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Abstract: Crowd counting is an active research area within scene analysis. Over the last 20 years,
researchers proposed various algorithms for crowd counting in real-time scenarios due to many
applications in disaster management systems, public events, safety monitoring, and so on. In our
paper, we proposed an end-to-end semantic segmentation framework for crowd counting in a dense
crowded image. Our proposed framework was based on semantic scene segmentation using an
optimized convolutional neural network. The framework successfully highlighted the foreground
and suppressed the background part. The framework encoded the high-density maps through a
guided attention mechanism system. We obtained crowd counting through integrating the density
maps. Our proposed algorithm classified the crowd counting in each image into groups to adapt the
variations occurring in crowd counting. Our algorithm overcame the scale variations of a crowded
image through multi-scale features extracted from the images. We conducted experiments with four
standard crowd-counting datasets, reporting better results as compared to previous results.

Keywords: artificial intelligence; crowd counting; crowd analysis; classification; deep learning;
semantic scene segmentation

1. Introduction

The challenging and meaningful task of precisely estimating the number of objects
and persons in an image has several applications in the Computer Vision (CV) domain.
Among many applications, crowd counting is widely used, and one of the most practical
usages of image object counting is that it can be exploited both for security and development
purposes. Similarly, crowd counting and image object counting also help in areas such as
surveys and traffic management. An accurate crowd count helps in emergency situations
such as stampedes and fire events. Hence, considering these factors, many researchers
are inclined to explore image-based object counting and its applications in various fields.
Furthermore, much of the literature covers enormous contributions in the mentioned fields
to analyze these contributions.

Whereas many data are present for crowd counting, the major bottleneck lies in
the annotation process [1]. This bottleneck can be removed using crowd-sourcing, such
as Amazon MTurk, or image-level annotations rather than bounding-box-focused ones.
However, errors are possible in the case of relying on crowd-sourced annotations. This
necessitates models that can deal with noisy labels.
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Due to vast urbanization and an abrupt increase in the world population, substantial
crowd gatherings such as religious and political events, parades, marathons, and concerts
make crowd counting an indispensable service for managing and securing the crowd
virtually and physically. Furthermore, crowd counting also helps in assessing the political
significance of protests. It is not uncommon for different political parties to come up
with different numbers for crowd gathering. Nevertheless, monitoring crowds from the
surveillance videos is quite challenging because of the occlusion among people in the crowd.
With the advent of effective deep learning algorithms and the techniques of Convolutional
Neural Network (CNNs) in the computer vision field, the applications of objects and crowd
counting have overwhelmingly improved. The structural and distribution patterns of all
such applications are in some ways similar to each other, hence the improvement in one
application implies the improvement in other related applications. This also implies that
crowd counting methods can be extended to crowd analysis applications including flow
analysis, density estimation, crowd monitoring, and son on.

To build a high level of cognitive ability in crowd-related applications, crowd counting
is of vital value. Many research contributions have been made in object-counting and
crowd-counting applications since many research communities are jointly working in this
particular field. Among these research contributions, many are applied on images and
videos of crowds in various domains [2–14], counting penguins in Antarctica using crowd-
sourced annotated images [1], vehicle counting [3], leaf counting in rosette plants [15,16],
cell microscopy [17–19], crowd analysis [20,21], pedestrian video surveillance [22], and
surveys of the environment [23,24]. Similarly, crowd counting has major applications
in population census [16,25–27], public event management [28–30], religious event man-
agement [31–36], and Closed-Circuit Television (CCTV) monitoring systems installed for
public activity monitoring [17,37]. Finally, density management services are used in mili-
tary activities for monitoring the number of soldiers, jets, drones, and vehicles to estimate
the strength of the military, its positions, and areas of deployment [38–40].

In this paper, we proposed an end-to-end Semantic Scene Segmentation (SSS) frame-
work, which uses the concept of semantic segmentation for crowd counting. To the best of
our knowledge, our proposed framework is the first to use the idea of SSS for the task of
crowd counting. Our proposed method highlighted the head region by suppressing the
non-head part through a novel optimized loss function. This guided sort of mechanism
pays comparatively more attention to the head part and encodes the specific refined density
map. We also utilized the classification function, which automatically adapts the changes
occurring in crowd counting. We performed extensive experiments on four standard
datasets, reporting better results as compared to previous results.

2. Related Work

Crowd analysis, in general, and counting, in particular, are very mature areas of CV
due to their diverse applications. Many excellent works have been reported by researchers
to address these fields. Some recent survey papers [41,42] can be explored to learn about
crowd analysis and counting.

There are generally four major classifications for the crowd-counting implementations.
These are regression-based approaches, detection-based approaches, density-based ap-
proaches, and CNN-based approaches. These four methods are discussed in the following
paragraphs;

• Detection-based approaches: Initially, most of the work on crowd counting was
performed with detection-based approaches [43–47]. These approaches apply the
head detector through a sliding window on an image. Recent methods such as R-
CNN [48–50], You Only Look Once (YOLO) [51], and Single-Shot multibox Detector
(SSD) [52] have been proposed and exploited, which attain high accuracy in sparse
scenes, but these methods do not perform well in highly dense environments.

• Regression-based approaches: To target issues in detection-based methods, regression-
based approaches [22,53,54] are proposed that can learn a mapping from the image
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patch by extracting the global features [55] or local features [56]. The global fea-
tures include the texture, edge, and gradient features, and the local features include
Scale-Invariant Feature Transform (SIFT) [57], Local Binary Patterns (LBPs) [58], His-
tograms of Oriented Gradients (HOGs) [59], and Gray-Level Co-occurrence Matrices
(GLCMs) [60]. To learn the mapping function for crowd counting, regression tech-
niques [61] and Gaussian regression [62] are exploited. These algorithms solve occlu-
sion and background clutter issues with detection-based approaches, but the spatial
information is compromised. The regression-based techniques may overestimate the
crowd in the presence of a sparse crowd.

• Density-based approaches: Similarly, the density-based methods make use of features
such as pixels or regions. This helps to maintain the location information while
avoiding the disadvantages of regression-based approaches. Lemptisky et al. [19]
exploited a density-based approach with a linear mapping between local features and
density maps. A nonlinear method, namely Random Forest Regression (RFR), was
proposed to tackle the linear approach’s issues by introducing the crowdedness before
and training two different forests with it [63]. The method outperforms the linear
method and also requires small memory for storing the forests. The issue with this
approach is that the standard features are used to extract low-level information that
cannot accurately be counted with a high-quality density map.

• CNN-based approaches: More research work is currently carried out with CNN algo-
rithms because of their robust feature representation and improved density estimation.
The CNN outperformed the traditional models to predict the density of crowds with
improved performance in [18,64–66]. Recently, improved versions of CNNs, such
as the Fully Convolution Network (FCN), have been proposed with an enhanced
architecture, density estimation performance, and crowd counting. Besides FCN,
many other CNN approaches have been proposed recently in the domain of density
estimation and crowd counting [67].
Sang et al. [11] developed an improved crowd counting approach based on the Scale-
adaptive CNN (SaCNN). The CNN was used to obtain the crowd density map, which
was further processed to find the approximate headcount. The proposed approach
was tested on the Shanghai Tech dataset and worked well on sparse and dense scenes.
More recently, Zhang et al. [68] used the CNN to count people on metro platforms.
A dataset consisting of 627 images and 9243 annotated heads was also developed.
The images were captured during peak and off-peak times during the weekdays and
weekends. The authors used the first 13 layers of VGG-16. The results on standard
datasets such as ShanghaiTech and UCF-QNRF showed a smaller MAE and MSE as
compared to the state-of-the-art methods.

Accurate annotation of the ground truth is critical for crowd counting. Dot annotations,
sometimes called land marking, put dots in the image to mark the objects of interest. This
technique is used in crowd counting, face recognition, and posture alignment. However, it
is not only time-consuming, but prone to errors as well. While a single annotator usually
achieves the dot annotation, Arteta et al. [1] proposed an approach whereby crowd-sourcing
was used to accomplish the annotation. Thirty-five-thousand volunteers were available
for annotation, and as soon as an image received 20 annotations, it was removed from the
system. As opposed to crowd-sourcing, no manual annotation is required in simulated
data since we are fully aware of every object and its location. Lei et al. [69] developed a
weak supervision model for crowd counting. Weaker annotations only require the total
count of objects. They employ the multiple density map estimation technique and are able
to obtain superior performance over already existing approaches.

Tong et al. [70] developed a simple deep learning-based model for crowd counting
using a smart camera. The proposed approach was based on multi-task learning to perform
density-level classification. Furthermore, the potential loss of detail was overcome using
transposed convolutional layers. The proposed method was used to estimate the crowd
density if the number of people was more than a threshold.
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Songchenchen’s work [71] aimed to find the head features using texture feature
analysis and crowd image edge detection. The researcher also used a multi-column multi-
feature CNN for crowd counting. The proposed methods outperformed the state-of-the-art
methods on datasets such as Shanghai Tech, USCD, WorldExpo’10, and GCC. Later, he
discussed the hardware implementation of the neural network architecture using an FPGA
for crowd counting.

Zhang et al. [12] proposed a multi-column CNN to overcome large-scale changes in
crowd images. A new dataset of 1198 images having more than 300,000 annotated heads
was also developed. Another key benefit of this approach is that once trained on one
dataset, their model can easily work with a new dataset. Nevertheless, this approach
is severely limited by the number of columns, i.e., only three branches. Cao et al. [12]
developed the Scale Aggression Network (SANet) for crowd counting based on the encoder–
decoder model. Kang and Chan [5] used the image pyramid CNN for crowd counting
while handling scale variations. Each scale of the image pyramid was fed to the FCN,
which predicted a density map. Lastly, a 1× 1 convolution combined the density maps at
various scales.

A near-real-time crowd counting approach for both images and videos using a deep
CNN was developed by Bhangale et al. [72]. The proposed model required only five
seconds to perform a headcount from the provided video. The researchers concluded that
the optimal resolution was 300× 450 pixels. The experiments were conducted on Google
Colab using a Tesla K80 GPU while employing the Shanghai Tech dataset. The results
on both the dense, as well as sparse datasets were better than the multi-column CNN of
Zhang et al. [2], the SANet of Cao et al. [12], and the image pyramid by Kang and Chan [5].

3. Proposed Method

As compared to Traditional Machine Learning (TML), recent Deep Learning Methods
(DLMs) have shown better performance for various visual recognition tasks. We in the
proposed work also employed a DLM for crowd counting. In this section of the paper,
we discuss our proposed crowd-counting method using the concept of semantic image
segmentation and the DLM.

The performance of a DLM relies on many factors, for example the kernel used, the
number of convolutional layers, and the specific filters used in each layer. We used various
combinations of Convolutional Layers (ConLs), and each layer was followed by Maximum
Pooling layers (MaxPs). We also performed experiments regarding the size of the ConL to
be used. Details of these parameters are presented in Tables 1 and 2.

Table 1. CNN layer information.

Layer Stride Size of Kernel Feature Maps Output Size

Input – – – 250× 250
ConL1 2 5× 5 96 124× 124
MaxP1 2 3× 3 96 62× 62
ConL2 2 5× 5 256 30× 30
MaxP2 2 3× 3 256 15× 15
ConL3 2 5× 5 316 12× 12
MaxP3 2 3× 3 316 6× 6
ConL4 2 5× 5 512 4× 4
MaxP4 2 3× 3 512 2× 2

We used ReLU as the function activator. As usual, a Deep Convolutional Neural
Network (DCNN) has three layers, ConL, MaxP, and FCL. We also used the same setting.
N ×M× C was the kernel with N representing the height and M the width of a specific
filter C. Similarly, we represented the MaxP filters with P×Q, where P is the height and Q
the width of each filter. Lastly, FCL was the final layer, which performed the classification.
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Table 2. Parameter setting for CNN training.

Parameters Vales

Epochs 30
Batch size 125

Momentum 0.9
Base learning rate 10−4

3.1. Model Learning

Our proposed network consisted of three parts, i.e., classification, SSS, and Density
Estimation (DE). Our proposed crowd counting model is presented in Figure 1. To extract
features from images, we used the Feature Extractor Framework (FEF). The stages in
Figure 2 represent the main blocks of the deep feature learning architecture. Stage 1
handles the initial feature variations. There are many scaling variations in images due to
different environmental circumstances. To overcome all these variation problems, we used
four receptive fields. Each of these fields had sixteen filters. The output of Stage 1 is fed
into the Stage 2 FCL layer. In Stage 2 and onwards, to extract multi-scale features, we used
2 × 2 pooling layers (maximum). Each ConL was followed by Rectified Linear Unit (ReLU).
We placed Spatial Pyramid (SP) pooling layers between the ConL and Fully Connected
Layer (FCL). We then fed the feature map, which was extracted from the input images to
the SP pooling layers. The SP pooling layers produced output, which was given to the FCL
of Stage 3. The shared module block in Stage 2 represents the SP module. The different
stages, which are Stage 3 and Stage 4, take care of the feature extraction at different scales
of the pyramid. Finally, in Stage 4, the FC layer (3) is used to extract the final features,
which are then fed into the modules for the classification, SSS, and DE modules. The details
of the different parameters can be seen in Tables 1 and 2.

FEF CNN Module

Classification

SSS

DE

Figure 1. Proposed SSS-based crowd-counting model.

ConL1

ConL2

ConL3

ConL4

FC

ConL1

ConL2

MaxP

SM

FC

MaxP

ConvL1

FC

ConL1

MaxP

SM

Shared 
ModuleShared M.

ConL1

ConL2

CovL3

FC

ConL2

ConvL2

ConvL3

Stage 1 Stage 3 Stage 4Stage 2

Figure 2. The proposed architecture of the feature extractor framework.

Our proposed classification part automatically learns the crowd’s count distribution
to adapt to the changes occurring in the crowd. We quantized the crowd count in each
crowded image into several groups. We connected the FCL to the backbone at the end side.
Both FCLs were followed by ReLU individually and had 64 and 6 neurons, respectively.
In our case, six neurons showed the count groups. We did not change the input image’s
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size to keep the distribution of the original crowd, as in the original image. We placed the
SPP layers between the ConL and FCL. The feature map extracted from the crowd images
was fed to the SPP layers, producing outputs provided to the FCL. In the classification
phase, the counts from each database were classified into six groups, which adapted to
changes in crowd counts.

In the SSS part, the training data along with the Ground Truth (GT) annotations are
given to the framework. In the DE, we predicted the final density map with a kind of
supervision from the GT density maps. We added a segmentation map and estimated the
density maps, then fed the results to the ConL. The ReLU layers encoded the final density
maps. We fixed the head regions’ weight higher. Therefore, more attention was given to the
head in the density estimation. We also introduced a loss based on the Dice coefficient in
the segmentation part. Similarly, we introduced the Euclidean distance loss in the density
estimation, which optimized the estimated density map more.

3.2. CNN Optimization

Our proposed framework included classification, segmentation, and crowd density
estimation. To overcome and alleviate the overfitting problem, we used the methodology
as followed in [73]. We optimized our framework by minimizing four loss functions,
which also included supervision loss. In the DE, we utilized the Euclidean distance, which
optimized the ED map in a better way. As a result, the obtained ED map can be given as
shown in Equations (1) and (2).

Lossint =
1

2M

M

∑
j=1
||d̂j − Dj||22 (1)

Lossden =
1

2M

M

∑
j=1
||D̂j − Dj||22 (2)

In Equation (1), d̂ represents the predicted density in the intermediate supervision
process. Similarly, D̂j shows the final ED, and Dj shows the GT density. M represents the
pixel numbers in the GT density map.

We introduced a novel loss in the segmentation part. This loss was based on the Dice
coefficient. In simple words, the Dice coefficient is twice the area of overlap between the
predicted segmentation and the ground truth divided by the total number of pixels in
two images. We optimized this loss to estimate the segmentation map for the head part.
The range of the Dice coefficient is between 0 and 1. We quantized the crowd counts into
six groups. For example, if the crowd counts in a densely crowded image ranged from 1 to
600, the images in the range from 1 to 100 would lie in the first class, and so on. We utilized
the cross-entropy loss function, which is given in Equation (3).

LossXentropy = − 1
N

N

∑
b=1

M

∑
c=1

(xb
c )log(xb) (3)

where N is the total samples used for training and M represents the number of classes, which
in our case was six. Similarly, xb

c represents the GT class, and xb shows the classification
output. We represented the weighted loss function by the following equation:

W.L = Lossint + Lossden + λLossX−entropy (4)

where we fixed the value of λ as 0.02.

3.3. Data Annotation

Tools: For a machine learning task, GT data are created through annotation. The origi-
nal data are in the form of audio, images, text, etc. A computer recognizes patterns similar
in data not provided previously through a learning process from the GT data. These
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annotation categories vary, such as 3D cuboids, lines, bounding box, dot, and landmark
annotation. In the crowd counting case, normally, dot annotation is the first step that
creates the GT and is carried out with tools such as RectLabel and Label Me.

A tool for online annotation was also developed in JAVA and Python. This specific
tool creates data for head points only. Two kinds of labels are supported by this tool: a
point and a bounding box. The image is first zoomed-in this method, and then, the head
part is labeled with some desired scaling factor. Then, the image is divided into patches
having a size of 16× 16. This specific size allows annotators to make the GT under various
scales times the original crowded image size. Annotation with this tool is comparatively
easy, and the quality is also good. For details, readers are requested to explore [54].

Pointwise annotation: In this way, annotation is divided into two stages. In the first
stage, labeling is performed, followed by the refinement of the previous labeling. In the first
step, annotators perform the labeling process. However, this method of creating the GT is a
laborious and time-consuming task. After creating the GT, additional individuals perform
the preliminary annotation, which brings a kind of refinement to the whole labeling process.

Annotation at the box level: This is a more time-consuming task as annotation is
performed in three steps here. Initially, ten to twenty percent of the points are typically
selected in an image for drawing a bounding box. Secondly, for those points having no box,
a linear regression method is adapted to obtain its nearest box along with the size. Third,
a manual kind of refining of the estimated box label is performed.

In summary, GT labels are produced through a manual process. This labeling is
performed without any automatic labeling tool. This labeling depends on a subjective
perception of a person who is involved in the labeling task. Hence, giving an accurate GT
label in this scenario is complex, and chances for error exist.

Unlike these methods, we adopted a different strategy for data annotation and creating
the GT. Since most of these methods are manual works that involve laborious work and
time-consuming efforts, we adopted a different approach for data annotation. For all
training images, a point located at the center of each head was provided. We encoded the
GT density map by employing a Gaussian kernel known as the normalized Gaussian on
every point p, which is:

G(x, y) = ∑
p∈S

M(p; µ, σ) (5)

where symbol (x,y) shows the location of a specific pixel in an image and S represents a
series of annotated points. Similarly, M(p; µ, σ) is the normalized Gaussian Kernel having
mean value 0 and variance 4. We used a window size of 15× 15. We used this method to
generate GT density maps. As it is impossible to label GT data for segmentation for larger
datasets manually, we proposed an effective way for the GT segmentation map to have the
same background and foreground as the GT density maps.

4. Results and Discussion
4.1. Experimental Setup

We performed our experiments with an Intel i7 CPU having 16 G RAM. The graphical
processing unit used was the NVIDIA 840 M graphics card. All the tests were performed
with Google TensorFlow and Keras in the Python environment. We trained the model for
30 epochs while keeping the batch training size as 125. We kept this setting for all four
datasets and their experiments.

4.2. Databases

We evaluated the performance of our proposed crowd-counting framework with
four datasets including NWPU-crowd, UCF-QNRF, Shanghai Tech, and World Expo10. A
summary of the crowd counting dataset is presented in Table 3. We provide the details
about these datasets in the following paragraphs.
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Table 3. Major Crowd-Monitoring System (CMS) datasets.

Database Year Task Number of Images Source Obtained

NWPU-Crowd [47] 2020 crowd counting
and localization 5109 surveillance and Internet

UCF-QNRF [74] 2018 counting in
a crowd 1525 surveillance

Shanghai Tech [2] 2016 cross-scene
crowd counting 482 surveillance cameras

and Internet

World Expo’10 [66] 2015 counting in
a crowd 3980 surveillance

• NWPU-crowd [47]: Deep learning-based models need large-scale data for training
and testing phases. Most of the available datasets do not meet the requirements of
the deep learning-based methods. NWPU-Crowd is a large-scale dataset that can
be utilized for crowd counting. The dataset consists of 5 k images in which almost
2,133,375 heads are annotated. The density range of NWPU-Crowd is large, and
diverse illumination conditions were considered. Both Internet and self-shooting data
were used for dataset creation. For data collection, a very diverse data collection
strategy was adopted; for example, malls, stations, plazas, and resorts were used.

• UCF-QNRF [74]: This is the latest database introduced for various crowd analysis
tasks including crowd counting. The dataset has 1535 images with massive variation
in density. Images in UCF-QNRF have a higher resolution of × 300 to 9000 × 6000).
Images in UCF-QNRF were collected from Hajj footage, web search, and Flicker. An-
notation for the data is also provided. Lighting variations, diverse density conditions,
and changes in view points are the main characteristics of the dataset. Images were
collected from unconstrained conditions with sources such as buildings, roads, sky,
and vegetation. Due all the mentioned conditions, the dataset is challenging and fit
for deep learning-based models.

• Shanghai Tech [2]: The dataset has the particular feature of large-scale counting. It has
1198 images and 330,165 annotated heads are. The dataset consists of two parts, where
Part A has 482 and B 716 images. Part A images were collected from web sources and B
images from the streets of Shanghai. The authors defined various combination sets for
experiments. Most of the literature uses 300 images for training and the remaining 182
for testing for Part A. Similarly, four-hundred images of Part B are used for training
and 316 for the testing phase. Diverse scenes and highly varying density conditions
were included in the data collection to make the database challenging.

• World Expo [66]: All data for World Expo were collected from 108 surveillance cameras
installed at various places. The dataset is suited for cross-scene management scenarios
and is efficient. It has 3980 frames, which have a size of 576× 720 each. There are
199,923 labeled pedestrians in the dataset. To ensure diversity in the collected data,
disjoint bird views were used by the creators of the dataset. The reported literature
divides the training data as one-thousand one-hundred twenty-seven videos with a
length of one minute. Due to having fewer data as compared to the State-Of-The-Art
(SOTA) dataset, the database is not suitable for performing experiments with deep
learning-based models.
Some sample images from these dataset are shown in Figures 3–6. The datasets are
summarized in Table 3.



Electronics 2021, 10, 1293 9 of 17

Figure 3. Images from the World Expo [66] dataset. Adapted from ref. [66].

Figure 4. Images from the NWPU-Crowd [47] counting dataset. Adapted from ref. [47].

Figure 5. Sample images from the UCF-QNRF [74] dataset. Adapted from ref. [74].

Figure 6. Images from the Shanghai Tech [2] dataset. Adapted from ref. [2].
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4.3. Quantification of Tasks

We represented the count estimation as i by Ci. Ci is a single metric that does not
provide information, in particular about the distribution of people in an image. However,
this metric helps predict the size of a crowd, which may span many kilometers. An idea
was presented in [75], which divides the occupied area of the crowd into further smaller sec-
tions. The average number of participants in that particular area is then further estimated.
The method also estimates the mean density of the covered area. However, counting
for several crowded images at many locations is comparatively difficult. Due to a much
more complicated nature, two additional metrics, Mean Absolute Error (MAE) and Mean
Squared Error (MSE), are frequently used by researchers. We also reported our work with
these two measures. Mathematically, these measures can be defined as:

MAE =
1
M

M

∑
j=1
|Yj −Y‘

j | (6)

MSE =

√√√√ 1
M

M

∑
j=1
|Yj −Y‘

j |2 (7)

In Equations (6) and (7), M represents the test samples, Yj the ground truth count,
and Y‘

j the count estimated for the jth sample.
We noticed that crowd localization is a less explored area. Similarly, researchers

have not yet firmly established evaluation metrics for localization problems. We observed
that [54] was the only research work that proposed a one-to-one matching. However, this
idea [54] also leads to some optimistic issues. Similarly, the authors defined no penalization
method if overdetection cases occur. We noticed that the lastly discussed method has failed
to be acknowledged widely. We evaluated our method with precision, recall, and the F-
measure. These evaluation metrics are further defined as True Positive (TP), False Positive
(FP), and False Negative (FN). The TP is the number of heads that are correctly detected.
Similarly, the FN is the number of heads that are incorrectly detected as non-heads, whereas
the FP is the number incorrectly detected as heads. Mathematically we can write precision,
recall, and the F-measure as:

Precession =
(TP)

(TP) + (FP)
(8)

Recall =
(TP)

(TP) + (FN)
(9)

F-measure = 2× (Precision)× (Recall)
(Precision) + (Recall)

(10)

4.4. Comparative Analysis

The reported results with the proposed method and its comparison are presented
in Table 4. From Table 4, it is clear that we have better results in most of the cases as
compared to the previous results. We present a summary of the concluding remarks in the
paragraphs follows:

• We reported our results in the form of precision, recall, and the F-measure. We also
used other evaluation metrics, the MAE and MSE. All these values are reported
in Tables 4 and 5. From both tables, it is clear that we had much better results as
compared to previous results.

• In the last ten years, crowd counting has been explored by researchers significantly.
A summary of the results can be seen in Table 4. Researchers have introduced several
datasets that address the crowd-counting problem. We noticed that less emphasis
has been given to crowd behavior analysis and localization of a crowd. Due to many
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more applications, crowd counting has been targeted in a better way than other
crowd analysis tasks. Due to the diversity of applications, our work also focused on
crowd counting.

• The labeling process for creating GT annotation data was performed by a manual
process. We observed that this was a time-consuming process, and also, more chances
for error existed. Such a labeling process entirely depends on the subjective perception
of the person involved in labeling. Compared to this manual labeling, automatic
labeling is a comparatively better option, but it is still not a mature case to be used
effectively for research. We, in our work, also introduced an automatic labeling process
for creating GT data.

• As discussed earlier, crowd counting is an active area of research due to diverse
applications. Table 4 shows a detailed summary of the research conducted on SOTA
datasets. We reported all the metrics, including the MAE, MSE, precision, recall,
and F-measure, from the original research papers. It is very clear from the Table that
all these metrics have improved with the passage of time. Much more improvement
is brought in particular with the introduction of improved deep learning methods.

• Some research papers reported that TML methods showed better performance as
compared to the DLM. Even though through this comparison, it was not claimed
that hand-crafted features are better than deep learning-based methods. We argue
that a better understanding of the deep learning-based methods is needed for the
crowd-counting task. For example, a limited data scenario is a major drawback
faced by the deep learning-based methods. We noticed that the performance of the
traditional machine learning methods is acceptable with data that are collected in
controlled environmental conditions. However, when these TML methods were
applied to data collected in-the-wild, a drop in performance by a huge amount was
noticed. On the other hand, the DLM extracts a higher level of abstraction from the
data. As a result, the DLM outperforms traditional methods. The need for feature
engineering is reduced with deep learning-based methods. It is also worth noting
that the DLM is facing some concerns from the research community. For instance,
the DLM and its applications are complicated procedures that require various inputs
from the practitioner’s end. Most of the researchers rely on a trial and error strategy.
Hence, these methods are time consuming and more engineered. However, it must be
noted that the DLM is the only definitive choice for the crowd-counting task.

• As can be seen from Table 4, most of the DLMs for crowd counting use DCNNs.
However, most of these DCNN-based methods employ the pooling layer, which
results in comparatively low resolution and some feature loss as well. It is clear
that the deeper layers extract some high-level information, whereas comparatively
shallower layers somehow extract low-level information and features, which include
spatial information. We suggest that both deeper and shallower layer information
showed be combined for better results. More reasonable accuracy will be reported
with this, and the count error will also be reduced.

• Crowd counting is an active area of research in computer vision. Tremendous progress
has been reported in the last couple of years. From the reported results to date, it is
evident that most of the metrics such as the MAE, MSE, and F-measure have improved.
However, noting the trend of the computer vision developments in various application
scenarios with the DLM, it is clear that crowd counting is not a mature research area.
As the training phase in the DLM is facing problems due to limited data, an option for
researchers to explore is knowledge transfer [76,77].
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Table 4. CMS performance in the form of average precision, recall, and the F1-measure metrics.

Database Year Method Precision Recall F1-Measure

2021 proposed method 96.4 62.3 57.8
2019 Liu et al. [78] 66.6 54.3 59.8

NWPU-crowd 2019 Gao et al. [79] 55.8 49.6 52.5
2017 Hu et al. [80] 52.9 61.1 56.7

2021 proposed method 84.5 76.42 80.25
2020 Xue et al. [81] 82.4 78.3 80.00
2019 Liu et al. [78] 81.5 71.1 75.0

UCF_QNRF 2018 Liu et al. [78] 59.3 63.0 61.09
2018 Shen et al. [82] 75.6 59.7 66.71
2018 Idrees et al. [54] 75.8 63.5 69.10
2016 Zhang et al. [2] 71.0 72.4 71.69
2016 He et al. [83] 61.6 66.9 64.14
2016 Huang et al. [84] 70.1 58.1 63.53
2015 Badrinarayanan et al. [85] 71.8 62.9 67.05
2015 Zhang et al. [66] 78.1 65.1 71.17

2021 proposed method 88.2 78.6 83.12
2020 Xue et al. [81] 87.3 79.2 82.05

Shanghai Tech. A 2019 Liu et al. [78] 86.5 69.7 77.12
2018 Idrees et al. [54] 79.0 72.3 75.51
2018 Liu et al. [78] 82.2 73.3 77.49
2018 Shen et al. [82] 79.2 82.2 80.67
2016 Zhang et al. [2] 76.5 81.7 78.92
2015 Zhang et al. [66] 81.9 77.9 79.84

2021 proposed method 87.7 81.1 84.27
2020 Xue et al. [81] 86.7 80.5 83.80
2019 Liu et al. [78] 79.1 60.1 68.30
2019 Zhang et al. [2] 82.4 76.0 79.07
2019 Idrees et al. [54] 76.8 78.0 77.39

Shanghai Tech. B 2019 Liu et al. [78] 78.1 73.9 75.94
2018 Liu et al. [78] 75.4 79.3 77.30
2018 Shen et al. [82] 80.2 78.8 77.34
2015 Zhang et al. [66] 84.1 75.8 79.73

2021 proposed method 83.3 84.5 83.89
2020 Xue et al. [81] 82.0 81.5 81.74
2019 Idrees et al. [54] 72.4 78.3 75.23
2019 Liu et al. [78] 73.7 79.6 76.52
2019 Liu et al. [78] 71.6 75.4 73.45

World Expo 2019 Zhang et al. [2] 80.9 77.5 79.16
2018 Liu et al. [78] 73.8 78.2 75.93
2018 Shen et al. [82] 68.5 81.2 74.31
2015 Zhang et al. [66] 79.5 73.1 76.16
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Table 5. CMS performance in the form of the MAE and MSE metrics.

Database Year Method MAE MSE

2021 proposed method 78.2 301.9
2021 Abousamra et al. [86] 107.8 438.5
2021 Liang et al. [87] 86.0 312.5

NWPU-crowd 2019 Gao et al. [79] 127.3 439.9
2019 Liu et al. [78] 151.5 634.7
2017 Peiyun et al. [88] 272.4 764.9
2015 Ren et al. [49] 414.2 1063.7

2021 proposed method 96.4 162.2
UCF_QNRF 2019 Liu et al. [89] 107 183

2019 Jiang et al. [90] 113 188
2019 Wan et al. [91] 101 176
2018 Li et al. [13] 113.2 189.4
2017 Zhang et al. [92] 111 190

2021 proposed method 56.7 93.1
Shanghai Tech. A 2019 Guo et al. [93] 64.2 99.9

2019 Liu et al. [89] 62.3 100.0
2019 Jiang et al. [90] 64.2 109.1
2019 Wan et al. [94] 64.7 97.1
2019 Zhang et al. [92] 59.4 102.0
2018 Li et al. [13] 68.2 115.0
2018 Cao et al. [12] 67.0 104.5
2017 Zhang et al. [2] 110.2 173.2

2021 proposed method 7.4 10.2
2019 Guo et al. [93] 8.8 13.5
2019 Lie et al. [89] 7.8 12.2
2019 Jiang et al. [90] 8.2 12.8

Shanghai Tech. B 2019 Wan et al. [94] 8.1 13.6
2019 Zhang et al. [92] 7.9 12.9
2017 Zhang et al. [2] 26.4 41.3
2018 Li et al. [13] 10.6 16.0
2018 Cao et al. [12] 8.4 13.6

2021 proposed method 8.3 –
2020 Gao et al. [95] 21.6 –

World Expo 2019 Gao et al. [79] 17.4 –
2019 Gao et al. [79] 10.8 –
2019 Wang et al. [91] 26.3 –
2017 Zhu et al. [96] 32.4 –

5. Summary and Concluding Remarks

Crowd counting is an essential task in crowd image analysis due to the very diverse
applications. Crowd counting is challenging when the proposed algorithm is particularly
exposed to data collected in diverse conditions and in-the-wild. However, researchers from
the CV community have shown significant progress, in particular in the last 10 years. We
proposed an end-to-end SSS-based crowded-counting algorithm. We introduced the idea
of using semantic segmentation of an image showing a crowd. The proposed method also
adapted the changes occurring in crowd counts through optimization of the classification
part. We introduced a novel loss function, which improved the performance of the proposed
method on SOTA datasets. We validated our method on four standard datasets including
NWPU_Crowd, Shanghai Tech, UCF_CC, and World Expo and obtained better results as
compared to the previous ones. At the end, we are expecting some excellent evaluations
using more optimized deep learning-based techniques for crowd counting.
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