optically
cleaned for 1 h using an UV/ozone lamp to improve their hydrophilicity and remove
organic pollutants.

The completely mixed Y2O3 solutions were then spin coated on the ITO surface at a
rate of 500 rpm for 5 s and 3000 rpm for 90 s. Subsequently, the substrates were soft-dried
on a hot plate at 120 ◦C for 10 min. To increase the film thickness and evaporate the solvent,
the substrates were baked on a hot plate at 200 ◦C for 1 min, and the coating process was
repeated. Each film was annealed under three conditions: UV/ozone irradiation for 3 h
at 25 ◦C (wavelength: 254 nm; photon flux density: 16 mW/cm2; SEN Lights SSP16-110),
annealing at 400 ◦C for 1 h, and annealing at 500 ◦C for 1 h on a hot plate in air. Finally,
a 50 nm thick Au layer was deposited via thermal evaporation onto the annealed films
and used as the electrode. Hereinafter, yttrium(III) acetate hydrate and yttrium(III) nitrate
tetrahydrate are referred to as acetate and nitrate, respectively. The Y2O3 films prepared
from acetate and nitrate and annealed under UV/ozone irradiation or at 400 ◦C and 500 ◦C
are referred to as acetate-UV, nitrate-UV, acetate-400, and acetate-500, respectively.

The structural characteristics and crystallinity of the films were analyzed via grazing-
incidence X-ray diffraction (GIXRD; X’pert Pro, PANalytical, Almelo, The Netherlands)
with an incidence angle of 0.3◦ and a Cu Kα radiation wavelength of 1.54 Å. Their surface
morphologies were analyzed via scanning probe microscopy (SPM; NX20, Park Systems,
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Santa Clara, CA, USA) and thicknesses and surfaces were analyzed via field-emission
scanning electron microscopy (FE-SEM; SU8220, Hitachi, Tokyo, Japan). X-ray photoelec-
tron spectroscopy (XPS; Nexsa, ThermoFisher, Waltham, MA, USA) was used to examine
the chemical properties of the films. Their thermal properties were assessed via thermo-
gravimetric analysis–differential scanning calorimetry (TGA–DSC; Discovery SDT 650, TA
Instruments, New Castle, DE, USA) and optical characteristics were studied via UV–visible
(UV–vis) spectroscopy (LAMBDA 265, Waltham, MA, USA). A semiconductor parameter
analyzer (Keithley 2636B, Keithley Instruments, Cleveland, OH, USA) and probe station
(MST T-4000A, Hwaseong, Republic of Korea) were used to analyze the electric properties
of the films. Their dielectric constants were measured using a precision LCR meter (E4980A,
Keysight, Santa Rosa, CA, USA).

3. Results

Figure 1 shows the solutions containing each precursor. Ethanolamine was added
to all the solutions, followed by sonication for 10 min. Acetate and nitrate dissolved
completely and appeared transparent, whereas yttrium(III) tris (isopropoxide) and yttrium
isopropoxide oxide did not dissolve completely. In particular, yttrium isopropoxide oxide
exhibited the least dissolution. Clean and uniform films were not formed when using
yttrium(III) tris (isopropoxide) and yttrium isopropoxide oxide as the precursors. Therefore,
the precursor solutions containing acetate and nitrate in 2-methoxymethanol were used to
fabricate Y2O3 films.
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Figure 1. Photographs of the prepared solutions containing different precursors.

Figure 2 shows the GIXRD patterns of the Y2O3 films prepared using the yttrium(III)
acetate hydrate and yttrium(III) nitrate tetrahydrate precursors and annealed under the
three conditions. No diffraction peaks were observed in the GIXRD patterns of the Y2O3
films even after annealing at 500 ◦C for 1 h, indicating that the films were amorphous.
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Figure 3 shows the SEM images of the films, from which the effect of the precursor
and annealing conditions on the morphology of the films can be deduced. The surface
roughness considerably varied depending on the precursor used. The Y2O3 films prepared
using the acetate precursor were flat and uniform, whereas those prepared using the ni-
trate precursor showed a rough, nanoripple-embedded surface morphology. The physical
properties of the solvent affected the surface morphology of the films. When a solvent
with a high vapor pressure and low surface tension is mixed with another solvent with
a low vapor pressure and high surface tension in a co-solvent system, the former evapo-
rates and the latter exhibits natural convection, thereby elevating the film surface [20–23].
However, the same capping materials and solvents were used in our study. Therefore, the
aforementioned co-solvent theory cannot support the obtained result. Both the precursors
formed Y(OH)3 by reacting with H2O, and the formed Y(OH)3 decomposed into Y2O3
under hydrothermal conditions. In the sol–gel process, high water content accelerates
gelation. The nanoripple-embedded surface originated due to the formation of a precursor
network during hydrolysis. Hydrolysis occurred immediately after spin-coating deposi-
tion of nitrate, which contained numerous water molecules, yielding an uneven surface
morphology due to gelation and aggregation [24].
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Figure 3. Cross-sectional SEM images of the Y2O3 films corresponding to different annealing condi-
tions: (a) acetate and (b) nitrate precursor. (c–h) show the top-view SEM images.

Figures 4 and 5 show the XPS spectra of the Y2O3 films. All binding energy values
were corrected to 284.5 eV based on the C1s peak. Figure 4a,b show the Y3d XPS spectra of
the Y2O3 films deposited using acetate and nitrate precursors, respectively, as a function of
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annealing conditions. The Y3d spectra show two peaks at 157.1 and 159.2 eV, corresponding
to Y 3d5/2 and Y 3d3/2, respectively. Both spectra show that under UV irradiation for 3 h,
the binding energy consistently shifts toward lower values. The Y 3d5/2 and Y 3d3/2
peaks shifted from 157.1 to 155.6 eV and from 159.2 to 157.5 eV, respectively, indicating a
reduction in the energy required to form Y–O bonds. Thus, Y–O bonds are easily formed
under UV irradiation for 3 h. Figure 4c–h show the Y3d XPS spectra of the Y2O3 films,
wherein two peaks corresponding to pure Y metal and Y–OH are observed at 155.98 and
157.99 eV, respectively, as well as at 158.8 (Y 3d5/2) and 160.6 eV (Y 3d3/2), respectively.
The proportions of pure Y metal in acetate-UV and nitrate-UV were the lowest at 7% and
12%, respectively. Under other conditions, this value averaged to over 15%. The proportion
of Y–OH was the lowest in acetate-UV and nitrate-UV (at 7%) and the highest (at 20%)
in acetate-500, indicating a decrease in the number of Y–OH bonds and Y metal bands.
Figure 5a–f show the O1s spectra of the Y2O3 films, with four peaks at 529.0, 531.4, 532.1,
and 533.8 eV corresponding to the lattice oxygen (OL), oxygen vacancies (OV), hydroxyl
group (–OH), and O=C–O, respectively. Figure 5a–c show the O1s spectra of the Y2O3 films
prepared using the acetate precursor. The relative area percentages of each component
to the total area are estimated. For the acetate-UV films, the proportion of OL was 84%,
while those of OV, –OH, and O=C–O peaks were 11%, 4%, and 1%, respectively. For
acetate-400, the proportion of OL, OV, –OH, and O=C–O was 16%, 61%, 21%, and 2%,
respectively. For acetate-500, the proportion of OL, OV, –OH, and O=C–O was 13%, 62%,
8%, and 17%, respectively. Thus, as the annealing temperature increased, the proportion of
OV increased and the proportion of OL considerably decreased. Figure 5d–f show the O1s
spectra of the films prepared using the nitrate precursor, which are similar to those of the
films prepared using the acetate precursor. The proportion of O=C–O was <7% under all
annealing conditions. For nitrate-UV, the proportion of OL was the highest at 86%, while
the proportion of OV and –OH was 7% and 5%, respectively. As the annealing temperature
increased, the proportion of OL considerably decreased: 16% and 10% for nitrate-400 and
nitrate-500, respectively. Concurrently, the proportion of OV considerably increased: 39%
and 61% for nitrate-400 and nitrate-500, respectively. In addition, the proportion of–OH
also increased: 38% and 25% for nitrate-400 and nitrate-500, respectively. The UV/ozone
treatment strengthened the Y–O bonds and passivated OV. Free oxygen atoms or radicals
are generated under UV irradiation, which penetrate the deposited layer and repair OV by
occupying the sites [25]. Thus, the Y2O3 films deposited using the UV/ozone treatment
showed the lowest OV concentrations compared to those deposited under other conditions.
The chemical composition of the Y2O3 films corresponding to different annealing conditions
is shown in Figure 6. In the GIXRD data, obvious XRD peaks corresponding to Y2O3 were
not observed. However, as confirmed from the XPS data, the prepared films are Y2O3 films
with small amounts of byproducts such as Y–OH, Y, and O=C–O carbonates.

Figure 7a,b show the C1s and N1s XPS spectra of the Y2O3 films, respectively. The
C1s peak at 285 eV originates from the carbon as a contaminant. In addition, a very weak
signal at 289.3 eV originates from ethanolamine. The intensity of N1s peaks is relatively
less compared to that of the peaks corresponding to other chemical components. The signal
at 399.0 eV originates from ethanolamine, attaching to formed Y2O3 films [26].

Figure 8 shows the optical characteristics of the glass/Y2O3 films. Figure 8a,b show
the transmittance spectra in the visible-light range from 400 to 750 nm of the Y2O3 films
and bare glass substrates. The average transmittance of the glass/Y2O3 films was >80% in
the visible-light range, similar to that of the glass substrate. This high transparency signifies
that the Y2O3 films can be effectively deposited on transparent thin-film transistors due
to their minimal absorption losses. Acetate-UV and nitrate-UV had transparency levels
comparable to those of acetate-500 and nitrate-500, respectively. This indicates that high
transparency can be achieved via UV annealing similar to high-temperature annealing. The
optical bandgap of the Y2O3 films was determined using the linear section of the (αhν)2
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versus hν graph. The inset of Figure 8c,d shows the (αhv)2 versus hν graph based on the
Tauc equation:

(αhν)n = A
(
hν − Eg

)
(1)

where α is the absorption coefficient, h is Planck’s constant, ν is the frequency, and Eg is the
optical bandgap. The optical bandgap values of the films were ~4.1 eV, regardless of the
fabrication conditions. This value is lower than that reported for cubic Y2O3 (5.6 eV). The
defect sites on the surface can reduce the optical bandgap of the Y2O3 films [27].
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The insulation characteristics of the Y2O3 films were investigated by fabricating a
metal/insulator/metal capacitor, i.e., a ITO/Y2O3/Au structure. Figure 9a shows the
characteristics of current density (Jg) versus applied electric field (E) of the ITO/Y2O3/Au
capacitor under different fabrication conditions. For an accurate comparison of Jg, a
thickness-normalized electric field (E) was used as the x-axis. Regardless of the precur-
sors used, capacitors containing high-temperature-annealed Y2O3 films showed high Jg
values. In contrast, capacitors containing Y2O3 films fabricated via UV/ozone treatment
showed lower Jg values. Capacitors containing acetate-UV showed the lowest Jg value of
10−8 A/cm2 at 1 MV/cm. The XPS spectra confirmed that the high-temperature-annealed
Y2O3 films were rich in OV, which increased the leakage current density [28]. These vacan-
cies generated deep-trap energy levels, activating mobile electrons. SEM images showed
that Y2O3 films prepared using the nitrate precursor had a rough surface morphology due
to shorter gelation time, which increased the local electrical field and leakage current [29].
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Figure 9. (a) Current density (Jg) versus applied electric field (E) curves of the ITO/Y2O3/Au
capacitors corresponding to different fabrication conditions. (b) Dielectric constant versus frequency
curves of the ITO/Y2O3/Au capacitors corresponding to different conditions.

Figure 9b shows the dielectric constant versus frequency plots of the ITO/Y2O3/Au
capacitors under different fabrication conditions. The dielectric constant was calculated by
measuring the capacitance and thickness of the film. All capacitors, except that based on
acetate-UV, showed high dielectric constants at 20 Hz, which varied considerably across
frequency ranges of 20 Hz–100 KHz. However, the capacitor based on acetate-UV showed
a stable dielectric constant at 20 Hz–100 KHz. At 20 Hz, the dielectric constant was 12.28
and decreased to 10.5 at 105 Hz.
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The dielectric constants of high-temperature-annealed and acetate-based Y2O3 in-
sulators considerably decreased with increasing frequency. High-temperature-annealed
Y2O3 insulators showed high OV concentrations and unwanted products, such as –OH
and O=C–O, as shown in the XPS spectra. Trapped charges accumulated near interfaces in
the devices, causing space-charge polarization [30]. OV, negative oxygen ions, and –OH
groups generated dipole moments, causing polarization at the material interfaces under
a biased external field. OV functioned as a trap site that could interact with space-charge
polarization. As the frequency increased, the triggered polarization could not keep up with
the frequency changes. Thus, high dielectric constant values were observed below 1 KHz.
Above 1 kHz, the orientation of dipoles influences the dielectric constant [31]. At such high
frequencies, electron mobility interferes with the alignment of dipoles and disrupts charge
accumulation within dielectric materials, decreasing the dielectric constant [32].

4. Conclusions

Herein, Y2O3 insulators were fabricated via the sol–gel process. Acetate and nitrate
were used as precursors for depositing Y2O3 films. The latter showed a wavy and rougher
surface morphology. Moreover, UV/ozone treatment and high-temperature annealing
were also performed during film fabrication. Compared to Y2O3 films processed via high-
temperature annealing, those subjected to the UV/ozone treatment showed enhanced
Y–O binding and the lowest number of OV defects with the lowest unwanted-byproduct
concentration. The corresponding fabricated capacitors showed the lowest Jg value of 10−8

A/cm2 at 1 MV/cm and a stable dielectric constant in a frequency range of 20 Hz–100 KHz.
At 20 Hz, the dielectric constant was 12.28, which decreased to 10.5 at 105 Hz. Thus, high-
quality, high-k insulators for flexible electronics can be fabricated using suitable precursors
and low-temperature fabrication methods.
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