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Abstract: The study presents a novel approach called FEM-POD, which aims to enhance the computa-
tional efficiency of the Finite Element Method (FEM) in solving problems related to non-Fourier heat
conduction. The present method employs the Proper Orthogonal Decomposition (POD) technique.
Firstly, spatial discretization of the second-order hyperbolic differential equation system is achieved
through the Finite Element Method (FEM), followed by the application of the Newmark method to
address the resultant ordinary differential equation system over time, with the resultant numerical
solutions collected in snapshot form. Next, the Singular Value Decomposition (SVD) is employed
to acquire the optimal proper orthogonal decomposition basis, which is subsequently combined
with the FEM utilizing the Newmark scheme to construct a reduced-order model for non-Fourier
heat conduction problems. To demonstrate the effectiveness of the suggested method, a range of
numerical instances, including different laser heat sources and relaxation durations, are executed.
The numerical results validate its enhanced computational accuracy and highlight significant time
savings over addressing non-Fourier heat conduction problems using the full order FEM with the
Newmark approach. Meanwhile, the numerical results show that when the number of elements or
nodes is relatively large, the CPU running time of the FEM-POD method is even hundreds of times
faster than that of classical FEM with the Newmark scheme.

Keywords: proper orthogonal decomposition; non-Fourier heat conduction problem; finite element
method; Newmark method

1. Introduction

The classical mathematical model for heat conduction, known as Fourier’s law, was
established in 1822 to explain the relationship between heat flow and temperature. It
postulates that the amount of heat passing through a particular segment in a given time
period is directly proportional to the rate of temperature change and the cross-sectional
area perpendicular to the direction of heat flow. This law has found extensive applications
in traditional engineering thermal problems, such as determining U-tube heat transfer
areas, investigating thermodynamics of automotive ventilation disc brakes, and developing
insulation systems for cryogenic wind tunnels. However, Fourier’s law neglects the effects
of inertia in the process of heat conduction and assumes an infinite rate of heat. For large-
scale space and time conditions, its influence can be ignored. In most cases, the Fourier
law is in excellent description of heat conduction physics because real heat propagation
speeds are very high. Thus, assuming infinite speed is generally accurate and efficient.
However, as emerging technologies continue to evolve (such as high-frequency laser heat
source, nanocoating, etc.), researchers have found that the calculation error of Fourier’s
law is large for the heat conduction problems under the conditions of extremely high
(low) temperature, ultra-fast speed and micro-space or micro-time scale. In such scenarios,
where temperature gradients are exceptionally high, the classical assumption of infinite
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heat propagation velocity no longer holds true. Consequently, an improved version of the
Fourier law known as non-Fourier law has been developed to account for finite values of
heat propagation velocity [1].

The occurrence of non-Fourier effect is typically observed under the following condi-
tions: (a) when the spatial scale of thermal effect is extremely small, such as in nanotech-
nology; (b) when the thermal effect is exceptionally fast, for instance in ultra-fast laser
heating; and (c) when the temperature of the heat conducting object approaches absolute
zero. In practical research, the conditions of non-Fourier effect are extremely harsh, thus
the cost and technical requirements of obtaining research results through experiments are
high. However, the analytical method is applicable to a limited range and can only solve
simple functional relations, and it is difficult to obtain the explicit expression for some
complex boundary conditions. Hence, the utilization of numerical simulation has become
pivotal in tackling non-Fourier heat conduction problems. Consequently, there has been a
notable upsurge in scholarly attention towards the numerical resolution of such problems
in recent years. Several numerical techniques, encompassing but not confined to the finite
difference method (FDM) [2,3], the finite element method (FEM) [4–6], the finite difference
method, finite volume method (FVM) [7], the boundary element method (BEM) [8,9], the
meshless methods [1,10–12], and the lattice Boltzmann method [13,14], have been put forth
to address these concerns.

The primary challenge in large-scale complex modeling lies in reducing computational
costs while maintaining numerical accuracy. The prevalent and significant approaches
involve altering the formulae through partial equation modifications or reducing the equa-
tion order. In contrast to the former, the reduced-order model is favored for its simplicity,
efficiency, and widespread application, as it diminishes the degrees of freedom and trans-
forms the computation of partial differential equations (PDEs) into linear equations within
a lower-dimensional space [15]. Among the model reductions methods, the POD method,
which is interchangeably known as Karhunen-Loève Decomposition (KLD), Principal
Component Analysis (PCA), or SVD, provides an efficient way to extract a simplified,
low-dimensional model from complex high-dimensional systems [16,17].

The technique offers several advantages as it allows for the representation of a physical
process through a linear combination of orthogonal basis functions and amplitudes in a
least-square optimal manner. Consequently, it is able to capture a greater amount of energy
compared to other decomposition methods employing the same number of basis functions.
Notably, the method is entirely data-dependent, making it suitable for modeling dynamic
systems without any prior knowledge of the underlying process. This approach facilitates
the creation of lower-order models that can potentially provide valuable insights into the
generative process behind the data. Furthermore, the POD technique can be combined
with a variety of numerical methods (such as FEM [17–19], FDM [18,20], FVM [21] mesh-
less methods [16,22–24], etc.) to reduce the number of degrees of freedom in intricate
problems and is widely used in reducing the dimension of partial differential equations.
Although many scholars have used it to study Fourier heat conduction problems for heat
transfer applications, there has been limited research on non-Fourier heat conduction
problems. Therefore, this paper proposes using FEM combined with POD techniques to
construct reduced-order models for non-Fourier heat conduction problems and discusses
their feasibility under different laser heating sources and relaxation times.

The innovation of this work lies in combining the Proper Orthogonal Decomposition
(POD) model order reduction method with the Finite Element Method (FEM), proposing a
fast algorithm that improves computational efficiency. The characteristic of this method
is that it can reduce the discretized equations from the FEM, which originally contain
thousands of degrees of freedom, to just a few dozen degrees of freedom. This significantly
improves computational efficiency while ensuring calculation accuracy.
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2. Mathematical Model

Stemming from Fourier’s law of heat conduction, the traditional parabolic equation
for heat conduction suggests a direct proportionality between the rate of heat transfer and
the temperature gradient, that is,

q(x, t) = −k∇θ(x, t), (1)

where x is the spatial coordinates, ∇ is the Nabla operator, k is the thermal conductivity
coefficient, θ(x, t) is the temperature at point x ∈ Ω and at time t, q is the heat flux.
Experimental findings challenge the Fourier law, which states that thermal propagation
velocity is infinite, suggesting its breakdown at decreasing feature sizes. Consequently,
there has been considerable interest in non-Fourier heat transfer theory in the field of
heat transfer research. Several non-Fourier models have been proposed, including the
wave model. The hyperbolic heat conduction equation arises from this model. This paper
considers the hyperbolic heat conduction equation based on the Cattaneo-Vernotte (CV)
relation, which accounts for a time delay between the heat flux and the temperature
gradient. It is as follows:

q(x, t + τ) = −k∇θ(x, t), (2)

where τ represents the thermal relaxation time. This constitutive law assumes that heat
flow and temperature gradient do not occur simultaneously. Obviously, if τ = 0, then
Equation (2) becomes the Fourier thermal diffusion model (1).

In general, the heat flow is governed by the following conduction equation:

−∇ · q(x, t) + Q(x, t) = ρc
θ(x, t)

∂t
, (3)

where Q(x, t) represents a known internal heat source, ρ denotes mass density, and c
represents specific heat.

If the thermal relaxation time τ is small enough, with Equation (2), by applying a time-
based first-order Taylor series expansion and disregarding the minor high-order quantity,
one can achieve:

q(x, t) + τ
∂q(x, t)

∂t
= −k∇θ(x, t). (4)

Combining Equations (2) and (4) and eliminating q, yields

τρc
∂2θ(x, t)

∂t2 + ρc
∂θ(x, t)

∂t
= k∇2θ(x, t) + τ

∂Q(x, t)
∂t

+ Q(x, t), (x, t) ∈ Ω × J, (5)

where J = (0, T] is denoted as the time interval. Equation (5) is referred to as the thermal
wave equation.

In general, the thermal wave equation Equation (5) must be solved for prescribed
initial and boundary conditions. Here, the initial conditions are{

θ(x, 0) = θ0(x), x ∈ Ω,
∂θ(x,0)

∂t = D0(x), x ∈ Ω,
(6)

where θ0 and D0 are given functions.
The boundary conditions are as follows{

θ(x, t) = θ̄(x, t), x ∈ ΓD,

−k ∂θ(x,0)
∂n = q̄(x, t), x ∈ ΓN ,

(7)

where ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅, n represents the unit external normal vector, θ̄ and q̄
are boundary temperature history and heat flux, respectively.
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3. The FEM and Its Reduced-Order FEM Based on POD Technique
3.1. The Standard Galerkin Form

Multiplying Equation (5) by a test function v ∈ V = {v : ||v||+ ||∇v|| < ∞, v|ΓD = 0},
and integrating using Green’s formula and corresponding Nuemann boundary conditions
one can obtain the variational formulation of Equation (5): find θ such that, for every fixed
t ∈ J, θ ∈ V and

τ(ρc
∂2θ

∂t2 , v) + (ρc
∂θ

∂t
, v) + a(θ, v) = τ(

∂Q
∂t

, v) + (Q, v) +
∫

ΓN

q̄vdΓ, ∀v ∈ V, t ∈ J, (8)

where a(·, ·) is bilinear functional and satisfies

a(θ, v) =
∫

Ω
k∇θ · ∇vdΩ, (9)

(·, ·) denotes the L2(Ω)-inner product.

3.2. Spatial Discretization

Let {ΩK} be a finite element partition of the domain Ω, where the index K ranges
from 1 to the total number of elements. The perimeter of {ΩK} is denoted by h. Let Vh ⊂ V
be the usual space of continuous piecewise linears on a mesh of Ω. The space discrete
counterpart of Equation (8) reads: find θh such that, for every fixed t ∈ J, θh ∈ Vh and

τ(ρc
∂2θh
∂t2 , vh) + (ρc

∂θh
∂t

, vh) + a(θh, v) = (τ
∂Q
∂t

+ Q, vh) +
∫

ΓN

q̄vhdΓ, ∀vh ∈ Vh, t ∈ J, (10)

Let {ϕj(x)}N
j=1 are the bases of space Vh, where N is the dimensional of Vh, then

θh =
N

∑
j=1

θj(t)ϕj(x), vh =
N

∑
j=1

vj(t)ϕj(x).

Substituting θh, vh into the Equation (10), we can finally obtain the following semi-discretization
form:

Mθ̈+ Cθ̇+ Kθ = F (11)

where the dot notation indicates differentiation in time, M = τC, C is known as the heat
capacity matrix, K as the matrix for heat conduction, F as the vector for temperature load,
and θ as the vector for node temperature.

Mij = τ
∫

Ω
ρcϕiϕjdΩ,

Cij =
∫

Ω
ρcϕiϕjdΩ,

Kij =
∫

Ω
k∇ϕi · ∇ϕjdΩ,

Fi =
∫

Ω
QϕidΩ + τ

∫
Ωe

∂Q
∂t

ϕidΩ +
∫

ΩN

q̄ϕidΓ.

(12)

3.3. Time Discretization

Many schemes can be used to discretize Equation (11) in time, such as center difference
scheme, Wilson-θ scheme and Newmark scheme. Here, the temporal discretization of
Equation (11) is achieved using an unconditional stability Newmark scheme with constant
average acceleration.
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Given the time instances t0, t1, · · · , tL ∈ [0, J], and for the first time interval [t0, t1],
θ0 = θ(t0) and θ̇0 = θ̇(t0) can be provided by the initial conditions Equation (6), then
θ̈0 = θ̈(t0) can be obtained by

θ̈0 = M−1
(

F0 − Cθ̇0 − Kθ0
)

(13)

and for other time intervals [tn, tn+1](n = 1, 2, ..., L − 1), θn = θ(tn), θ̇n = θ̇(tn) and
θ̈n = θ̈(tn) was calculated from the previous time interval.

In any given time period [tn, tn+1](n = 1, 2, ..., L − 1),θn+1, θ̇n+1 and θ̈n+1 could use
the following expression:

θn+1 = (
M

α∆t2 + δ
C

α∆t
+ K)−1

[
Fn+1 + M

(
θn

α∆t2 +
θ̇n

α∆t
+ (0.5 − α)

θ̈n

α

)]
×C[δ

θn

α∆t
+ (δ − α)

θ̇n

α
+ ∆t(0.5δ − α)

θ̈n

α
],

(14)

θ̇n+1 = (1.0 − δ

α
)θ̇n + (1.0 − δ

2α
)∆tθ̈n + δ

θn+1 − θn

α∆t
(15)

θ̈n+1 =
θn+1 − θn − θ̇n∆t − (0.5 − α)∆t2θ̈n

α∆t2 , (16)

where δ = 0.5, α = 0.25 in the paper for all the numerical experiments.

3.4. Reduced-Order FEM Based on POD Technique

For the POD technique, there are three main components: the snapshots matrix, the
optimal POD basis and the reduced-order model. In the light of POD theory provided in
Refs. [16,17], we first collect some data pertaining to the snapshots, that is,

A = {θ1, θ2, · · · , θL}, (17)

where θj, j = 1, · · · , L are the corresponding temperature collection obtained by some
numerical methods (e.g., FEM) or experimental results, L is the number of snapshots.
Obviously, A ∈ RN×L and AAT ∈ RN×N is a positive semi-definite matrix. Then, we need
to construct a set of optimal orthogonal bases which also labeled as optimal POD bases.
Usually, the SVD method can be used to obtain the optimal POD basis. In the SVD, the
N × L matrix A can be written in the factored form

A = U
[

Ds 0
0 0

]
V T , (18)

where U = UN×N and V = VL×L representing orthogonal matrices, Ds = diag(λ1, λ2, · · · , λs).
The matrix U = (ξ1, ξ2, · · · , ξN) contains the orthogonal eigenvectors of AAT , while the
eigenvalues λi(i = 1, 2, · · · , s) satisfy λ1 ≥ λ2 ≥ · · · λs > 0.

Next, we need to find an appropriate truncation method to obtain the number of
optimal POD bases. According to the results given by Ref. [17], if we define a projection Pk
as follows:

Pk(θ
l) =

k

∑
i=1

(ξ i, θl)ξ i, (19)

where k ≤ s and (·, ·) denote the inner product of vectors, then we have the following
result [17]:

||θl − Pk(θ
l)|| ≤ λk+1, (20)
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where || · || is the standard L2 norm of vector space. Based on this result, we can determine
the number of optimal POD bases by accumulating energy contribution of the first r
eigenvalues to the total energy, that is,

ζ =
∑r

i=1 λi

∑s
i=1 λi

, r ≤ s. (21)

Generally, the number of optimal POD basis r can be truncated when the value of ζ is
close to 100%. Therefore, the first rth orthogonal eigenvectors ξ1, ξ2, · · · , ξr are chosen
as the optimal POD basis and store in basis matrix Ξ = (ξ1, ξ2, · · · , ξr). It is obviously
that the basis matrix Ξ also satisfies the orthogonality condition, i.e., ΞTΞ = E, where
E is unit matrix with dimension r and r ≪ N. Once the optimal POD basis is obtained,
the temperature solution θ(t) on any node at any time can be represented as a linear
combination of the optimal POD basis as follows:

θ(t) = β1(t)ξ1 + β2(t)ξ2 + · · ·+ βr(t)ξr, (22)

where βi(t), i = 1, 2, · · · , r are the coefficients. Let β = [β1, β2, · · · , βr]
T , then

θ = Ξβ. (23)

Substituting Equation (23) into the FEM semi-discrete formulation of Equation (11), we can get

MΞβ̈ + CΞβ̇ + KΞβ = F, (24)

next, by multiplying ΞT on each of the left- and right-hand terms of Equation (24), we
obtain the reduced-order model for the non-Fourier heat conduction problem based on the
POD technique as follows:

ΞT MΞβ̈ + ΞTCΞβ̇ + ΞTKΞβ = ΞT F. (25)

For simplicity and convenience, Equation (25) can be further written as

M̃ β̈ + C̃β̇ + K̃β = F̃ (26)

where
M̃ = ΞT MΞ, C̃ = ΞTCΞ, K̃ = ΞTKΞ, F̃ = ΞT F

It is clear that the full-order model of order N in Equation (11) is reduced to the reduce-
order model of order r in Equation (26), which means that the reduced-order FEM-POD
method has only r unknowns at each time loop, whereas N unknowns for FEM method
and r ≪ K. Thus, if the Equations (11) and (26) are solved by the Newmark scheme, we
can expect the reduced-order FEM-POD method to require less computational time than
the full order FEM method, although some additional computational time is required to
determine the optimal POD base using SVD.

In reverse, once we acquire the reduced-order solution βn+1 from Equation (26) with
the Newmark scheme, the global solution θn+1 can be obtained by θn+1 = Ξβn+1. We
summarize the reduced-order FEM-POD algorithm in six steps in Algorithm 1.

Algorithm 1 Reduced order FEM-POD algorithm for non-Fourier heat transfer problems

1: Generate the snapshots ensemble A = (θ1, θ2, · · · , θL) by solving the FEM method (11)
with the Newmark scheme.

2: Use the SVD method to obtain the eigenvalues and orthogonal eigenvectors of A.

3: Determine the number of optimal POD basis by ∑r
i=1 λi

∑s
i=1 λi

≥ 99.99% and obtain the optimal
POD basis matrix Ξ .

4: Use the optimal POD basis matrix Ξ to generate the reduced-order FEM-POD Equation (26).
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5: Solve the reduced-order FEM-POD Equation (26) by the Newmark scheme and obtain
the reduced-order solution βn+1 .

6: Expand the reduced-order solution βn+1 to the global solution θn+1 by θn+1 = Ξβn+1.

4. Numerical Examples and Discussion

In this section, to demonstrate the feasibility of the proposed numerical method, we
give three numerical examples. Specifically, in order to test the efficiency of the present
method, in Example 1 with the analytical solution, the L2 norm error and the processing
time for both FEM and the FEM-POD method solution. All the examples are run on MAT-
LAB 2021a on a 128 GB RAM laptop with an AMD Ryzen 5950X CPU (AMD, Santa Clara,
CA, USA).

Example 1

This example considers a square domain Ω = [0, 1]2 with a heat source of Q(x, t) =
−100τ exp(−100t) − 4, where the relaxation time τ = 0.1 and k = c = ρ = 1. The
exact solution of temperature for this problem is θ(x, t) = x2 + y2 + τ exp(−100t) [8]. All
boundaries are considered Dirichlet boundary conditions, thus, using the above analytical
solution. Therefore, using the analytical solution above, the initial condition is given
as follows {

θ(x, 0) = x2 + y2 + τ,
∂θ(x,0)

∂t = −100τ,

and the boundary conditions are specified by
θ(0, y, t) = y2 + τ exp(−100t),
θ(x, 0, t) = x2 + τ exp(−100t),
θ(1, y, t) = 1 + y2 + τ exp(−100t),
θ(x, 1, t) = 1 + x2 + τ exp(−100t).

In this example, for the purpose of comparison, three types of meshes are considered, that
is, 10 × 10, 20 × 20 and 40 × 40 square elements. For all tests in the example, the time-step
∆t = 0.001 and calculate until t = 1, and the snapshots are generated by the FEM. The
eigenvalues of the snapshot matrix for 20× 20 square elements are shown in Figure 1. From
the computed results, we can distinctly find these eigenvalues decay rapidly and the first
eigenvalue accounts for more than 99% of the accumulated energy. As we will soon see,
the number of POD basis r from 1 to 6 can give the satisfactory numerical results for this
example. Table 1 shows the FEM and FEM-POD calculation times for different meshes and
r with ∆t = 0.001. As the number of elements increases, the effect of POD in reducing the
calculation time becomes more obvious. Meanwhile, when the number of POD basis r is
changed from 3 to 6, the computational time of FEM-POD almost unchanged in the same
elements and considering the systematic error of computer timing.

Figure 2 illustrates the correlation between the quantity of POD bases and the L2 norm
error when ∆t = 0.001 and using 20 × 20 square elements at t = 1. Evidently, a limited
number of POD bases suffice to minimize the L2 norm error, highlighting the FEM-POD’s
efficiency in significantly diminishing unknown variables while maintaining satisfactory
computational precision. Furthermore, as the number of POD bases r increases beyond a
certain threshold, the L2 norm error plateaus. Additionally, Figure 3 compares the numerical
solutions at points A(0.6, 0.2), B(0.6, 0.4) and C(0.6, 0.6) between the FEM-POD approach
and the exact solution, revealing excellent alignment between the two sets of results.
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Table 1. Comparison of computational times (s) for Example 1, utilizing ∆t = 0.001, τ = 0.1, and
varying numbers of elements and POD bases.

Elements
r = 3 r = 6

FEM FEM-POD FEM FEM-POD

10 × 10 0.140216 0.056844 0.140133 0.055176
20 × 20 0.880241 0.078657 0.915028 0.078721
40 × 40 4.508071 0.110092 4.520868 0.111787

Figure 1. Distribution of eigenvalues with 20 × 20 square elements for Example 1.

Figure 2. The relationship between the L2 norm error of FEM-POD and the number of POD basis for
Example 1 with 20 × 20 square elements and ∆t = 0.001.

(a) FEM-POD solution (b) Absolute error

Figure 3. Temperature and its absolute error versus time at points A(0.6, 0.2), B(0.6, 0.4) and C(0.6, 0.6)
with r = 5 for Example 1.

Example 2

We consider a rectangular domain Ω = [0, 5]× [0, 0.5] subjected to various types of laser
heat sources. In this scenario, the heat conductivity is set to k = 1 W/(m·◦C), and the heat
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capacity ratio is ρc = 2 J/(m3·◦C). The initial condition for this example is provided as
follows {

θ(x, 0) = 0,
∂θ(x,0)

∂t = 2 exp(−x).

When t > 0, the boundary of the rectangular domain is adiabatic. In the example, we
consider the four different relaxation time τ = 0.5 s, 1 s, 3 s, 5 s and the following three
types of laser heat source:

Case 1. The time-independent laser heat source with a constant intensity distribution:
Q(x, t) = 4 exp(−x).

Case 2. The time-dependent laser heat source applied at specific locations within the
domain: Q(x, t) = 100[exp(−0.2t)− exp(−0.4t)] exp(−x).

Case 3. The time-dependent laser heat source applied at specific locations within the
domain: Q(x, t) = 200[exp(−0.4t)− exp(−0.8t)] exp(−x).

For the purpose of comparison, in this example, three kinds of meshes are used, that is,
25 × 10, 50 × 20, and 100 × 40 rectangular elements. In fact, there is currently no analytical
solution to the problem, but we also use the solution given in ref. [25] as the reference
solution of the problem, just like Yao et al. [8]. For all tests in the example, we take the time
step ∆t = 0.01 and the snapshots are generated by FEM. The first 25 eigenvalues of the
snapshots matrix for 25× 10 elements and 50× 20 elements are shown in Figure 4. From the
numerical point of view, the size of the eigenvalues drop very quickly, and the accumulation
of the first three eigenvalues accounts for more than 99% of all the eigenvalues. Thus, we
take r = 10 in this example for all the nodal distribution, that is, we only need 10 POD basis.

(a) 286 nodes (b) 1071 nodes

Figure 4. Distribution of eigenvalues with different nodes for Example 2.

Tables 2 and 3 show the comparison of the results obtained by FEM, FEM-POD and
the reference solution taken from [8]. The results demonstrate that the FEM-POD solutions
are in good agreement with both the reference solution and the FEM solutions, regardless
of whether a time-independent or time-dependent laser heat source is used. This indicates
that FEM-POD has a high level of computational accuracy for non-Fourier heat conduction
problems. To assess the computational accuracy of FEM-POD, Figures 5–7 compare the
computed temperature histories at point A(0, 0.25), point B(1.0, 0.25) and point C(3.0, 0.25)
using FEM-POD and FEM with varying relaxation times and laser heat sources. It is clear
from these figures that, at first glance, the present numerical solutions are very close to
the FEM solutions under the different relaxation time and laser heat source. For the time-
independent laser heat source, the temperatures at the three points increase with time as
shown in Figure 5 for all considered relaxation time. For the time-dependent laser heat
source, the temperatures at points A and B increase rapidly with time and reach a maximum
value, and then decreased slowly. However, the temperatures at point C generally increase
with time for four different relaxation times. Table 4 illustrates the computational times
of both FEM and FEM-POD across different nodal distributions, utilizing parameters of
∆t = 0.01, τ = 0.5, and r = 10 at t = 30 s. It is evident that, for identical node distributions,
FEM-POD consistently demonstrates a reduced computational time compared to FEM.
Furthermore, as the number of nodes increases, the computational time saved by FEM-



Coatings 2024, 14, 497 10 of 17

POD becomes more pronounced in comparison to FEM, highlighting its effectiveness in
enhancing computational efficiency.

Table 2. Temperatures of nodes along the line y = 0.25 with ∆t = 0.01, τ = 0.5, r = 10 for Case 1 of
Example 2.

x
t = 0.5 t = 1.0

FEM FEM-POD Exact [8] FEM FEM-POD Exact [8]

0.0 0.8154 0.8160 0.8144 1.4167 1.4196 1.4156
0.5 0.6292 0.6293 0.6268 1.2127 1.2150 1.2119
1.0 0.3800 0.3802 0.3802 0.8204 0.8199 0.8187
1.5 0.2305 0.2298 0.2306 0.4963 0.4957 0.4966
2.0 0.1398 0.1404 0.1399 0.3010 0.3013 0.3012
2.5 0.0848 0.0845 0.0848 0.1826 0.1825 0.1827

(a) relaxation time τ = 0.5 (b) relaxation time τ = 1

(c) relaxation time τ = 3 (d) relaxation time τ = 5

Figure 5. Temperature versus time at points A(0.0, 0.25), B(1.0, 0.25) and C(3.0, 0.25) with different
relaxation time for Case 1.

Table 3. Temperatures of nodes along the line y = 0.25 with ∆t = 0.01, τ = 0.5, r = 10 for Case 2 of
Example 2.

x
t = 0.5 t = 1.0

FEM FEM-POD Exact [8] FEM FEM-POD Exact [8]

0.0 0.9736 0.9758 0.9784 3.1640 3.1610 3.1687
0.5 0.6943 0.6944 0.6990 2.5391 2.5405 2.5440
1.0 0.4206 0.4212 0.4240 1.6040 1.6041 1.6090
1.5 0.2551 0.2545 0.2571 0.9722 0.9723 0.9759
2.0 0.1547 0.1548 0.1560 0.5897 0.5901 0.5919
2.5 0.0938 0.0945 0.0946 0.3577 0.3568 0.3590
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(a) relaxation time τ = 0.5 (b) relaxation time τ = 1

(c) relaxation time τ = 3 (d) relaxation time τ = 5

Figure 6. Temperature versus time at points A(0.0, 0.25), B(1.0, 0.25) and C(3.0, 0.25) with different
relaxation time for Case 2.

(a) relaxation time τ = 0.5 (b) relaxation time τ = 1

(c) relaxation time τ = 3 (d) relaxation time τ = 5

Figure 7. Temperature versus time at points A(0.0, 0.25), B(1.0, 0.25) and C(3.0, 0.25) with different
relaxation time for Case 3.

Table 4. Comparison of the computational time(s) for Example 2 with ∆t = 0.01, τ = 0.5, r = 10.

Nodes FEM FEM-POD

286 0.136045 0.029175
1071 0.714073 0.042831
4141 7.549349 0.127767

Example 3

In this example, we consider a large square domain denoted by Ω1 = [−0.1, 0.1]2 which
contains a smaller square hole represented by Ω2 = [−0.05, 0.05]2 as depicted in Figure 8a.
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The material properties within this domain are characterized by a heat conductivity of
k = 130 W/(m·◦C), a heat capacity of c = 400 J/(Kg·◦C), and a density of ρ = 2700 Kg/m3.
Additionally, a relaxation time of τ = 0.5 s is specified. The initial conditions are set to
0 °C throughout the domain. The outer lower boundary is maintained at a temperature
of 100 °C while the Robin boundary conditions are applied to the remaining boundaries.
These Robin conditions involve a heat transfer coefficient of h = 1000 W/(m2·◦C) and an
ambient temperature of 200 °C. As in the previous examples, here we consider three kinds
of meshes, namely 300 elements, 1200 elements (as shown in Figure 8b) and 7500 elements.
Meanwhile, the time step ∆t = 1s and the end time is 250 s.

(a) geometry (b) mesh

Figure 8. Schematic diagram of geometry and mesh for Example 3.

Figure 9 illustrates the eigenvalues for an example comprising 1320 nodes and 1200 el-
ements. Notably, these eigenvalues exhibit a rapid decay pattern. Through these com-
putational results, using Equation (21), when we take r = 12, the accumulating energy
of the whole eigenvalue information will reach 99.99%. Thus, we take 12 POD basis for
this example with all meshes. Figures 10 and 11 depict the temperature contours obtained
using both FEM and FEM-POD at time instances t = 10 s and t = 250 s, respectively, with
1320 nodes. Upon visual inspection of these figures, it is evident that the temperature
distributions computed by FEM-POD exhibit strong agreement with those generated by
the FEM. To further substantiate the computational accuracy of FEM-POD, a comparative
analysis is presented in Figure 12, which compares the temperature histories at points
A(0,−0.07), point B(0.07, 0) and point C(0, 0.07) obtained from both methods. As we
expected, the temperatures at three points obtained by FEM-POD matched those obtained
by FEM very well. Table 5 presents a comparison of the computational times between FEM
and FEM-POD for Example 3, with parameters set to ∆t = 1, τ = 0.5, r = 12 across varying
numbers of nodes. The data unequivocally demonstrates that FEM-POD offers significant
computational savings compared to the traditional FEM when addressing non-Fourier heat
conduction problems. This advantage becomes increasingly apparent as the number of
nodes and elements increases. This example reinforces the fact that FEM-POD not only
maintains computational accuracy but also significantly enhances computational efficiency
compared to the FEM. Consequently, the proposed FEM-POD method is highly suitable for
rapidly solving non-Fourier heat conduction problems.

Table 5. Comparison of the computational time(s) for Example 3 with ∆t = 1, τ = 0.5, r = 12.

Nodes Elements FEM FEM-POD

360 300 0.038014 0.016318
1320 1200 0.219562 0.028162
7800 7500 3.218023 0.109611
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Figure 9. Distribution of eigenvalues with 1320 nodes and 1200 elements for Example 3.

(a) FEM solution (b) FEM-POD solution

Figure 10. Temperature contours of FEM and FEM-POD at time t = 10 s with 1320 nodes for Example 3.

(a) FEM solution (b) FEM-POD solution

Figure 11. Temperature contours of FEM and FEM-POD at time t = 250 s with 1320 nodes for Example 3.

Figure 12. Distribution of temperature versus time at points A(0, −0.07), B(0.07, 0) and C(0, 0.07) with
1320 nodes for Example 3.
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Example 4

In this example, we consider the following three-dimensional model, that is, a silicon
chip with sizes of 5 mm × 5 mm × 50µm (for length, width and thickness, respectively)
is considered as shown in Figure 13. The material properties of the chip include a heat
conductivity of k = 148 W/(m·◦C), a heat capacity of c = 700 J/(Kg·◦C), a density of
ρ = 2330 Kg/m3, and a relaxation time of τ = 5µs. The initial conditions for the chip
are set at a uniform temperature of 20 °C, and all surfaces are assumed to be thermally
insulated. A transient pulse laser is then applied to a portion of the center of the top
surface, introducing a heating source represented by Q(x, t) = 1016t exp(−106t). Figure 14
presents a plot of the eigenvalues computed for this three-dimensional problem using
32,000 hexahedral elements. The plot reveals that the eigenvalues decrease monotonically,
indicating a reduction in the system’s thermal response over time. However, it is worth
noting that the rate of decline in the eigenvalues is not as pronounced as it was in the
two-dimensional case, suggesting a more gradual dissipation of heat energy in the three-
dimensional model. Figures 15 and 16 show the temperature distributions of FEM and
FEM-POD at time t = 25µs with 32,000 hexahedral elements along the top surface, center
layer and bottom surface of the silicon chip. It can be found that the solutions obtained
by FEM and FEM-POD are identical with each other. Similar to Example 3, we present a
detailed comparison of the computational results obtained using both the Finite Element
Method (FEM) and the Finite Element Method enhanced with Proper Orthogonal Decom-
position (FEM-POD) as shown in Figure 17. Specifically, we focus on the temperature
histories at three critical points within the silicon chip: Point A(2.5 mm, 2.5 mm, 50µm),
point B(2.5 mm, 2.5 mm, 25µm) and point C(2.5 mm, 2.5 mm, 0µm). As expected, the tem-
peratures calculated at these points using the FEM-POD technique align closely with those
determined through the traditional FEM approach. This confirms the accuracy of the
FEM-POD method in simulating the thermal behavior of the chip. To further evaluate
the computational efficiency of both methods, we compared their CPU running times.
These simulations were performed using a time step of ∆t = 5 × 10−2 µs and a relaxation
time of τ = 5 µs, while varying the number of elements. For this analysis, we utilized
20 POD bases (r = 20) (Table 6). The results clearly demonstrate that the CPU running
time required for the FEM-POD simulations is significantly less than that of the full-order
FEM simulations. This substantial reduction in computational time highlights the practical
advantages of incorporating the POD technique into FEM-based simulations, particularly
for complex three-dimensional models where computational efficiency is crucial.

Figure 13. The pulse laser heating arrangement for the three-dimensional model in Example 4.
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Figure 14. Distribution of eigenvalues with 80 × 80 × 5 hexahedral elements for Example 4.

(a) z = 50µm (b) z = 25µm (c) z = 0µm

Figure 15. Temperature distribution of FEM at time t = 25µs with 80 × 80 × 5 hexahedral elements
along z = 50µm, 25µm, 0µm, respectively.

(a) z = 50µm (b) z = 25µm (c) z = 0µm

Figure 16. Temperature distribution of FEM-POD at time t = 25µs with 80 × 80 × 5 hexahedral
elements along z = 50µm, 25µm, 0µm, respectively.

Figure 17. Distribution of temperature versus time at points A, B and C for Example 4.

Table 6. Comparison of the computational time(s) for Example 4 with ∆t = 5× 10−2 µs, τ = 5µs, r = 20.

Elements FEM FEM-POD

300 × 300 × 15 1026.97 6.542
160 × 1600 × 8 271.66 1.235

80 × 80 × 5 42.98 0.3648
40 × 40 × 3 8.16 0.1721
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5. Conclusions

This study successfully introduces a model reduction technique known as FEM-POD,
which combines the FEM with the POD and utilizes the Newmark scheme for temporal
discretization. This innovative approach effectively addresses non-Fourier heat conduction
problems. The numerical results presented for four distinct examples consistently illus-
trate that the FEM-POD method significantly outperforms the traditional FEM method in
terms of prediction time, while maintaining equivalent computational accuracy. Notably,
although the primary emphasis of this paper is on the integration of FEM and POD, the
underlying principles of the FEM-POD methodology can be seamlessly applied to other nu-
merical techniques, including the Boundary Element Method (BEM) or Meshless methods.

Author Contributions: Methodology, H.P.; Investigation, F.K.; Resources, X.Z.; Writing—review &
editing, B.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (No.
11972216) and the Cross-integration Innovation team of modern Applied Mathematics and Life
Sciences in Yunnan Province, China (No. 202405AS350003).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: We are grateful to the School of Water Resources and Hydropower, Wuhan
University, for providing the “MATLAB 2021a” software computing environment.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wang, L.; Xu, J.; Wang, J. A peridynamic framework and simulation of non-Fourier and nonlocal heat conduction. Int. J. Heat

Mass Transf. 2018, 118, 1284–1292. [CrossRef]
2. Aznam, S.M.; Chowdhury, M. Generalized Haar wavelet operational matrix method for solving hyperbolic heat conduction in

thin surface layers. Results Phys. 2018, 11, 243–252. [CrossRef]
3. Majchrzak, E.; Mochnacki, B. Application of numerical methods for solving the non-fourier equations. A review of our own and

collaborators’ works. J. Appl. Math. Comput. Mech. 2018, 17, 43–53. [CrossRef]
4. Xu, B.; Li, B. Finite element solution of non-Fourier thermal wave problems. Numer. Heat Transf. Part B Fundam. 2003, 44, 45–60.

[CrossRef]
5. Wang, B.L.; Han, J.C. A finite element method for non-Fourier heat conduction in strong thermal shock environments. Front.

Mater. Sci. China 2010, 4, 226–233. [CrossRef]
6. Yuvaraj, R.; Senthil Kumar, D. Numerical simulation of thermal wave propagation and collision in thin film using finite element

solution. J. Therm. Anal. Calorim. 2020, 142, 2351–2369. [CrossRef]
7. Han, S.; Peddieson, J. Non-Fourier heat conduction/convection in moving medium. Int. J. Therm. Sci. 2018, 130, 128–139.

[CrossRef]
8. Yao, W.A.; Yao, H.X.; Yu, B. Radial integration BEM for solving non-Fourier heat conduction problems. Eng. Anal. Bound. Elem.

2015, 60, 18–26. [CrossRef]
9. Yu, B.; Yao, W.A.; Zhou, H.L.; Chen, H.L. Precise time-domain expanding BEM for solving non-Fourier heat conduction problems.

Numer. Heat Transf. Part B Fundam. 2015, 68, 511–532. [CrossRef]
10. Vishwakarma, V.; Das, A.K.; Das, P. Analysis of non-Fourier heat conduction using smoothed particle hydrodynamics. Appl.

Therm. Eng. 2011, 31, 2963–2970. [CrossRef]
11. Khosravifard, A.; Hematiyan, M.R. Meshless analysis of casting process considering non-Fourier heat transfer. Iran. J. Mater.

Form. 2016, 3, 13–25.
12. Wen, Z.; Hou, C.; Zhao, M.; Wan, X. A peridynamic model for non-Fourier heat transfer in orthotropic plate with uninsulated

cracks. Appl. Math. Model. 2023, 115, 706–723. [CrossRef]
13. Liu, Y.; Li, L. Lattice Boltzmann simulation of non-Fourier heat conduction with phase change. Numer. Heat Transf. Part A Appl.

2019, 76, 19–31. [CrossRef]
14. Liu, Y.; Li, L.; Zhang, Y. Numerical simulation of non-Fourier heat conduction in fins by lattice Boltzmann method. Appl. Therm.

Eng. 2020, 166, 114670. [CrossRef]
15. Huang, M.; Tang, J.; Zhao, Y.; Ouyang, X. A new efficient and accurate procedure for solving heat condution problems. Int. J.

Heat Mass Transf. 2017, 111, 508–519. [CrossRef]

http://doi.org/10.1016/j.ijheatmasstransfer.2017.11.074
http://dx.doi.org/10.1016/j.rinp.2018.08.021
http://dx.doi.org/10.17512/jamcm.2018.2.04
http://dx.doi.org/10.1080/713836333
http://dx.doi.org/10.1007/s11706-010-0090-4
http://dx.doi.org/10.1007/s10973-020-09346-y
http://dx.doi.org/10.1016/j.ijthermalsci.2018.04.001
http://dx.doi.org/10.1016/j.enganabound.2015.04.002
http://dx.doi.org/10.1080/10407790.2015.1068030
http://dx.doi.org/10.1016/j.applthermaleng.2011.05.027
http://dx.doi.org/10.1016/j.apm.2022.11.010
http://dx.doi.org/10.1080/10407782.2019.1612155
http://dx.doi.org/10.1016/j.applthermaleng.2019.114670
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.03.109


Coatings 2024, 14, 497 17 of 17

16. Zhang, X.; Xiang, H. A fast meshless method based on proper orthogonal decomposition for the transient heat conduction
problems. Int. J. Heat Mass Transf. 2015, 84, 729–739. [CrossRef]

17. Luo, Z.; Chen, G. Proper Orthogonal Decomposition Methods for Partial Differential Equations; Academic Press: London, UK, 2019.
18. Zhao, J.; Rui, H.; Song, J. A reduced-order Weak Galerkin finite element algorithm based on POD technique for parabolic problem

on polytopal mesh. Appl. Math. Lett. 2022, 127, 107842. [CrossRef]
19. Eroglu, F.G.; Kaya, S.; Rebholz, L.G. A modular regularized variational multiscale proper orthogonal decomposition for

incompressible flows. Comput. Methods Appl. Mech. Eng. 2017, 325, 350–368. [CrossRef]
20. Zhang, X.; Zhang, P. A reduced high-order compact finite difference scheme based on proper orthogonal decomposition technique

for KdV equation. Appl. Math. Comput. 2018, 339, 535–545. [CrossRef]
21. Luo, Z.; Li, H.; Sun, P. A reduced-order Crank–Nicolson finite volume element formulation based on POD method for parabolic

equations. Appl. Math. Comput. 2013, 219, 5887–5900. [CrossRef]
22. Shinde, V.; Longatte, E.; Baj, F.; Hoarau, Y.; Braza, M. Galerkin-free model reduction for fluid-structure interaction using proper

orthogonal decomposition. J. Comput. Phys. 2019, 396, 579–595. [CrossRef]
23. Dehghan, M.; Abbaszadeh, M. The use of proper orthogonal decomposition (POD) meshless RBF-FD technique to simulate the

shallow water equations. J. Comput. Phys. 2017, 351, 478–510. [CrossRef]
24. Dehghan, M.; Abbaszadeh, M. A reduced proper orthogonal decomposition (POD) element free Galerkin (POD-EFG) method to

simulate two-dimensional solute transport problems and error estimate. Appl. Numer. Math. 2018, 126, 92–112. [CrossRef]
25. Lewandowska, M. Hyperbolic heat conduction in the semi-infinite body with a time-dependent laser heat source. Heat Mass

Transf. 2001, 37, 333–342. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.01.008
http://dx.doi.org/10.1016/j.aml.2021.107842
http://dx.doi.org/10.1016/j.cma.2017.07.017
http://dx.doi.org/10.1016/j.amc.2018.07.017
http://dx.doi.org/10.1016/j.amc.2012.11.083
http://dx.doi.org/10.1016/j.jcp.2019.06.073
http://dx.doi.org/10.1016/j.jcp.2017.09.007
http://dx.doi.org/10.1016/j.apnum.2017.12.004
http://dx.doi.org/10.1007/s002310000176

	Introduction
	Mathematical Model
	The FEM and Its Reduced-Order FEM Based on POD Technique 
	The Standard Galerkin Form
	Spatial Discretization
	Time Discretization
	Reduced-Order FEM Based on POD Technique

	Numerical Examples and Discussion
	Conclusions
	References

