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Abstract: Adsorbed molecules can modulate the behavior of magnesium (Mg) and Mg alloy in
biomedical applications. The interaction regularity and mechanism of biomolecules (such as amino
acids, dipeptides, and tripeptide) on a Mg(0001) surface, the influence of dipole correction, and
the effects of alloying elements and electronic structure were investigated in this study using
first-principles calculations. Specifically, the adsorption energy (Eads) of functional groups (-NH2,
-COOH and -CN3H4), amino acids (arginine (Arg), glycine (Gly), and aspartic acid (Asp)), dipeptides
(arginine–glycine (Arg-Gly), glycine–aspartic acid (Gly-Asp), and arginine–aspartic acid (Arg-Asp)),
and arginine–glycine–aspartic acid (RGD) tripeptide were systematically calculated. Dipole correction
slightly enhanced the interaction between molecules and Mg surfaces, but the Eads trend remained
unchanged. The addition of alloying elements improved the interaction of molecules and Mg-based
alloy surfaces. This study will be of fundamental importance in understanding the interaction regular-
ity of molecules on Mg and Mg-based alloy surfaces and provide possibilities for surface modification
design of biomedical materials.

Keywords: biomolecules; Mg; interaction regularity; first-principles calculation; dipole correction

1. Introduction

The biomolecular coating modified on the surface of biomedical materials is a direct
contact site for cell adhesion and growth on the material surface, which has a significant
impact on human physiological activities [1–6]. Numerous in vivo and in vitro animal
experiments have shown that Mg alloy materials modified with functional biomolecular
coatings have good biocompatibility, biomechanical compatibility, antibacterial properties,
and appropriate corrosion resistance performance [7–10]. A key point in designing Mg
alloy materials with functional surfaces is the formation of biological coatings that improve
the adhesion and survival of specific cell types. It is well known that biomolecules such as
amino acids, dipeptides, and tripeptides play important roles in the physiological activities
of the human body [11–15]. In particular, recent research reports have focused on the
preparation of functionally controllable bioactive peptide coatings to enhance anti-infection
activity, accelerate vascular endothelialization, and promote vascular tissue healing [16–18].
The bonding properties and interaction regularities between biomolecules and Mg alloy
surfaces play a crucial role in the stable existence of functional biomolecular coatings on
the alloy surface. Therefore, study of the interaction mechanism between biomolecules
and the surface of biomedical Mg alloys will provide a theoretical basis for the selection of
functional biomolecular coatings.
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Biomolecules (such as amino acids, dipeptides, and tripeptide) provide novel and
superior performance for biomedical coatings, and biomolecular coatings bind to the
surface of materials through their specific amino acid sequences and active functional
groups [19]. Amino and carboxyl groups are important active functional groups in vivo,
which often serve as fixed sites for biological macromolecules such as proteins and enzymes
in the body due to their high affinity with cells and structural tissues [20,21]. Amino acids
are the fundamental components of proteins, and short peptides are simple organic tissue
structures formed by amino acids, without the additional complexity of folding [22,23].
Structures of short peptides can serve as units for the chemical synthesis of biological
functional molecules, and their complexity can also provide valuable information for
regulating the mechanisms of organic–inorganic mixed interfaces. Surface modification of
Mg alloys through functional biomolecules has become an important research direction in
the functionalization of biomaterials.

Recent theoretical and experimental studies on the interaction mechanism between
biomolecules and metal surfaces have proposed some new perspectives [24–26]. Farwa
et al. reported a biodegradable Mg alloy stent with a dual effect of drug (Paclitaxel) and
growth factor (VEGF) release [27]. Zhang et al. reported the adsorption mechanism and
conformation change of bovine serum albumin on the AZ31 Mg substrate and its MAO
coatings, using experimental methods and MD simulations [4]. Yuan et al. demonstrated
that CaP coatings prepared at 60 ◦C have higher corrosion resistance compared with coat-
ings prepared at other temperatures through comparative experimental and molecular
dynamics simulation studies [28]. Wang et al. found that binary Mg intermetallics could
greatly suppress the corrosion cathodic reaction, using active learning and density func-
tional theory (DFT) simulations [29]. Mamad et al. reported that L-glutamine may have the
highest inhibitory effect on anti-corrosion performance, confirming their findings through
DFT calculations and Monte Carlo simulation [30]. Méthivier et al. studied the adsorption
behavior of Glu–Cys–Gly peptide on copper surfaces through electrospray ion beam depo-
sition and DFT calculations and identified the most stable configurations of the peptide in
the adsorbed state [31]. Therefore, the interaction regularities of functional molecules on
Mg and Mg-based alloy surfaces were investigated to provide a better theoretical basis for
the functional biomolecular coatings design.

The interaction mechanism between molecules and different Mg surfaces was in-
vestigated in our previous work [32–35]. Nevertheless, the interaction regularity within
molecules on magnesium (Mg) and Mg-based alloy surfaces has not been fully understood.
In the present work, first-principles calculations based on DFT were employed to study the
interaction regularity of functional groups, amino acids, dipeptides, and RGD tripeptide on
Mg and Mg-based alloy surfaces. Investigating the interaction regularity of the molecules
on Mg and Mg-based alloy surfaces provides a comprehensive understanding for the
design of functional biomolecular coatings.

2. Computational Methods

All calculations were performed using the Vienna Ab initio Simulation package (VASP)
based on the periodic density functional theory (DFT) method [36,37]. The projector-
augmented wave (PAW) potentials were used for characterizing the ion and valence electron
interactions [38,39], employing the Perdew, Burke and Ernzerhof (PBE) method to deal
with the exchange correlation [40]. Dispersion forces were considered in the optB86b-vdW
approach [41], and 3s23p0, 1s1, 2s22p2, 2s22p3, and 2s22p4 were chosen as the valence elec-
trons for Mg, H, C, N, and O atoms, respectively. The energy cutoff (Ecut) in use was set to
450 eV and a 1× 1 × 1 k-point was considered for the Brillouin-zone sampling in this work.
An 8 × 8 supercell with a six-layer Mg slab was selected as the surface adsorption model.
To minimize the interactions in the z direction between periodic images of the system,
the vacuum region was set at more than 20 Å. The bottom two layers of Mg atoms were
fixed throughout the optimization and the vacuum region was set at 20 Å to minimize the
interactions in the z direction of the periodic adsorption system. Molecules were adsorbed
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on the top side of the adsorption surfaces. The optimizations of adsorption systems were
considered converged when the ground state reached 10−5 eV and the Hellmann–Feynman
forces were inferior to 0.02 eV/Å.

The binding ability of molecules on the different substrates was characterized by the
Eads which were calculated as follows [42].

Eads = Emol+sub − Emol − Esub (1)

where Emol+sub, Emol, and Esub and represent the total energy of the optimized stable adsorp-
tion systems, the total energy of the optimized molecules, and the energy of the different
substrates, respectively.

3. Results and Discussion

To investigate the interaction regularity of molecules on Mg and Mg-based alloy
surfaces is important in the biomedical field. In order to make the calculation results
much clearer, we labeled the hydrogenated functional groups as NH3, HCOOH, and
HCN3H4, respectively. For the present work, the optimized structures of NH3, HCOOH,
HCN3H4, Arg(C6H14N4O2), Gly(C2H5NO2), Asp(C4H7NO4), Arg-Gly(C8H17N5O3), Gly-
Asp(C6H10N2O5), Arg-Asp(C10H19N5O5), and RGD(C12H22N6O6) tripeptide are depicted
in Figure 1a–j. The optimized lattice parameters of the bulk hcp Mg were a = b = 3.188 Å and
c = 5.193 Å, which were in good agreement with the experimental results (a = b = 3.210 Å,
c = 5.213 Å) [43]. The interaction regularity of functional groups, amino acids, dipeptides,
and RGD tripeptide on Mg and Mg-based alloy surfaces were studied as follows.
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3.1. Adsorption Properties of Molecules on Mg(0001) Surfaces

Functional groups play a crucial role in the binding process between functional
molecules and metal surfaces. The binding process between the surfaces of biomedi-
cal materials and molecules depends on the properties of amino acids and peptides.
Madden et al. [44] studied the adsorption behavior of Gly on a Cu(311) surface using
a combination of theoretical calculations and experimental methods. The calculated results
showed that the adsorption structure of Gly was the most stable when a N atom in the
amino group and an O atom in the carboxyl group were simultaneously adsorbed on
the Cu(311) surface. The riveting atoms (such as N in the amino/guanidine group or O
in the carboxyl group) interact with the surface atoms when biomolecules interact with
biomedical surfaces [45]. The adsorption process results in the redistribution of electrons in
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the system and the formation of chemical bonds. The stable adsorption configurations of
functional groups, amino acids, dipeptides, and RGD tripeptide on Mg(0001) surfaces are
represented in Figure 2.
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Figure 2. Stable adsorption configurations of (a–c) functional groups, (d–f) amino acids, (g–i) dipep-
tides, and (j) RGD tripeptide on Mg(0001) surface. The bond lengths (in Å) are also given.

As shown in Figure 2, the N atom in NH3, the carbonyl O atom in HCOOH, and the N
atom with double bonds in HCN3H4 bond to the Mg atoms of the surface. The amino acids,
dipeptides, and RGD tripeptide mainly interacted with the Mg(0001) surfaces through
functional groups. The theoretical radii for covalent bonding of N, O, and Mg atoms are
0.75 Å, 0.73 Å, and 1.36 Å, respectively. The theoretical bond lengths for covalent bonding
of N-Mg and O-Mg atoms were 2.11 Å and 2.09 Å [46]. The calculated bond lengths of
N-Mg and O-Mg were in the range 2.13~2.33 Å and 1.94~2.28 Å in the case of adsorption
molecules on Mg(0001) surfaces. This result was very close to the theoretical bond length
for the formation of covalent bonds of N-Mg and O-Mg, and the -NH2 and -C=NH groups
in HCN3H4 play a crucial role in stabilizing the adsorption process.

The Eads were calculated by using Equation (1), and the corresponding Eads of func-
tional groups, amino acids, dipeptides, and RGD tripeptide are shown in Tables 1–3,
respectively. For the Eads of functional groups in Table 1, the order of absolute values
of Eads was: Eads (HCN3H4) > Eads (NH3) > Eads (HCOOH). The Eads of NH3 on the Mg
surface (−0.71 eV) was similar to the Eads of NH3 on the Cu surface (−0.78 eV) calculated
by Nilsson et al. [47]. The Eads of HCOOH on the Mg(0001) surface (−0.64 eV) was not
significantly different from the Eads of HCOOH on the Cu surface (−0.48 eV) calculated by
Jiang et al. [48]. For the Eads of amino acids in Table 2, the order of absolute values of Eads
was: Eads (Arg) > Eads (Asp) > Eads (Gly). The Eads of each amino acid was greater than that
of the functional groups. For the dipeptides and RGD tripeptide, the amino acids cannot
reach the optimal adsorption state simultaneously during the adsorption, resulting in the
Eads being greater than the sum of Eads of the amino acid due to the constraint of chain
length. A similar phenomenon also occurred in the adsorption of RGD tripeptide.

Table 1. The Eads of functional groups on the Mg(0001) surface.

Adsorption of Functional Groups

NH3 HCOOH HCN3H4

Eads (eV) −0.71 −0.64 −1.08
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Table 2. The Eads of amino acids on the Mg(0001) surface.

Adsorption of Amino Acids

B Gly Asp

Eads (eV) −1.67 −1.16 −1.23

Table 3. The Eads of dipeptides and tripeptide on the Mg(0001) surface.

Adsorption of Dipeptides and RGD Tripeptide

Arg-Asp Arg-Gly Gly-Asp RGD

Eads (eV) −2.80 −2.09 −1.73 −3.24

It is known that dipoles play a crucial role in the binding process due to the presence
of dipoles and the chemical activity of groups. As the length of molecular chains and
the complexity of spatial configurations increase, the probability of non-coincidence of
positive and negative charge centers increases, which may affect the adsorption behavior
of molecules on the surface. In order to analyze the influence of the above factors, dipole
correction was added perpendicular to the surface to study the effect of this parameter
on the Eads of molecules on the Mg(0001) surface. The results were compared with those
without dipole correction, as shown in Figure 3.
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dipole modification.

From the calculated results in Figure 3, it can be seen that the addition of dipole
correction slightly increased the Eads of amino acids, dipeptides, and RGD tripeptide on the
Mg(0001) surface. However, the effect was very small and did not change the trend of Eads
changes. This result indicates that the adsorption process studied was mainly a chemical
adsorption process. In view of this, there was no need to add dipole correction parameters
in the subsequent calculation process of the present work.

3.2. Effect of Alloying Elements on the Adsorption of Molecules on Mg(0001) Surfaces

Zn, Y, and Nd elements played a crucial role in the mechanical properties and biocom-
patibility of Mg-based alloys, and their electronegativity in comparison with Mg was also
representative [49]. In order to analyze the effect of the addition of Zn, Y, and Nd elements
on the adsorption regularity of molecules on the Mg-based alloy surface, the selection of
alloy content referred to the literature [50].

For the adsorption of functional groups on the Mg-based alloy surfaces, the optimized
adsorption configurations are depicted in Figure 4 and the calculated corresponding Eads
are listed in Table 4. The bond lengths of functional groups on the Mg-based alloy surfaces
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reported in Figure 4 were close to the theoretical bond lengths for covalent bonding of
N-Mg, O-Mg, Y-Mg, and Nd-Mg atoms [46]. For the surface of Mg-Zn alloy, Zn with higher
electronegativity obtained some electrons from the surrounding Mg atoms, causing a large
number of electrons to accumulate around the Zn. It was easy for functional groups to be
adsorbed on the Mg atoms which were around Zn atoms, and the addition of Zn enhanced
the ability of functional groups to share electrons with surface Mg atoms to improve the
Eads. For the surfaces of Mg-Y and Mg-Nd alloys, it was easy for Y/Nd to transfer electrons
to the surrounding Mg atoms due to the smaller electronegativity value. The ability to
sharing electrons with the Mg-Y/Mg-Nd alloy surfaces was enhanced when functional
groups directly interacted with Y/Nd atoms, making it easy to form the chemical bonds.
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Figure 4. Stable adsorption configurations of functional groups of (a–d) NH3, (e–h) NH3, and (i–l) HCN3H4

on the Mg and Mg-based alloy surfaces containing 2% Zn, 0.5% Y, and 0.5% Nd. The bond lengths (in Å)
are also given.

Table 4. The Eads of functional groups on Mg and Mg-based alloy surfaces.

Eads (eV)

Mg(0001) 2% Zn 0.5% Y 0.5% Nd

NH3 −0.71 −0.83 −1.19 −1.22
HCOOH −0.64 0.72 −1.21 −1.17
HCN3H4 −1.08 −1.19 −1.70 −1.76

The initial configurations of Arg, Gly, and Asp adsorbed on the surfaces of Mg-Zn,
Mg-Y, and Mg-Nd alloys were consistent with that on the Mg(0001) surface. The optimized
stable adsorption configurations are shown in Figure 5 and the calculated corresponding
Eads values are listed in Table 5. The surface of Mg and Mg-based alloy surfaces became
rough, and the bound Mg atoms were shifted up by about 0.10 Å due to the adsorption
of Arg, Gly, and Asp. The charge on the surface of Mg-Zn alloy was redistributed and
the bond lengths between molecules and the surfaces of Mg-Zn alloy were reduced. The
reduced bond lengths were in the range of 0.01~0.07 Å, which enhanced the interaction of
adsorbed molecules and Mg-based alloy surfaces.

The Eads of Arg, Gly, and Asp on the Mg-Zn, Mg-Y, and Mg-Nd alloy surfaces are listed
in Table 5. Compared with that on the Mg(0001) surface, it was revealed that the interaction
of configurations on the Mg-based alloy surfaces was enhanced and the promoting effect
may become more effective by adding elements with smaller electronegativity. On the
Mg-Zn alloy surface, Zn obtained some electrons from surrounding Mg atoms, which made
it easier for N and O atoms in amino acids to share electrons with surface-bound Mg atoms
due to the higher electronegativity of Zn (1.65) compared with Mg (1.31) [51]. Meanwhile,
in the case of the Mg-Y and Mg-Nd alloy surfaces, the amino acids preferred to interact
with the Y/Nd element directly instead of the surrounding Mg atoms.
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Figure 5. Stable adsorption configurations of amino acids of (a–d) Arg, (e–h) Gly, and (i–l) Asp on
Mg and Mg-based alloy surfaces containing 2% Zn, 0.5% Y, and 0.5% Nd. The bond lengths (in Å) are
also given.

Table 5. The Eads of amino acids on Mg and Mg-based alloy surfaces.

Eads (eV)

Mg (0001) 2% Zn 0.5% Y 0.5% Nd

Arg −1.67 −1.99 −2.39 −2.37
Gly −1.16 −1.35 −2.30 −1.77
Asp −1.23 −1.39 −1.72 −2.02

For the adsorption of dipeptides and RGD tripeptide on the Mg-based alloy surfaces,
the stable adsorption configurations are depicted in Figure 6. For the Mg-Y and Mg-Nd
alloy surfaces, the distance ranges of N-Y, N-Nd, O-Y, and O-Nd were 2.32 Å~2.34 Å,
2.32 Å~2.38 Å, 2.12 Å~2.27 Å, and 2.12 Å~2.26 Å, respectively. These optimized bond
lengths were very close to the theoretical covalent bond lengths for N-Y, N-Nd, O-Y, and
O-Nd (2.37 Å, 2.39 Å, 2.35 Å, and 2.37 Å) [46]. From the calculated Eads in Table 6, it was
shown that the addition of Zn, Y, and Nd enhanced the interaction of dipeptides and RGD
tripeptide on the Mg-based alloy surfaces. The Eads of dipeptides and RGD tripeptide on
the Mg-based alloy surface was significantly improved due to the redistribution of charges
on the surface.
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Figure 6. Stable adsorption configurations of dipeptides of (a~d) Arg-Asp, (e~h) Arg-Gly, and (i~l) Gly-
Asp, and RGD tripeptide (m~p) on Mg and Mg-based alloy surfaces containing 2% Zn, 0.5% Y, and
0.5% Nd.
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Table 6. The Eads of dipeptides and RGD on Mg and Mg-based alloy surfaces.

Eads (eV)

Mg(0001) 2% Zn 0.5% Y 0.5% Nd

Arg-Asp −2.80 −3.06 −3.41 −3.53
Arg-Gly −2.09 −2.29 −2.73 −2.85
Gly-Asp −1.73 −2.13 −2.27 −2.45

RGD −3.24 −3.73 −3.89 −4.03

Based on the calculated results, the addition of alloying elements affected the ability
to share the lone pair electrons of N or O atoms in molecules with Mg atoms of the alloy
surface. It can be concluded that molecules were easily adsorbed on the Mg atoms around
the alloy elements when alloy elements with higher electronegativity than Mg (such as Zn)
were added. However, the surface charges were redistributed by adding alloying elements
with smaller electronegativity than Mg (such as Y and Nd), which affected the electronic
structural properties of the Mg-based alloy surface. The electrons of the Mg-Y/Mg-Nd
surfaces were more active. Meanwhile, molecules easily interacted directly with the alloy
elements with smaller electronegativity on the Mg-based alloy surface.

3.3. Electronic Properties of Molecules on the Mg(0001) Surface

In order to study the electronic structural properties of molecules on Mg and Mg-based
alloy surfaces, the projected density of states (PDOS) of HCN3H4 and surface binding Mg
atoms before and after adsorption were investigated as an example. The changes in the
PDOS of the -CN=NH group in HCN3H4 before and after adsorption on the Mg(0001)
surface are shown in Figure 7.
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was set at 0 eV. The blue shaded area was the sharing of electrons and the formation of a chemical bond.

According to the calculated PDOS in Figure 7, both N atoms in the -CN=NH group
contained lone pair electrons and this made it easy to share electrons with the Mg(0001)
surface during the interaction. The Mg atom exhibited new peaks at the positions of
−5.60 eV and −5.90 eV, while the N1 atom (labeled atom in Figure 1c) split into two peaks
from the previous peak and moved towards lower energy positions. A new electronic
state was formed at the position of −5.90 eV. The N3 atom (labeled atom in Figure 1c)
interacted with the Mg atom at −5.60 eV, forming a new electronic state. The electronic
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states moved downwards to lower energy positions when the entire system reached a
stable state, resulting in a lower and more stable total energy of the system.

To further analyze the bonding mechanism and charge changes during the adsorption
process between molecules and Mg surfaces, we calculated the charge density difference
(∆ρ) of the adsorption systems. The results are plotted in Figures 8–10. If ∆ρ > 0, it indicates
an increase in charge after the interaction; on the contrary, the charge decreased. ∆ρ was
obtained by using the following formula [45]:

∆ρ = ρmol+sub − ρmol − ρsub (2)

where ρmol+sub is the charge density of the optimized adsorbate–substrate systems, ρmol is
the charge density of the adsorbed molecule without the surface, ρsub is the charge density
of the surface.

In Figure 8, the obvious light cyan area on the surface of the Mg atoms indicates the
charge depletion of the binding Mg atoms; the yellow areas indicate the strong interaction
of the functional groups and Mg(0001) surfaces. Similar phenomena were observed in the
adsorption of amino acids, dipeptides, and RGD tripeptide on the Mg(0001) surfaces, as
shown in Figures 9 and 10.
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accumulation and depletion of charge density.
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4. Conclusions

In this work, the influence of dipole correction and alloying elements on the interaction
regularity of molecules on Mg and Mg alloys surfaces was assessed using the DFT approach.
Conclusions based on the calculated results can be drawn as follows.

(1) The order of absolute values of computed Eads of molecules varied in the following
sequence: Eads (HCN3H4) > Eads (NH3) > Eads (HCOOH); Eads (Arg) > Eads (Asp) > Eads (Gly);
Eads (Arg-Asp) > Eads (Arg-Gly) > Eads (Gly-Asp).

(2) Dipole correction slightly enhanced the interaction of molecules and Mg surfaces,
but the trend of Eads changes was not altered due to the constraint of chain length.

(3) The addition of alloying elements affected the charge distribution on the Mg
surface and improved the interaction of molecules on Mg surfaces. Molecules easily
directly interacted with the alloy elements with smaller electronegativity on Mg-based
alloy surfaces.
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