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Abstract: As global fish consumption rises, a large amount of waste is generated that is generally
neglected. Considering the value embedded in these resources, sustainable methods become more
important in extracting valuable ingredients from fish processing residues. Enzymatic hydrolysis is a
fast and easily reproducible method for recovering protein ingredients and obtaining valuable by-
products. To confirm its advantages, an environmental and economic impact assessment is essential.
This study overviewed the sustainability and economic viability of extracting protein compounds
and oil from Atlantic mackerel processing residues using enzymatic hydrolysis. Life cycle assessment
(LCA) and life cycle cost analysis (LCCA) methods were employed. It was found that the climate
change impact of the whole process was 0.073 kg CO2-eq per 1 g of fish protein hydrolysate (FPH).
As the process produces FPH as the main product and fish oil as the by-product, economic allocation
was used to distribute the impacts of FPH and fish oil. The findings of the LCCA showed that
producing 1 g of FPH costs EUR 3.68. The contribution analysis indicated the crucial role of electricity
and fish in environmental impacts. To ensure the accuracy of the calculation, the results of an LCA
study published previously were recalculated. The sensitivity analysis showed that the results were
susceptible to the region and source of electricity production. This research provides valuable insights
into the sustainability and economic aspects of using enzymatic hydrolysis for extracting protein
ingredients and oils from Atlantic mackerel. This can inform future investigations of environmentally
friendly and economically viable solutions for extracting fish ingredients.

Keywords: enzymatic hydrolysis; LCA; LCCA; fish protein hydrolysate; fish oil; atlantic mackerel
fish; sustainability

1. Introduction

Over the past few decades, global fish consumption has experienced a steady annual
increase. In the 1960s, the worldwide per capita consumption stood at approximately 9.0 kg,
nearly doubling by 2016 to exceed 20 kg per person [1,2]. The European Union shows an
increase in per capita consumption from 22 to 24 kg among its members from 1998 to 2030.
Notably, countries such as Spain and Portugal in the Iberian Peninsula are projected to
have 39 and 57 kg per capita consumption, respectively, by 2030 [2]. The increasing trend
in global fish consumption leads to generating a large amount of waste and by-products
from the fish industry. This waste has generally been neglected, causing a loss in value
embedded in this resource. In addition, the massive expansion of the aquaculture industry
is causing significant environmental consequences [3].

With the increase in global fish consumption and consequential increase in the gen-
erated waste and processing residues, the demand for sustainable extraction methods to
valorize the fish side streams and waste and isolate valuable compounds like protein and oil
also rises [4,5]. This could make the aquaculture sector and fish industry more sustainable
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by developing a circular economy concept [6,7] but may also potentially put more pressure
on the environment. This is because environmental impacts increase as the number of
stages in a process increases [8,9]. Researchers have investigated alternative extraction
methods, such as enzymatic extraction, that balance environmental considerations with
product quality, recognizing the importance of addressing these concerns [5]. These sus-
tainable methods enable us to meet the growing demand for fish products without putting
more pressure on the environment. This change of attention is in line with the growing
consumption of fish and is indicative of a positive move towards more sustainable and
responsible use of marine resources.

Different methods have been utilized to extract protein and oil from fish products,
such as heat application, chemical processes, subcritical water hydrolysis technique, and
enzymatic procedures [10,11]. Researchers are investigating environmentally friendly ex-
traction methods due to concerns about the environmental impact of solvent extraction [12].
On the other hand, heat extraction methods are time-consuming and may compromise the
integrity of health-beneficial compounds. Subcritical water hydrolysis is environmentally
friendly due to the absence of enzymes. However, it has some disadvantages such as high
working temperatures (100–374 ◦C), which could lead to the thermal degradation of some
heat-sensitive compounds. Also, subcritical water is more reactive and corrosive which
makes the process optimization more difficult [11]. In recent times, enzymatic extraction
has become popular for its environmentally friendly approach and adaptability. Enzymatic
processes enjoy advantages over traditional methods, resulting in protein ingredients that
have better biological value and are more digestible and functional [13].

Enzymatic hydrolysis is a fast and replicable method for isolating protein and extract-
ing oils from insoluble solids [4,14–16]. Moreover, it has better control, which reduces the
chance of undesired reactions that may damage high-value components like proteins [17].
Enzymatic hydrolysis does not leave residual toxic chemicals; therefore, it is preferred
in food processing [4]. A potential drawback is the high cost of enzymes [18]. Neverthe-
less, enzymatic hydrolysis is a reasonable alternative for recovering proteins and creating
products with potential applications in various areas [2]. Evaluating the sustainability
performance of enzymatic hydrolysis becomes crucial in understanding its environmental
impact. Sustainability considerations can also include economic aspects.

Life cycle assessment (LCA) is a very popular tool for the investigation of sustain-
ability in various industrial, agricultural, and aquaculture sectors [19,20]. So far, the LCA
studies in the aquaculture sector have been focused on fish capture technologies across
different regions [21], but the sustainability of fish by-product extraction processes has
been underinvestigated. As the aquaculture industry develops, there is a growing recog-
nition of the need to conduct LCA studies to gain a more comprehensive understanding
of the environmental impacts throughout the entire value chain, including by-products.
A recent review by Ruiz-Salmon and colleagues discusses the LCA of fish and seafood
products, and their main focus is on different fish species and associated industries [22].
A recently published paper by Garofalo et al. about oil extraction from tuna fish viscera
using enzymatic hydrolysis incorporates an LCA study [23]. Another LCA, conducted
by Coelho et al., investigates the production of meatballs from herring (Clupea harengus)
and lingonberry (Vaccinium vitis-idaea) pomace, products rich in protein. These studies
demonstrate the varying applications of LCA in assessing the environmental impact of
fish-related processes [24].

This study aimed to perform LCA and life cycle cost analysis (LCCA) of FPH and
oil extraction from Atlantic mackerel processing residues using enzymatic hydrolysis to
shed light on its environmental performance. The fish processing residues used here are
by-products and side streams of the fish processing facilities.

2. Materials and Methods

LCA is a well-established scientific tool for analyzing environmental footprints (e.g.,
global warming, eutrophication, and human toxicity) of products or processes [25]. Accord-
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ing to the definition provided by the International Organization for Standardization (ISO),
the framework of LCA has the following four stages: (a) goal and scope definition of the
study, (b) inventory analysis, (c) impact assessment, and (d) interpretation for conclusions
and recommendations [26–30].

2.1. Goal and Scope Definition

The definition of the goal is an essential step in conducting an LCA. It includes
identifying the reasons for the assessment, determining the target audience, and specifying
the product that will be studied. The LCA scope is defined in this stage, which involves
establishing system boundaries, determining the functional unit (FU), deciding on an
allocation method, and considering relevant assumptions.

This research project has three main goals:

• The first goal is to gain an overview of the environmental impacts of producing
FPH and fish oil from Atlantic mackerel processing residues for human consumption
through the enzymatic hydrolysis process. This enables us to recognize the hotspots
and most important contributing flows to the environmental impacts.

• The second goal is to compare the environmental performance of FPH and fish oil.
• The third goal is to investigate the sensitivity of the LCA results to the geographical

location of production.

Due to the small scale of the production in this study, the chosen FU is one gram (1 g)
of FPH. All the environmental impacts of FPH and fish oil are evaluated per 1 FU (per 1 g
of FPH).

2.2. System Boundary and Process Description

Figure 1 presents the process flow diagram and system boundary of the experiment. In
September 2022, the Atlantic mackerel processing residues without viscera were obtained
at a local fish company “Fosnavåg” and then taken to the Department of Biological Sciences
Ålesund of NTNU (Ålesund, Norway) laboratory for processing. The transportation
distance covered was approximately 68 km. The fish processing residues were generally
without viscera, but some minor viscera were found that were separated in the preparation
stage. The Atlantic mackerel processing residues were minced using a 4.5 mm hole size
mincer (Hobart A 200 N). After mincing, the resulting fish mince was divided into 1 kg
batches for further experiments. The batches were stored in a cold room at 5 ◦C for one
week. Hydrolysis experiments were conducted in 4 L closed glass vessels in a water bath
set at 52 ◦C. Warm (50 ◦C) distilled water was added to the fish mince in a 1:1 ratio, and the
mixture was stirred at 150 rpm using an overhead stirrer. Enzymes (0.1% Alkalase from
Novozymes) were added when the mixture reached a temperature of 50 ◦C.

Following 60 min of hydrolysis, bones were removed by filtering the hydrolysate
through a sieve. The enzymes were then inactivated by heating the mixture at 90 ◦C
for 10 min in a microwave oven. After cooling, the mixture was transferred to one-liter
centrifugation bottles and centrifuged at 4100× g at 4 ◦C for 30 min. Three phases were
created: lipids, soluble proteins, and a sludge. The liquid phase (lipids and proteins) was
separated from the solid phase (sludge) and further separated in a separative funnel. The
resulting soluble water phase containing proteins was collected, frozen at −80 ◦C for 24 h
and dried in a freeze drier for 72 h. The oil fraction was collected and frozen at −80 ◦C for
further processing. The protein obtained in this process is soluble protein. The insoluble
protein was separated into the sludge fraction during the enzymatic hydrolysis process. It
is worth mentioning that the working temperature in the current experiment is below the
temperature achieved in subcritical water hydrolysis and avoids damage to proteins.
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Figure 1. The process flow and system boundary of the FPH and fish oil extraction using enzymatic
hydrolysis.

Table 1 shows the amounts of input and output flows at each stage of the production
process per 1 g of FPH. The original amounts were measured during experiments, and after
that, the amounts were adjusted per 1 g of FPH. To calculate the electricity consumption of
the equipment, the technical manual was consulted for information on power consumption.
The following formula was used to calculate the electricity demand:

Electricity demand (kWh) = power (kw) × operational time (h), (1)

The OpenLCA software (v 1.11.0 by GreenDelta, Berlin, Germany) was employed in
this study, utilizing the Ecoinvent v3.8 database (Ecoinvent organization, Zurich, Switzer-
land). As the experiments were carried out in Norway, the electricity provider considered
was: Market for Electricity, High Voltage|Electricity, High Voltage|APOS, U, NO.
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Table 1. Life Cycle Inventory table of the FPH and fish oil extraction using enzymatic hydrolysis.

Stages Flows (Unit) Values

Preparation

Input
Fish processing residue (g) 17.015

Transportation (km) 68
Electricity (Wh) 0.197

Output
Fish processing residue

(transported) (g) 15.951

Viscera (g) 1.064

Storage
Input Fish processing residue (g) 15.951

Electricity (Wh) 0.1248

Output Minced fish (cold) (g) 15.951

Enzymatic hydrolysis

Input

Minced fish (cold) (g) 15.951
Enzymes (g) 0.0159

Electricity (Wh) 2481.496
Distilled water (g) 15.951

Water for the bath (g) 65.072
Ice (g) 146.413

Output

Bones (g) 1.301
Sludge (g) 7.923

Stick water (g) 231.014
Fish oil (Lipids) (g) 2.165

FPH (g) 1

2.3. Allocation

In LCA, allocating environmental impacts is crucial when multiple by-products ex-
ist [31]. The allocation of the environmental impacts is a critical aspect of the LCA method-
ology and can influence the overall sustainability assessment [32]. The main product in the
current process under study is FPH, while fish oil is treated as a by-product. One method
for distributing the environmental impacts between the main product and the by-product
is through the economic value. This method is called economic allocation. Economic
allocation is the most popular method for LCA of food products [8]. This study employs
economic allocation to assess the environmental impacts of FPH and fish oil.

2.4. Validation

To validate the accuracy and functionality of the software and database, the results
of the LCA study conducted by Garofalo et al. [23] were regenerated. One of their key
processes was chosen for the validation study. The input–output values that were provided
in their article were utilized to cross-check the results of this study.

2.5. Life Cycle Cost Analysis (LCCA)

LCCA is a strategic financial planning tool that helps decision making [33]. As sustain-
ability assessments gain more attention, LCCA emerges as a pivotal method for evaluating
the total cost implications of a product or process throughout its entire lifecycle. This ana-
lytical framework goes beyond the conventional emphasis on initial expenses, considering
operation, maintenance, and end-of-life costs. By performing an LCCA, stakeholders can
make informed decisions that align with economic and sustainable objectives. The cost
groups are as follows [34]:

• Initial investment includes the cost of essential equipment, suitable building acquisi-
tion, and establishing connections to an energy source.

• Operating costs refer to the regular expenses incurred to keep a project or asset
operational. This category includes the day-to-day costs associated with energy con-
sumption, labor, and other operational necessities essential for the efficient functioning
of the equipment.
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• Maintenance costs involves routine checkups to ensure optimal performance.
• The end-of-life cost considers the possibility of generating profit after the useful life of

an asset by selling the plant, its components, or materials, which contributes to the
overall financial strategy.

As the research process is conducted at a lab scale using specialized equipment, the
LCCA will primarily focus on operating costs. In this context, the typical considerations
related to initial investment, maintenance costs, and end-of-life costs are omitted, as they
may not be as pertinent to the scale and nature of the laboratory setting.

2.6. Sensitivity Analysis

To evaluate the sensitivity of the LCA results, an examination is conducted regard-
ing the effect of changing the impact assessment methods. This investigation compares
four impact assessment methods: Recipe Midpoint (H), IMPACT 2002+, CML v4.8 2016,
and IPCC 2013. Only the global warming potential is presented in the results since the
midpoint impact categories differ between these methods, and the values are expressed
in different units. Furthermore, the sensitivity of LCA results are evaluated when the
source of electricity production is changed to three different regions: Norway, Average EU,
and Estonia.

3. Results
3.1. Allocation

Table 2 provides the breakdown of the estimation of the economic allocation ratios. To
estimate the output price, first, the mass-based ratios of the two products are calculated
and the unit price (market price) is used to obtain economic allocation rations. Market
prices were averaged over different available online markets [35–38]. According to Table 2,
60% of the environmental impacts are allocated to FPH and 40% to fish oil.

Table 2. Physical and economic allocation metrics.

Products Output (kg) Physical
Allocation (%)

Unit Price (EUR/kg)
(Market Price) Output Price (€) Economic

Allocation (%)

FPH 0.001 31.5 7.70 0.0077 60
Fish oil 0.00216 68.4 2.37 0.00513 40

Sum of products 0.00316 0.012
Oil-to-protein ratio 2.165

3.2. Results of Validation Study

The recalculated LCA results are reported in Table 3, demonstrating the good perfor-
mance of used software and database. The values in Table 3 illustrate a close alignment
between the recalculated results and the original findings by Garofalo et al. [23]. It shows
the reliability and accuracy of the software and database.

Table 3. Recalculation of values reported by Garofalo et al. [23] to validate the accuracy of software
and database.

Climate Change
kg CO2 eq/FU

Ozone Depletion
kg CFC/FU

Freshwater Eutrophication
kg P/FU

Reported by Garofalo et al. [23] 0.8 8 × 10−8 0.00004
Recalculated in the current study 0.87 9.95 × 10−8 0.00006
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3.3. Midpoint Results

Table 4 summarizes the LCA midpoint impact assessment results for FPH and oil,
measured explicitly per 1 g of FPH using the Recipe Midpoint (H) impact assessment
method across nine impact categories. In the context of this assessment, the environmental
impacts are allocated based on the economic allocation method elucidated in Section 2.3.
A distribution strategy is established for each impact category, with 60% of the environ-
mental impact attributed to FPH and the remaining 40% allocated to oil. As the FU is 1 g
FPH, the environmental impacts of fish oil are assessed based on this FU. However, the
environmental impacts could be reported per 1 g of fish oil as well. This could be carried
out using the yield ratio of 2.165 g of fish oil per 1 g of FPH (see Table 1).

Table 4. Midpoint impact results for fish protein and fish oil.

Impact Category FPH
(per 1 g FPH)

Fish Oil
(per 1 g FPH)

Fish Oil
(per 1 g Fish Oil) Unit

climate change 0.044 0.029 0.0133 kg CO2-eq
ozone depletion 4.341 × 10−9 2.893 × 10−9 1.337 × 10−9 kg CFC-11-eq

particulate matter
formation 0.00017 0.00011 5.080 × 10−5 kg PM10-eq

freshwater
eutrophication 1.280 × 10−5 8.533 × 10−6 3.941 × 10−6 kg P-eq

fossil depletion 0.011 0.007 0.003 kg oil-eq
photochemical oxidant

formation 0.0004 0.0002 9.237 × 10−5 kg NMVOC-eq

water depletion 0.041 0.027 0.012 m3 water-eq
terrestrial acidification 0.00045 0.00029 1.339 × 10−4 kg SO2-eq
freshwater ecotoxicity 0.0014 0.0009 4.157 × 10−4 kg 1,4-DCB-eq

Figure 2A,B illustrate how inventory flows and production stages contribute to dif-
ferent midpoint impact categories. Electricity and fish are the major contributors to en-
vironmental impacts, as highlighted in Figure 2A. Regarding climate change, electricity
accounts for a significant share of 57%, while fish makes up 38.6%. The impact of electric-
ity is particularly substantial in freshwater eutrophication (89.1%) and water depletion
(99.9%). Fish is the primary contributor to impact categories like freshwater ecotoxicity,
photochemical oxidant formation, ozone depletion, and particulate matter formation, with
contributions ranging between 70% and 80%. Solid waste is identified as a noteworthy flow
in terrestrial acidification contributing 29.6%, while it remains insignificant in other impact
categories. Figure 2B highlights the significant roles of the preparation and hydrolyzation
stages, whereas the storage stage has either zero or negligible impact. In the context of
climate change, the hydrolysis and preparation stages account for 57.8% and 42.2%, re-
spectively. In freshwater ecotoxicity, each of these stages contributes equally. Hydrolysis
primarily contributes to water depletion and freshwater eutrophication, while preparation
significantly affects other impact categories.
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3.4. Life Cycle Cost Analysis (LCCA) Results

The breakdown of the cost of input materials to produce 1 g of FPH is provided
in Table 5. The unit price and the price per 1 g of FPH are aggregated based on the
geographical location of production, which is Norway. The unit price is the price of 1 unit
of input flow on the market. For example, for electricity, the unit price is EUR 0.1177 per
kwh. To evaluate the price per 1 g of FPH, the value per 1 g protein is multiplied by the
unit price.
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Table 5. Breakdown of costs associated with the production of 1 g of FPH.

Flow Value per 1 g Protein Unit Unit Price (EUR/Unit) Price per 1 g FPH (EUR)

Electricity 2.481 kWh 0.1177 [39] 0.2920
Tap water (for the bath) 0.065 kg 0.00551 [40] 0.00035

Distilled water 0.015 kg 12.61 0.1891
Ice 0.146 kg 2.5 [41] 0.365

Labor 0.131 hours 20.96 [42] 2.7457
Cleaning and sanitation 4.09 mL 0.00774 [43] 0.0316

Transportation 68 km 0.000442 [44] 0.0300
Enzyme (Alcalase) 1.595 × 10−5 kg 177.6 [45] 0.0028

Fish processing
residues 0.017 kg 1.59 [46] 0.0271

To estimate the labor costs, we assume that the production of 61 g of FPH takes 8 h.
In the original experiment, 61 g of FPH were isolated in one run. The labor cost is thus
calculated within this context.

To calculate the sanitation costs, it is assumed that 250 mL of detergent is required to
clean the equipment after producing 61 g of FPH. The pricing structure is based on the cost
of a 5 L detergent container. The unit price is provided per 1 mL of detergent. It is worth
mentioning that cleaning and sanitation were omitted from the LCA study due to the lack
of data in the databases.

A specific scenario is assumed for the estimation of the transportation cost. In this
scenario, a 6-seat Bolt Drive van is used for a 68 km trip in Oslo. The pricing model for the
Bolt Drive incorporates a base charge, a per km fee, and an additional charge per km. The
transportation expense is calculated based on the average speed of 80 km/h and a load of
420 kg (equivalent to 6 persons), with km used as the unit of measurement.

According to the LCCA analysis, the cost of producing 1 g of FPH is EUR 3.68. The
main cost drivers are labor and electricity. Inefficiency in labor and electricity usage is
apparent in lab-scale production. However, as production scales up, resources are used
more efficiently which leads to lower costs.

3.5. Sensitivity Analysis

Table 6 shows that the change in the impact assessment method has a limited effect on
the results [47]. This insight provides confidence in the reliability of the results, indicating
that the choice of impact assessment method may not significantly affect the conclusions
drawn from this study.

Table 6. Sensitivity analysis of results to changes in the impact assessment method.

Impact Category Unit FPH
Recipe Midpoint (H)

FPH
IMPACT 2002+

FPH
CML v4.8 2016

FPH
IPCC 2013

Global warming kg CO2-eq 0.044 0.041 0.044 0.044

This study evaluated the sensitivity of LCA to variations in electricity production
(Table 7). The results show a significant response. It has been observed that Norway
produces electricity with the lowest global warming potential. This outcome is because
88% of Norway’s electricity comes from hydropower [48], which is recognized as one
of the cleanest sources of electricity. In contrast, the global warming potential increases
to 0.58 kg CO2-eq when considering the average EU electricity mix. Moreover, when
generating electricity in Estonia, where approximately 65% of the electricity mix is sourced
from oil shale [49], it rises substantially to 1.26 kg CO2-eq, imposing a significant burden
on environmental resources [50].
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Table 7. Sensitivity analysis of results to changes in the region of electricity production.

Impact Category Unit FPH
Norway

FPH
Average EU

FPH
Estonia

Global warming kg CO2-eq 0.044 0.58 1.26

4. Discussion and Comparison

In the investigation conducted by Garofalo et al. concerning the extraction of oil from
tuna fish, an estimated global warming potential of 0.6–1.3 kg CO2-eq per 1 g of fish oil
was reported [23]. The study highlights the significant impact of hydrolysis and electricity
consumption on the overall environmental sustainability of the extraction process. A
thorough analysis of the inventory table in their research reveals that they used 258 g
(approximately the weight of a large grapefruit) of tuna viscera to produce 1 g of fish oil.
In contrast, the process in this study achieved an equivalent output using only 7.38 g of
Atlantic mackerel, indicating higher yield efficiency. Moreover, the difference in the use
of enzymes is noticeable in the study conducted by Garofalo et al. [23] This study used
only 0.0073 g of enzymes per 1 g of fish oil compared to their 2.9 g of enzymes for the same
amount of oil produced, as shown in Figure 3.
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Table 8 provides the chemical composition of tuna viscera and Atlantic mackerel. The
comparison of the compositions supports the findings. It reveals that Atlantic mackerel
contains higher oil and protein content levels than tuna fish, which is one of the potential
reasons behind the higher efficiency observed in this experiment. This highlights the
potential advantages and sustainability gains in selecting appropriate raw materials and
enzymatic hydrolysis approach for FPH and oil extraction, as it uses less raw material input
and chemicals.

Table 8. Comparison of chemical composition of tuna fish viscera and Atlantic mackerel fish.

Tuna Fish Viscera [51] Atlantic Mackerel [52]

Protein 10.91% 18–19%
Oil 4.42% 4–12%

Dry matter 26.83% 24%
Salt 2.18% 1.3%

5. Conclusions

This study focused on assessing the environmental and economic impact of FPH and
fish oil production via enzymatic hydrolysis. It highlighted a promising path towards
sustainable practices in response to the increasing global demand for fish products. The use
of enzymatic hydrolysis for extracting FPH and fish oil from Atlantic mackerel processing
residues is a sustainable alternative production method despite potential drawbacks such
as enzyme costs.
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Economic allocation shows that 60% of environmental impacts could be attributed to
FPH and 40% to fish oil. The LCCA shows that the production cost of 1 g of FPH is EUR
3.70, with labor and electricity identified as the primary drivers of costs. The inefficiencies
observed in these areas on the lab-scale production level suggest that scaling up could
enhance resource utilization and reduce overall costs and help industry stakeholders decide
towards this more environmentally friendly practice. It is important to recognize that the
source of electricity plays a crucial role in determining the sustainability of the overall
process. Given that Norway boasts one of the cleanest sources of electricity, changes in the
electricity production region can significantly impact the environmental sustainability of the
process. Drawing parallels with previous studies, the enzymatic hydrolysis process in the
current study shows distinct advantages for Atlantic mackerel FPH and fish oil extraction.
The experiment reveals a higher yield coupled with significantly reduced amounts of raw
materials and enzymes.

In conclusion, this research provides a foundation for further exploration and op-
timization of enzymatic hydrolysis as a sustainable solution for FPH and oil extraction.
Integrating environmental and economic assessments contributes valuable insights for
aquaculture and seafood processing industry stakeholders, guiding decisions towards more
environmentally friendly and economically viable practices. As the demand for fish prod-
ucts surges, adopting such sustainable methodologies becomes pivotal for a responsible
and resilient future.
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