
Citation: Zheng, Z.; Han, Y.; Chi, Y.;

Yuan, F.; Cui, W.; Zhu, H.; Zhang, Y.;

Zhang, P. Network Resource

Allocation Algorithm Using

Reinforcement Learning Policy-Based

Network in a Smart Grid Scenario.

Electronics 2023, 12, 3330. https://

doi.org/10.3390/electronics12153330

Academic Editors: Ahmed

Abu-Siada and Antonio Brogi

Received: 3 July 2023

Revised: 26 July 2023

Accepted: 1 August 2023

Published: 3 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Network Resource Allocation Algorithm Using Reinforcement
Learning Policy-Based Network in a Smart Grid Scenario
Zhe Zheng 1, Yu Han 2,*, Yingying Chi 1, Fusheng Yuan 1, Wenpeng Cui 1, Hailong Zhu 3, Yi Zhang 4

and Peiying Zhang 4

1 Beijing Smartchip Microelectronics Technology Company Ltd., Beijing 100192, China;
zhengzhe@sgchip.sgcc.com.cn (Z.Z.); chiyingying@sgchip.sgcc.com.cn (Y.C.);
yuanfusheng@sgchip.sgcc.com.cn (F.Y.); cuiwenpeng@sgchip.sgcc.com.cn (W.C.)

2 China Mobile Group Shandong Co., Ltd., Jinan 250001, China
3 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and

Telecommunications, Beijing 100876, China; zhuhl@bupt.edu.cn
4 Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum

(East China), Qingdao 266580, China; zhangyi@s.upc.edu.cn (Y.Z.); zhangpeiying@upc.edu.cn (P.Z.)
* Correspondence: hanyu@sd.chinamobile.com

Abstract: The exponential growth in user numbers has resulted in an overwhelming surge in data
that the smart grid must process. To tackle this challenge, edge computing emerges as a vital
solution. However, the current heuristic resource scheduling approaches often suffer from resource
fragmentation and consequently get stuck in local optimum solutions. This paper introduces a novel
network resource allocation method for multi-domain virtual networks with the support of edge
computing. The approach entails modeling the edge network as a multi-domain virtual network
model and formulating resource constraints specific to the edge computing network. Secondly, a
policy network is constructed for reinforcement learning (RL) and an optimal resource allocation
strategy is obtained under the premise of ensuring resource requirements. In the experimental
section, our algorithm is compared with three other algorithms. The experimental results show that
the algorithm has an average increase of 5.30%, 8.85%, 15.47% and 22.67% in long-term average
revenue–cost ratio, virtual network request acceptance ratio, long-term average revenue and CPU
resource utilization, respectively.

Keywords: smart grid; edge computing; resource allocation; multi-domain virtual network;
reinforcement learning

1. Introduction

Smart grids are based on high-speed communication networks, advanced sensing
devices and algorithms which are used to realize low delay, high quality of service, high
flexibility, security, and green, reliable and intelligent application of power systems [1].
Among them, calculation determines the execution method of smart grid data analysis
and is the basis of smart grid services; the data volume of smart grids is also growing
rapidly [2–4]. Edge computing is one of the best ways to solve the power grid data
explosion problem and smart power grids are considered as one of the best landing sites
for edge computing [5]. Edge computing pushes some computing applications from the
center to the edge of the communications network. Unload technology is used to unload
part of the computing logic to the edge of the network near the device and the client to
perform the real-time data analysis task, and it can meet the demand of large bandwidth,
reduce processing load on computing centers, and enhance the scalability and availability
of the system [6]. Edge computing has been integrated with smart grids through chip
and communication technology, empowering them with ample computing prowess and
enabling short-range, low-delay information transfer [7]. This integration has established a

Electronics 2023, 12, 3330. https://doi.org/10.3390/electronics12153330 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12153330
https://doi.org/10.3390/electronics12153330
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0990-5581
https://doi.org/10.3390/electronics12153330
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12153330?type=check_update&version=1

Electronics 2023, 12, 3330 2 of 22

foundation for intelligent production, transmission, distribution and electricity, and simple
applications have already been achieved [8,9]. Figure 1 shows the scenario graph of an
edge computing assisted smart grid.

MEC Server A
MEC Server B MEC Server C

Tier 3

Tier 2

Tier 1

Figure 1. Edge computing assisted smart grid.

However, as a new computing mode, edge computing still has some problems, such as
lack of unified programming model, dynamic scheduling method and security standards.
Even though edge computing has a great advantage in application, there are also application
bottlenecks [10]. Firstly, the high geographic distribution and heterogeneous characteristics
of power grid equipment make it difficult to determine uniform standards and interfaces.
Secondly, because the smart grid processes so much data per second, it can lead to the
offloading of large-scale computing tasks. In addition, research on the edge computing
security of smart grids is still in the initial stage, and some achievements have been attained
but a complete research system has not been formed [11].

In a virtual network environment, the infrastructure provider (INP) controls the physi-
cal network’s resources, while the service provider (SP) rents INP resources to construct a
virtual network (VN) [12]. VN technology makes it possible to generate several VNs on the
same physical network or to connect different physical networks to form a multi-domain
virtual network [13]. These VNs can be deployed and managed independently without
interfering with each other. Based on a grid-oriented edge computing network background,
the bottom network nodes are divided into smart terminal data receiving points, sensor
data receiving points and transformer data acquisition points. For the convenience of
modeling and simulation, network resources are described as node and link resources [14].
The multi-domain scene of edge computing networks is divided into two problems: VN
partition and virtual subnetwork mapping. A virtual subnet is a part of the VN that can
be solved using a single-domain mapping algorithm. The multi-domain virtual network
mapping algorithm focuses on VN partitioning between multiple domains [15].

As a branch of machine learning, RL aims to maximize the reward signal to optimize
the updating algorithm [16]. The RL agent explores continuously in the environment to
obtain information, first chooses the corresponding action in a certain state, then interacts
with the environment to get the reward of this state; finally, according to the reward, it
constantly adjusts its own strategy. RL is generally used to solve strategy optimization
problems, including strategy, reward, value function and environmental model [17]. The
four elements are as follows. (1) A policy represents a mapping from a given state to
the actions taken in that state. (2) Reward is used to judge the behavior of the RL agent.

Electronics 2023, 12, 3330 3 of 22

(3) The value function represents the expectation of a cumulative discount reward. (4) The
environment model is the key of RL: the agent acquires the state and takes the action in
the environment, thus realizing the interaction with the environment; at the same time, the
environment will feed back the corresponding reward signal according to the action that the
agent takes. In addition to these four factors, an agent’s choice of actions at a given moment
can affect not only the reward value at that moment but also its future performance.

The balance between the exploration and utilization of agents remains unresolved.
Exploration is the hope that agents try different action choices on the basis of the existing
strategies, so as to fully traverse the action space. Utilization is to expect the agent to learn
the corresponding strategy on the basis of quickly grasping the existing experience. It can
effectively save computing resources and ensure the stability of the algorithm. Exploration
can prevent the strategy from falling into a local optimum but it also leads to a slow
convergence rate of the algorithms [18]. Therefore, how to improve the agent’s exploring
ability is a problem worth discussing and studying. In this paper, we improve the existing
policy network model from the point of view of policy network optimization, with low cost,
high bandwidth and low delay as the goals of optimization for multi-objective allocation of
edge computing network resources.

In the face of limited network resources, it is necessary to reasonably manage and
allocate resources in the smart grid to improve the utilization of network resources to
meet the needs of different application scenarios. Therefore, in this paper, we study the
problem of resource management and scheduling to improve the utilization of network
resources in smart grids. Specifically, we transform the resource management problem
into a virtual network embedding (VNE) problem and then propose an RL-based VNE
algorithm. The resources involved in the VNE process to be allocated are shown in Table A1.
Simulation results show that the algorithm significantly improved resource utilization in
edge computation networks, reduced task processing delays and reduced costs. The major
contributions of this article are as follows:

1. We introduce edge computing into smart grids and transform the resource allocation
of edge computing-assisted smart grids into a multi-domain VNE problem.

2. We propose a VNE algorithm based on dual RL, which uses a self-constructed policy
network in the node mapping phase and link mapping phase, and designs a reward
function with multi-objective optimization to achieve resource allocation.

3. Comparing the algorithm in this paper with three other VNE algorithms, it was found
that this algorithm outperformed the other algorithms.

The remainder of this paper is organized as follows. We review related work on edge
computing, multi-domain virtual networks and VNE algorithms in Section 2, and discuss
network system models and related concepts in Section 3. In Section 4, we explain our
proposed method in detail. Performance evaluation results and conclusion are described in
Sections 5 and 6, respectively.

2. Related Works
2.1. Edge Computing Network

The scenarios and requirements of the distribution network have been changed by
the development of the energy Internet, and the network structure is more complex and
variable. There is an urgent need for cutting-edge technologies such as edge computing,
software defined network and Internet of Things.

At this stage, scholars have conducted in-depth research on cloud-edge collaboration
techniques. Ren et al. [19] proposed a two-tier multi-cloud center collaboration paradigm
to effectively execute the complex computing requirements of mobile customers by using
the computational collaboration between the upper cloud center and the edge cloud. A
fiber-optic wireless access network architecture was proposed by Li et al. [20], and they
used an approximate collaborative computation offloading algorithm and game theory to
achieve joint offloading between cloud and mobile edge computing. A new framework of
global management based on the distributed integration form of central and edge clouds

Electronics 2023, 12, 3330 4 of 22

was explored by Deng et al. [21] and they explored nine application scenarios of cloud-
edge collaboration. Three different implementations of edge computing were discussed
by Dolui et al. [22], namely fog computing, Cloudlet and mobile edge computing; they
compared their characteristics, introduced edge computing to the power industry, and
proposed the application prospect of edge computing based on home energy management
systems and power demand response businesses. Lin et al. [23] analyzed the development
potential of cloud-edge collaboration and proposed a multi-dimensional approach to solve
the collaboration problem. Su et al. [24] constructed a “city brain” based on the cloud-
side collaborative urban vision computing platform using rapidly developing artificial
intelligence technology. The “city brain” is used in urban target recognition, urban event
perception, urban traffic management, urban digital modeling, etc. to support a rich variety
of business scenarios in urban management such as traffic, public security, municipalities,
education and medical care. Cloud-edge collaboration will become an important trend in
the future development of intelligent industry technology, so that cloud computing and
edge computing interact with each other to make up for the shortcomings in different
application scenarios.

Edge-side collaboration is mainly to solve the contradiction between the resource
demand of intelligent algorithms and the resource limitation of edge devices, and to balance
the application service quality and privacy protection. Wang et al. [25] proposed an edge
computing collaboration framework to support collaborative processing of latency-sensitive
multimedia IoT tasks on resource-rich mobile devices, where the key is to assign video
blocks to appropriate mobile edge video processing groups for processing. Tan et al. [26]
optimized a collaborative service framework for edge computing systems based on the
privacy trust and security assurance issues in edge computing, with full consideration
of user quality of experience (QoE) for the user application requirements characteristics.
Wang et al. [27] integrated edge computing into a low-power WAN, and the energy of two
base stations is used to accomplish the computing tasks collaboratively. Deng et al. [28]
studied the interaction and cooperation between the edge layer and the core cloud system
to meet the low latency and high speed services, weighed the power consumption and
delay in the edge and cloud computing system, and resolved the original problem into
three sub-problems of the corresponding subsystem using the approximate method.

2.2. Multi-Domain Virtual Network

The key technology to conquer the rigidity of the power grid architecture is network
virtualization, which can adapt to increasing business needs. The existing multi-domain
VNE strategy can be classified into distributed mapping and centralized mapping according
to whether there is an intermediary role between the SP and the InPs. In the distributed
mapping strategy, the SP directly requests information from each InP, and then determines
the final mapping result of VN through repeated comparison and negotiation.

Chowdhury et al. [29] forwarded the part of the VN that cannot be mapped by a single
InP to the adjacent InPs to reduce the cost of cross-domain mapping, controlled the mapping
process through signaling in the designed protocol and introduced an intermediate role
to obtain global information, reducing the huge cost of negotiation. Dietrich et al. [30]
study the problem of multi-domain VN mapping under the condition that INP only knows
limited information such as boundary nodes and inter-domain links. They use the idea
of integer programming to solve the virtual network request (VNR) partition problem.
Although they obtain the optimal mapping cost scheme, they do not further consider the
efficiency of VNR partition.

2.3. VNE Based AI

Academia has noticed that AI strategies can be used to solve the problem of VNE
with the continuous development of artificial intelligence (AI) and machine learning.
Yao et al. [31] proposed a VNE algorithm based on the policy network, which uses the
historical request data of the VN to develop the RL agent, and finds the optimal embedding

Electronics 2023, 12, 3330 5 of 22

using the policy gradient descent method. Zhang et al. [32] used graph convolution neural
network (GCNN) based on RL to automatically extract dynamic physical network features
to optimize VNE strategy. With the goal of optimizing the industrial Internet of Things
architecture, Zhang et al. [33] measures the security of physical nodes using social attribute
perception, standardizes resource constraints using resource knowledge description, trains
deep RL agents to generate embedding probability and embeds virtual nodes according
to probability.

The greatest challenge for edge computing lies in how to deploy computing and
storage capabilities dynamically, and how to collaborate and connect cloud-edge devices
efficiently and seamlessly. Multi-domain mapping does not require INP as a broker to
coordinate mapping, but allows each InP to conduct distributed mapping based on com-
mon agreements. However, the heuristic mapping method has difficulty coping with
the dynamically changing power grid resource allocation requirements and requires an
artificial intelligence based embedding strategy to adapt to complex power grid scenarios.

3. Network Structure and Problem Description
Network Models

Considering network control and management, a large-scale heterogeneous network
is usually divided according to geographical, functional and other factors. The multi-
domain virtual network structure constructed in this paper takes three domains, namely
the intelligent terminal domain, the sensor data receiving domain and the transformer
data acquisition domain. In the multi-domain network environment, the resources of the
physical network and the topological information of the infrastructure are the key factors
to complete the mapping. In this paper, we group the physical network nodes based on
the multi-domain network environment into three primary types: intelligent terminal data
receiving nodes, sensor data receiving nodes and transformer data acquisition nodes. When
considering the multi-domain VNE problem, the physical network can be represented as
an undirected weighted graph in a modeling approach GP = {NP, LP, RP}. Therefore, NP

is represented as NP = {NP
I , NP

S , NP
T }.

Considering the variations in link connections among different network segments,
we characterize them individually: LP = {LP

I , LP
S , LP

T , LP
IS, LP

ST , LP
IT}. As for RP, we break

it down into four aspects: computational capability of nodes, bandwidth, security level
of nodes and delay of links. Therefore, the physical network resource attributes are de-
fined as RP = {CPUP, SLP, BWP, DP}. The security level of nodes is defined as SLP =
{SLP

I , SLS
S, SLP

T}. The bandwidth of links is defined as BWP = {BWP
I , BWP

S , BWP
T , BWP

IS,
BWP

ST , BWP
IT}. And DS = {DP

I , DP
S , DP

T , DP
IS, DP

ST , DP
IT}. The VNR can be represented as an

undirected weighted graph GV = {NV , LV , RV}, NV represents the sets of virtual nodes
and LV represents the sets of the VNR’s virtual link. And RV = {CPUV , SRV , BWV , DV}.
We summarize the main symbols and their explanations in Table 1.

Our paper centers on addressing the resource allocation challenge in smart grids
to improve the utilization of network resources by transforming it into a multi-domain
virtual network resource allocation puzzle. To achieve this, we break down the process into
two vital stages: node embedding and link embedding. Specifically, we denote the node
embedding function as F1 = {θij| nv

i ∈ NP, np
j ∈ NP} and have the constraint:

F1(nv) = np, ∀np ∈ NP, ∃ unique nv ∈ NV . (1)

Formula (1) indicates that a physical node np
j can only allow a unique virtual node nv

i
to be embedded, so θij can be represented as:

θij =

{
1, i f nv

i → np
j .

0, else.
(2)

and the embedding of the nodes should satisfy the following constraints:

Electronics 2023, 12, 3330 6 of 22

NP

∑
j=1

θij = 1, ∀nv
i ∈ NV , np

j ∈ NP. (3)

Formula (3) indicates that each virtual node can only be mapped to a single physical
node in the current VNR. For another process, we defined a link embedding as F2 : lv

i → LP,
where lv

i represents the ith link in the VNR. The process of embedding can be represented
as a function denoted by F2 = {φij| lv

i ∈ LV , ls
j ∈ LP}, where φij can be formulated as:

φij =

{
1, i f lv

i → lp
j .

0, else.
(4)

But unlike node embedding, virtual network links can often be embedded in multiple
physical network links. The process of link embedding can be expressed as

NP

∑
j=1

φij ≥ 1, ∀lv
i ∈ LV , lp

j ∈ LP. (5)

In addition to the above constraints, we also need to take into account the constraints
on the resource properties of the link. They are the computational capacity, security level,
bandwidth and delay that were mentioned above. The following resource constraints
specific to the edge computing network are set [34].

Table 1. Notation.

Notation Definition

GP Physical networks of smart grid
NP Physical nodes set of smart grid
LP Physical links set of smart grid
RP Physical network resource attribute of smart grid
CPUP Computational capability of nodes in smart grid
SLP Security level of nodes in smart grid
BWP Bandwidth of links in smart grid
DP Delay of links in smart grid
GV VNR
NV Set of virtual nodes in VNR
LV Set of virtual links in VNR
RV Resource requirement in VNR
CPUV Computational capacity needed by the virtual nodes
SRV Security level requirements for virtual nodes
BWV Bandwidth requirements for the virtual links
DV Delay of the virtual links

1. Computational capacity: If nv
i has been embedded on node np

j , the computational
capacity resource requirement of the virtual network node does not exceed the com-
putational capacity resource of the physical node, which can be given by the following
formula:

i f θij = 1, CPUV
nv

i
≤ CPUP

np
j
. (6)

In Formula (6), CPUV
nv

i
represents the computational capacity needed by the virtual

node nv
i and CPUP

np
j

represents the computing resource available from the physical

node np
j . The total computing resource requirements of all virtual nodes embedded in

physical node np
j should not exceed the computational capacity of np

j .
|VNR|

∑
i=1

∑
nv

i→np
j

CPUV
nv

i
≤ CPUP

np
j
. (7)

Electronics 2023, 12, 3330 7 of 22

Due to the fact that the nodes are divided into three defined types and have signed
functions θij, Formula (7) can be expressed as:

θij

NP

∑
j=1

(CPUP
Inp

j
+ CPUP

Snp
j
+ CPUS

Tnp
j
) ≥

NV

∑
i=1

CPUV
nv

i
x. (8)

2. Security level: When embedding a virtual node onto a physical node, it is essential to
ensure that the security level of the physical node is equal to or greater than the level
of security required for the virtual node. We can express this as:

i f θij = 1, SRV
nv

i
≤ SLP

np
j
. (9)

In Formula (9), the security level of np
j , denoted as SLP

np
j
, must be higher than the

security requirements of nv
i denoted as SRV

nv
i
.

3. Bandwidth: For the bandwidth, we can give similar constraints to those of computa-
tional capacity resources:

i f φij = 1, BWV
lv
i
≤ BWP

lp
j
. (10)

In Formula (10), BWV
lv
i

represents the bandwidth demand of lv
i . BWP

lp
j

represents the

bandwidth resources available for lp
j . The set of links that were able to successfully

connect and integrate nodes we define as LP
ij. For the physical link LP

ij, the sum of the

bandwidth resource requirements for virtual links embedded in LP
ij must not exceed

the available bandwidth resource of LP
ij.

|VNR|

∑
i=1

∑
lv
i→lp

j

BWV
lv
i
≤ BWP

lp
j
. (11)

Another way to express the total bandwidth is:

φij

LP

∑
j=1

(BWP
Ilp

ij
+ BWP

Sli jp + BWS
Tlp

ij
+ BWP

ISlp
ij

+BWP
STlp

ij
+ BWP

ITlp
ij
) ≥

LV

∑
i=1

BWV
lv
i

.

(12)

4. Delay: If the link is successfully embedded, the delay constraint means that the delay
of the link used for the VNR should not be less than the VNR’s required delay. This
can be expressed as:

i f φij = 1, DV
lv
i
≤ DP

lp
j
. (13)

4. Algorithm
4.1. Algorithm Description

For the multi-objective allocation of network resources in edge computing networks,
we propose a policy network-based RL intelligent resource allocation algorithm. The
algorithm mainly consists of two main components: security-based node mapping and
security-based link mapping.

Electronics 2023, 12, 3330 8 of 22

4.2. Node Mapping

During the virtual node mapping phase, the physical node with the greatest possibility
of being selected can be the mapping solution for the virtual node. In order to obtain the
selected probability of physical nodes, extracting the state features of the physical nodes in
the current state can be necessary; then, obtain the state matrix and put the state matrix
into the trained node mapping policy network to output the selected probability of the
physical nodes.

4.2.1. Node Features

In order to describe the node status more accurately and describe the current physical
network status more accurately, this paper extracts node-related features. The main ex-
tracted features include Node Computing Resources, Adjacent Link Bandwidth, Distance
Correlation, Time Correlation and Node Security; this paper also connects all the features
of a single node into a feature vector, and the feature vectors of nodes are combined into a
node feature state matrix that represents the physical network state.

• Node Computing Resources (CPU(np
k)): the available CPU resources of np

k .
• Adjacent Link Bandwidth (BW(np

k)): the quantity of available link bandwidths con-
nected to np

k .
• Distance Correlation (DSC(np

k)): the average of distances from np
k to mapped nodes.

• Time Correlation (TC(np
k)): the average value of the quantity of the delays used from

np
k to all other nodes in the network.

• Node Security (NSE(np
k)): measures the security of Np

k deployable virtual nodes.

After extracting the features of all the physical nodes, their values are adjusted to be
between 0 and 1 by the min–max normalization method:

x, = (x− xmin)/(xmax − xmin). (14)

So, the eigenvector of the k-th physical node can be represented by Mk:

Mk = (CPU(np
k), BW(np

k), DSC(np
k), TC(np

k), NSE(np
k)). (15)

Take the eigenvectors of each physical node as a row to construct the node eigen-
state matrix.

Matrixnode = (m1, m2, . . . , mn)
T . (16)

4.2.2. Node Policy Network

Due to the continuous assignment of the state space of the VNE problem, this paper
uses a policy-based approach for RL. Policy-based methods are usually combined with
deep learning to evolve into policy network-based methods. The most important step in the
process of node mapping is to calculate the probability of all possible choices through the
current state of the physical network. This step can be achieved through a policy network.
When mapping available virtual nodes, the policy network is used to find the best physical
node to host virtual nodes. The node strategy network constructed in this paper includes
input layer, convolution layer, softmax layer, filter layer and output layer.

• Input layer: Obtain the physical node feature matrix of the physical network by
reading Formula 15 in the current state.

• Convolution layer: Evaluate the resources of each physical node. In order to acquire
the available resource vector of each physical node, this layer performs convolution cal-
culation on the feature matrix of the input layer. Each output of a convolutional layer
represents an available resource vector for a physical node. The specific calculation
method of this layer is as follows:

hk = ReLU(wn ·mk + bn) =

{
0, otherwise.

wn ·Mk + bn, wn ·Mk + bn ≥ 0.
(17)

Electronics 2023, 12, 3330 9 of 22

ReLU(·) is a piecewise linear function, which is used as the activation function.
• Filtering layer: Refer to the resource vector obtained in the previous layer to judge

whether the physical node is available. An unavailable physical node means that the
remaining CPU resources of this physical node cannot support current virtual node
mapping. The filtering layer filters out unavailable nodes and outputs the available
resource vectors of all candidate physical nodes.

• Softmax layer: Normalize the available resource vectors of each physical node obtained
by the filtering layer. The larger the value, the greater the benefits obtained when
mapping the virtual node to the physical node.

pk =
hk

∑i hi
. (18)

• Output layer: Output the probability of each physical node being selected as a
hosting node.

Pnode = (p1, p2, . . . , pn)
T . (19)

Reward function: The agent learns about the working state of the model through
rewards. The reward function is fed back to the agent, so that the agent understands
whether the current action is correct or wrong, and the agent performs self-regulation
according to the reward function. In this paper, we use the weights method (α, β) to face
different QoS requirements and the reward function is defined as:

Reward(GV) = α× 1
Delay(GV)

+ β× Rev(GV)

Cost(GV)
. (20)

Delay(GV) represents the delay of GV , defined as

Delay(GV) = ∑
lv∈LV

∑
ls∈M(lv)

D(ls), (21)

where M(lv) represents the set of physical links mapped by lv and D(ls) represents the
delay of ls. When GV mapping is successful, revenue and cost are mainly related to
the amount of resources required by GV , and can be defined as Formulas (22) and (23),
respectively. Among them, CPU(nv) and BW(lv), respectively, represent the amount of
CPU resources required by nv and the amount of bandwidth resources required by lv; ∆t
represents the duration of GV ; Hops(lv) represents the number of hops of the virtual link.

Rev(GV) = ∆t× ∑
nv∈NV

CPU(nv) + ∆t× ∑
lv∈LV

BW(lv). (22)

Cost(GV) = ∆t× ∑
nv∈NV

CPU(nv) + ∆t× ∑
lv∈LV

BW(lv)× Hops(lv). (23)

4.3. Link Mapping

When mapping a virtual link, checking whether the physical link has sufficient re-
sources is necessary. In this paper, link mapping also introduces RL. Actions are output
according to the current physical network state matrix.

4.3.1. Link Features

During this phase, a virtual link may correspond to multiple paths of a physical link,
so the features extracted by link mapping should be the features of the connectable paths
between the two physical nodes in the physical network. This paper uses bandwidth and
link importance as features.

• Bandwidth (BW(lp
j)): The bandwidth value of the link with the smallest available

bandwidth resources on the mapping path.

Electronics 2023, 12, 3330 10 of 22

• Link importance (BE(lp
j)): The more shortest paths passed on the physical link, the

more important the link is.

LI(lp
j) = ∑

Sl
Sall

. (24)

Sl represents the number of shortest paths passing through l and Sall represents the
number of all shortest paths passing through the network.

These physical path features are normalized to form a feature vector.

lmj = (BW(lp
j), BE(lp

j))
T . (25)

The eigenvectors of all physical links form the state matrix of the link.

Matrixlink = (lm1, lm2, . . . , lmn)
T . (26)

4.3.2. Link Policy Network

We take the link state matrix as input and the probability of the physical path being cho-
sen as output. The policy network is divided into five layers like the node mapping stage.

• Convolution layer: Perform the convolution operation on the link feature matrix
obtained by the input layer, so as to evaluate the resource situation of the physical path.

gj = ReLU(wl ·Mj + bl) =

{
0, otherwise.

wl ·Mj + bl , wl ·Mj + bl ≥ 0.
(27)

• Softmax layer: The probability is calculated as follows:

lpj =
egj

∑i egj
. (28)

• Filtering layer: When physical paths’ bandwidth resources do not meet the VNRs, we
abandon such paths. And when the nodes at ends of the physical path are not mapped
during mapping nodes, we abandon such paths.

• Output layer: Output the selected probability of each physical link.

Plink = (lp1, lp2, . . . , lpn)
T . (29)

4.4. Mapping Algorithm

In this paper, policy gradients are used to train the node mapping policy network.
As the initial parameters are randomly given, which may not lead to a good policy, we
introduce the minibatch gradient descent to dynamically update parameters. The update
of parameters is implemented in batches; we update the policy parameters when reaching
the iteration threshold β. We adjust the gradient and the calculation speed of the training
by introducing the learning rate α. A gradient that is too small will make it difficult for the
model to converge and one that is too large will cause an unstable model.

The flowchart of node mapping model training is shown in Figure 2. We randomly set
all the node policy network parameters and then select the most suitable physical node for
virtual nodes in the VNR. We obtain the node feature matrix by extracting features on all
physical nodes and normalize the matrix, and use the normalized results as the input of
the node mapping policy network.

Electronics 2023, 12, 3330 11 of 22

input

generation

<limited

generations

node feature

extraction

single node

mapping

update feature

matrix

 single node

mapped

successfully
generation++

F

T

output

all nodes

mapped

successfully

T

F

Linkmap

all links

mapped

successfully

F

calculate reward

and gradient

update

network

parameters

update

parameters

T

F

F

T

F

initialize

network

parameters

Figure 2. Node mapping algorithm model training flowchart.

After that, the probabilities of a set of candidate nodes are obtained. When selecting
the physical nodes to be mapped, we choose the node with the highest probability from the
candidate nodes. Current physical network resources are updated each time a virtual node
is mapped. After all nodes in the VNR are successfully mapped, we map links using the
shortest path algorithm. The reward function and gradient at this time are calculated after
successfully mapping the link. The policy network parameters are updated in batches and
the above process is repeated until the optimal node mapping policy network parameters
are obtained when the VNR reaches the threshold. Algorithm 1 gives the pseudocode for
the training of the node mapping model.

Electronics 2023, 12, 3330 12 of 22

Algorithm 1: Training Node Mapping Model
input :Training Set VNRs; Physical Network Topology Gp; Iteration threshold β;

limited generations;
output :Node Mapping Policy Network;

1 Initialization;
2 while generation ≤ limited generations do
3 Paranum = 0;
4 foreach vnr in VNRs do
5 foreach nv in vnr do
6 Matrixnode ← ∅;
7 foreach np

k in GP do
8 Nk = (CPU(np

k), BW(np
k), DSC(np

k), TC(np
k), NSE(np

k))
Matrixnode ← Matrixnode + Nk;

9 end
10 // Policy network output mapping physical nodes;
11 Pnode=Policy network(Matrixnode);
12 update Matrixnode;
13 end
14 if ∀ nv ∈ vnr Mapped successfully then
15 // Link Mapping Using Shortest Path Algorithm;
16 LinkMapping;
17 end
18 if vnr Mapped successfully then
19 // Calculate rewards by Formula (20);
20 getReward(vnr);
21 // Calculate the gradient;
22 getGradient(reward);
23 end
24 Paranum ++;;
25 if Paranum = β then
26 Paranum = 0;
27 update Policy Network Parameters;
28 end
29 end
30 limited generations ++;
31 end

Figure 3 shows the training flowchart of the link map model. The parameters in the
policy network are randomly initialized above all while training the link model and, when
processing the VNR, the node mapping plan is obtained by utilizing the trained node
mapping policy network. Then, the link features of the physical network are extracted
to obtain the link state matrix. The probability of physical path candidates is obtained
by putting the state matrix into the link policy network. According to the probability
distribution, the highest probability path is selected as the physical path for this mapping.
Then, each time a virtual node is mapped, the current physical network resources are
updated. Repeat the above steps until all the virtual links of the current VNR are mapped.
If no physical link is available, the mapping fails and the next VNR is mapped.

To adjust the training direction and obtain a better solution, we use the reward function
as the feedback of the mapping policy network. The policy network parameters are updated
in batches and the above process is repeated until the optimal link mapping policy network
parameters are obtained when the VNR reaches the threshold.

Electronics 2023, 12, 3330 13 of 22

input

generation

<limited

generations

link feature

extraction

single link

mapping

update feature

matrix

single

link mapped

successfully

F

output

all links

mapped

successfully
T

F

Nodemap

all nodes

mapped

successfully

F

calculate reward

and gradient

update

network

parameters

update

parameters

F

T

F

initialize

network

parameters

generation++

F

T

T

Figure 3. Link mapping algorithm model training flowchart.

When virtual node mapping is applied, the current node state matrix is sent to the
trained node policy network. Obtain the selection probability of the available physical
nodes. Then, take the highest probability physical node as the mapping of the current
virtual node. After all nodes of the VNR are mapped, the link state matrix is sent to the
trained link policy network. The selection probability of available physical links is obtained
and the highest probability physical link is taken as the mapping of the current virtual
link. When the nodes and links of VNR are mapped successfully, the output is that VNR
mapping is successful; otherwise, output that VNR mapping is failing. The training process
of the link mapping model is shown in Algorithm 2.

Electronics 2023, 12, 3330 14 of 22

Algorithm 2: Training Link Mapping Model
input :Node Policy Network; Training Set VNRs; Physical Network Gp; limited

generations; Iteration threshold β;
output : Link Mapping Policy Network;

1 initialization;
2 while generation ≤ limited generations do
3 Paranum = 0;
4 foreach vnr in VNRs do
5 NodeMapping[Algorithm 1];
6 if ∀ nv ∈ vnr is Mapped then
7 Matrixlink ← ∅;
8 foreach lp

k in GP do
9 lmk = (BW(np

k), BE(np
k));

10 Matrixlink ← Matrixlink + lmk;
11 end
12 Plink =Policy network (Matrixlink);
13 update Matrixlink, Matrixnode;
14 end
15 if vnr Mapped successfully then
16 // Calculate rewards by Formula (20);
17 getReward(vnr);
18 // Calculate the gradient;
19 getGradient(reward);
20 end
21 Paranum ++;;
22 if Paranum = β then
23 Paranum = 0;
24 update Policy Network Parameters;
25 end
26 end
27 limited generations ++;
28 end

5. Experimental Results and Analysis

In this section, comparative experimental results will validate the proposed algorithm.
Specifically, the experimental environment and parameters are first introduced, followed
by a detailed description of the comparison algorithms and finally a theoretical analysis of
the numerical results.

5.1. Experimental Environment and Parameters

In the experimental process of this paper, for the allocation of network resources,
we choose appropriate physical nodes and physical links to map through the proposed
algorithm, and rationally allocate CPU resources and bandwidth resources to improve
the utilization of network resources. The topology structure of the physical network is
generated by GT-ITM, which contains 100 nodes and 550 links, which is equivalent to
a medium-scale network environment. The attribute information of nodes and links is
generated programmatically and saved in the .txt file. The detailed attribute information
of nodes and links is shown in Table 2. At the same time, we also generate 2000 VNRs,
and use 1000 VNRs as training samples and another 1000 VNRs as testing samples. Each
VNR has 2-10 nodes and the connection probability between nodes is 50%, so the VNR
has n(n− 1)/4 links. In addition, in order to simulate VNR more realistically, the arrival
time and departure time of VNR conform to the mathematical distribution. The detailed
parameters of VNR are also summarized in Table 2.

Electronics 2023, 12, 3330 15 of 22

Table 2. Experimental environment parameters.

Network Parameter Value

Physical nodes 100
Physical links 550
CPU resources capacity U(50, 80)

Physical Network Security level U(1, 3)
Bandwidth resource capacity U(50, 80)
Delay of link U(1, 50)

Number of VNRs 2000
Training set 1000
Testing set 1000
Virtual nodes U(2, 10)

VNRs Node connection probability 0.5
CPU resource requirement U(1, 30)
Bandwidth resource requirement U(1, 30)
Delay requirement of link U(1, 20)
Safety requirement level U(1, 3)

5.2. Comparison Algorithms

We selected the following three representative algorithms as benchmark algorithms:

• RLVNE [31]: RLVNE is an RL-based VNE algorithm. Specifically, the author constructs
a four-layer policy network, uses the policy gradient algorithm to update the policy
network parameters and selects the mapping nodes according to the node mapping
probabilities output by the policy network.

• NODERANK [35]: NODERANK is improved based on the PageRank algorithm [36].
The resource availability of nodes is taken as an important factor for node ordering
and the nodes are mapped according to the ordering positions of nodes.

• VNE-HPSO [37]: VNE-HPSO is a heuristic algorithm that combines a particle swarm
optimization algorithm and a simulated annealing method.

5.3. Performance Metrics

(1) Acceptance ratio

Define GV
acc as the number of VNRs that have arrived and GV

arr as the number of
successfully embedded VNRs. The formula for the acceptance ratio is defined as follows:

ACC = lim
T→∞

∑T
t=0 GV

acc

∑T
t=0 GV

arr
. (30)

(2) Long-term average revenue

Based on Formula (22), long-term average revenue is defined as

L_REV = lim
T→∞

∑T
t=0 Rev(GV , t)

T
. (31)

(3) Long-term average revenue–cost ratio

Long-term average revenue–cost ratio is defined as the ratio of revenue to cost over a
period of time and the calculation formula is

L_RC = lim
T→∞

∑T
t=0 Rev(GV , t)

∑T
t=0 Cost(GV , t)

. (32)

(4) CPU resource utilization

Electronics 2023, 12, 3330 16 of 22

In order to evaluate the resource utilization of the physical network, this paper selects
the performance metrics of CPU resource utilization, which is defined as

U_CPU = 1− ∑np∈NP RC(np)

∑np∈NP AC(np)
, (33)

where RC(np) represents the remaining CPU resources of np and RC(np) represents the
total CPU resources of np.

5.4. Experimental Results and Analyses
5.4.1. Training Results

(1) Training result verification: To obtain the best performing policy network param-
eters, we first train a DRL agent. Specifically, we observe the agent’s training results by
setting different learning rates (0.01, 0.005, 0.001) and using three performance metrics:
acceptance ratio, revenue and revenue-to-cost ratio. At the same time, we record the loss
value during the iteration process, which is also an important indicator for evaluating the
training effect.

(2) Discussion: Figure 4 shows the experimental values of the three performance
indicators during the policy network training process. In the initial training stage, because
the parameters of the network are random and the agent is not familiar with the network
environment, the strategy at this time is not optimal and the values of the three indicators
are relatively low. After a period of training, the agent becomes familiar with the network
and the values of the three indicators continue to increase. At the same time, by setting
different learning rates for training, we found that when the learning rate is 0.005, the
training effect is the best. Table 3 shows the model training results under different learning
rates. For best training performance, we fix the training learning rate at 0.005. Figure 5
shows the trend of the loss value during the training process and testing process. With the
continuous optimization of parameters, the loss value gradually decreases and tends to be
stable. It can be verified that our proposed algorithm has good convergence.

Table 3. Training result with different learning rates.

Learning Rate Acceptance Ratio Revenue Revenue/Cost

0.001 0.625 1600 0.315

0.005 0.725 2050 0.405

0.01 0.450 1425 0.29

Figure 4. Policy network training process.

Electronics 2023, 12, 3330 17 of 22

Figure 5. Loss on the training set.

5.4.2. Comparative Experimental Results

Experiment 1: Acceptance ratio. We first conducted a comparative experiment on
the VNR acceptance ratio, which is a key indicator for evaluating the effectiveness of the
algorithm, because one of the goals of the VNE problem is to serve as many VNRs as
possible within limited resources.

Discussion: Figure 6 reflects the experimental results of the VNR acceptance ratio. It
can be seen that the acceptance ratios of the four algorithms decrease significantly over time.
Because the resources of the physical network are limited, when the VNR is successfully
embedded, it will occupy node resources and link resources. For the newly arrived VNR,
some nodes or links may not have enough resources to carry them, so the embedding fails.
However, our algorithm outperforms the other three algorithms in any given time period.
Finally, the VNR acceptance ratio of our algorithm is 6.34% higher than RLVNE, 8.06%
higher than VNE-HPSO and 12.17% higher than NODERANK. Compared with RLVNE,
our algorithm optimizes the two stages of node mapping and link mapping at the same
time, which improves the VNR acceptance ratio. The initial value of the particles in the
VNE-HPSO algorithm is randomly initialized, and the results of multiple optimizations
do not always converge to the global or local optimal solution without changing any
parameters, so the VNR acceptance ratio drops significantly. NodeRank adopts a manual
node sorting method; the algorithm lacks flexibility and only considers the local importance
of node attributes, so it has a low VNR acceptance ratio.

Experiment 2: Long-term average revenue. The revenue is usually related to the
amount of VNR resources, which is usually positively correlated with the acceptance
ratio but also related to whether the physical resources are used efficiently. Therefore, we
conducted a comparative experiment of long-term average revenue.

Discussion: Figure 7 shows the experimental results for long-term average revenue.
In the early stage of the test, the network resources such as nodes and links are relatively
abundant and can carry most of the VNRs, so the long-term average revenue of the four
algorithms are all relatively high. Due to the occupation of a large number of network
resources and the failure of some VNR embeddings, the long-term average revenues of
the four algorithms all declined. Through data analysis, our long-term average revenue
is 7.39% higher than RLVNE, 17.98% higher than VNE-HPSO and 21.05% higher than
NODERANK. Compared to the NODERANK, VNE-HPSO and RLVNE algorithms, the
proposed method is able to continuously improve the model according to the rewards
received by the agent. Therefore, our algorithm can more optimally utilize limited network
resources to deploy VNR and obtain stable and higher revenue.

Electronics 2023, 12, 3330 18 of 22

Figure 6. Acceptance ratio comparison.

Figure 7. Long-term average revenue comparison.

Experiment 3: Long-term average revenue–cost ratio. The long-term average revenue–
cost ratio considers revenues and costs at the same time, and can reflect the utilization
efficiency of physical resources over a period of time. The higher the revenue–cost ratio,
the higher the revenues that can be obtained even with the same physical resources.

Discussion: As can be seen from Figure 8, compared with the curve of the first two
performance indicators, the long-term average revenue–cost ratio curve fluctuates less.
Because the mapping cost decreases as the revenue obtained decreases, changes in the
resources of the physical network do not significantly affect the change in the revenue–cost
ratio. According to the experimental results, our long-term average revenue–cost ratio is
4.12%, 5.68% and 6.10% higher than RLVNE, VNE-HPSO and NODERANK, respectively.
The link mapping cost is an important factor that affects the revenue–cost ratio, whereas
the other three algorithms optimize only the node mapping and will have a higher revenue–
cost ratio in the case where the link mapping uses only the shortest path algorithm. Our
algorithm optimizes link mapping and is able to reduce the mapping cost in the link phase.

Electronics 2023, 12, 3330 19 of 22

In addition, we consider this evaluation metric in the design of the reward function, which
will guide the agent or strategies that reduce the revenue–cost ratio.

Experiment 4: CPU resource utilization. Finally, in order to more comprehensively
evaluate the utilization efficiency of physical network resources, we conducted a compara-
tive experiment of CPU resource utilization.

Discussion: It can be seen from Figure 9 that our algorithm has the highest CPU
resource utilization efficiency, indicating that our node mapping network optimizes node
mapping. Moreover, compared with RLVNE, the policy network designed by our algo-
rithm can better reflect the network environment. NODERANK and VNE-HPSO are two
non-machine learning algorithms; because they cannot respond to the dynamic network
environment in time, the acceptance ratio is relatively low, and the CPU utilization rate will
be affected and reduced. Finally, the CPU resource utilization of our algorithm is 22.67%
higher than those of the three algorithms on average.

Figure 8. Long-term average revenue–cost ratio comparison.

Figure 9. CPU resource utilization comparison.

Electronics 2023, 12, 3330 20 of 22

6. Conclusions

This paper introduces edge computing into the smart grid, transforms resource alloca-
tion into a multi-domain virtual network embedding problem to improve the utilization
of network resources and proposes a virtual network embedding algorithm based on
double reinforcement learning. Unlike previous reinforcement learning-based studies, we
simultaneously optimize node mapping and link mapping using reinforcement learning.
Specifically, we extract the features of nodes and links, construct a policy network for
node maps and link maps, respectively, and design reward functions with multi-objective
optimization. Through training, our self-built neural network has good convergence and
can make an optimal resource allocation strategy to improve the utilization of network
resources. In addition, our algorithm can process dynamically arriving virtual network
requests immediately, instead of processing a large number of requests at one time, which
is in line with the actual network environment. Finally, we compared the proposed al-
gorithm with the existing research on resource allocation algorithms. Overall, in this
paper, we address the resource allocation to improve the utilization of network resources
problem in edge computing-assisted smart grid scenarios from the perspective of virtual
network embedding.

Although our algorithm improve the utilization of resources of the smart grid, it still
has certain limitations. First of all, what we simulated in the experimental part is a medium-
scale network. We should consider how to design a more complex policy network model
and a more effective feature extraction method to deal with large-scale networks. Secondly,
in the face of joint optimization of multi-grid resources, we should further consider the
issue of data security, which is very important. In future work, we need to study how
to improve data security with the help of blockchain and federated learning technology.
Finally, we need to consider more network attributes, which are more in line with the real
network environment.

Author Contributions: Conceptualization, Z.Z. and Y.H.; methodology, Y.C.; software, F.Y.; valida-
tion, W.C., H.Z. and Y.Z.; formal analysis, Z.Z.; investigation, P.Z.; resources, Y.Z. and P.Z.; data
curation, Z.Z.; writing—original draft preparation, Z.Z. and Y.H.; writing—review and editing, Y.Z.
and Y.C.; visualization, F.Y.; supervision, P.Z.; project administration, H.Z.; funding acquisition, Z.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This work is partially supported by the Scientific Research Programs for High-Level
Talents of Beijing Smart-chip Microelectronics Technology Co., Ltd., and partially supported by the
Academician Expert Open Fund of Beijing Smart-chip Microelectronics Technology Company Ltd.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. List of allocated resources.

Mapping Stage Resource Name

Node Mapping Physical nodes
CPU resources

Link Mapping Physical links
Bandwidth resources

Electronics 2023, 12, 3330 21 of 22

References
1. Islam, S.; Zografopoulos, I.; Hossain, M.T.; Badsha, S.; Konstantinou, C. A Resource Allocation Scheme for Energy Demand

Management in 6G-enabled Smart Grid. In Proceedings of the 2023 IEEE Power & Energy Society Innovative Smart Grid
Technologies Conference (ISGT), Washington, DC, USA, 16–19 January 2023 ; pp. 1–5. [CrossRef]

2. Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart grid—The new and improved power grid: A survey. IEEE Commun. Surv. Tutor. 2011,
14, 944–980. [CrossRef]

3. Zhou, H.; Zhang, Z.; Li, D.; Su, Z. Joint Optimization of Computing Offloading and Service Caching in Edge Computing-Based
Smart Grid. IEEE Trans. Cloud Comput. 2023, 11, 1122–1132. [CrossRef]

4. Ma, R.; Yi, Z.; Xiang, Y.; Shi, D.; Xu, C.; Wu, H. A Blockchain-Enabled Demand Management and Control Framework Driven by
Deep Reinforcement Learning. IEEE Trans. Ind. Electron. 2023, 70, 430–440. [CrossRef]

5. Yang, C.; Chen, X.; Liu, Y.; Zhong, W.; Xie, S. Efficient task offloading and resource allocation for edge computing-based smart
grid networks. In Proceedings of the ICC 2019–2019 IEEE International Conference on Communications (ICC), Shanghai, China,
20–24 May 2019; pp. 1–6.

6. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication perspective. IEEE
Commun. Surv. Tutor. 2017, 19, 2322–2358.

7. Yang, X.; Yu, X.; Hou, H.; Tan, Z.; Wu, F. Smart grid edge fault detection architecture. In Proceedings of the 2023 IEEE
6th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 24–26
February 2023; Volume 6, pp. 692–700. [CrossRef]

8. Liao, Y.; He, J. Optimal Smart Grid Operation and Control Enhancement by Edge Computing. In Proceedings of the 2020 IEEE
International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Tempe,
AZ, USA, 11–13 November 2020; pp. 1–6.

9. Liu, R.; Yang, R.; Wang, Z.; Sun, X. Application of Edge Computing in Smart Grid. In Proceedings of the 2022 3rd International
Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Xi’an, China, 15–17 July 2022;
pp. 62–65.

10. Xiao, Y.; Jia, Y.; Liu, C.; Cheng, X.; Yu, J.; Lv, W. Edge computing security: State of the art and challenges. Proc. IEEE 2019,
107, 1608–1631. [CrossRef]

11. Aloul, F.; Al-Ali, A.; Al-Dalky, R.; Al-Mardini, M.; El-Hajj, W. Smart grid security: Threats, vulnerabilities and solutions. Int. J.
Smart Grid Clean Energy 2012, 1, 1–6. [CrossRef]

12. Bhamare, D.; Jain, R.; Samaka, M.; Erbad, A. A survey on service function chaining. J. Netw. Comput. Appl. 2016, 75, 138–155.
[CrossRef]

13. Huang, L.H.; Hsu, H.C.; Shen, S.H.; Yang, D.N.; Chen, W.T. Multicast traffic engineering for software-defined networks. In
Proceedings of the IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, San
Francisco, CA, USA, 10–14 April 2016; pp. 1–9.

14. Wang, C.; Dong, T.; Duan, Y.; Sun, Q.; Zhang, P. Multi objective resource optimization of wireless network based on cross domain
virtual network embedding. In Proceedings of the 2020 IEEE Computing, Communications and IoT Applications (ComComAp),
Beijing, China, 20–22 December 2020; pp. 1–6.

15. Zhang, P.; Wang, C.; Qin, Z.; Cao, H. A multi-domain VNE algorithm based on multi-objective optimization for IoD architecture
in Industry 4.0. arXiv 2022, arXiv:2202.12830.

16. Li, Y. Deep reinforcement learning: An overview. arXiv 2017, arXiv:1701.07274.
17. Ayoub, A.; Jia, Z.; Szepesvari, C.; Wang, M.; Yang, L. Model-based reinforcement learning with value-targeted regression. In

Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 463–474.
18. Chen, N.; Zhang, P.; Kumar, N.; Hsu, C.H.; Abualigah, L.; Zhu, H. Spectral graph theory-based virtual network embedding for

vehicular fog computing: A deep reinforcement learning architecture. Knowl.-Based Syst. 2022, 257, 109931.
19. Ren, J.; Guo, Y.; Zhang, D.; Liu, Q.; Zhang, Y. Distributed and efficient object detection in edge computing: Challenges and

solutions. IEEE Netw. 2018, 32, 137–143. [CrossRef]
20. Li, L.; Ota, K.; Dong, M. Deep learning for smart industry: Efficient manufacture inspection system with fog computing. IEEE

Trans. Ind. Inform. 2018, 14, 4665–4673. [CrossRef]
21. Deng, X.; Guan, P.; Wan, Z.; Liu, E.; Luo, J.; Zhao, Z.; Liu, Y.; Zhang, H. Integrated trust based resource cooperation in edge

computing. J. Comput. Res. Dev. 2018, 55, 449–477.
22. Dolui, K.; Datta, S.K. Comparison of edge computing implementations: Fog computing, cloudlet and mobile edge computing. In

Proceedings of the 2017 Global Internet of Things Summit (GIoTS), Geneva, Switzerland, 6–9 June 2017; pp. 1–6.
23. Lin, H.; Chen, Z.; Wang, L. Offloading for edge computing in low power wide area networks with energy harvesting. IEEE

Access 2019, 7, 78919–78929. [CrossRef]
24. Su, X.; Sperlì, G.; Moscato, V.; Picariello, A.; Esposito, C.; Choi, C. An edge intelligence empowered recommender system enabling

cultural heritage applications. IEEE Trans. Ind. Inform. 2019, 15, 4266–4275. [CrossRef]
25. Wang, X.; Han, Y.; Leung, V.C.; Niyato, D.; Yan, X.; Chen, X. Convergence of edge computing and deep learning: A comprehensive

survey. IEEE Commun. Surv. Tutor. 2020, 22, 869–904. [CrossRef]
26. Tan, K.; Wang, X.; Du, P. Research progress of the remote sensing classification combining deep learning and semi-supervised

learning. J. Image Graph. 2019, 24, 1823–1841.

http://doi.org/10.1109/ISGT51731.2023.10066396
http://dx.doi.org/10.1109/SURV.2011.101911.00087
http://dx.doi.org/10.1109/TCC.2022.3163750
http://dx.doi.org/10.1109/TIE.2022.3146631
http://dx.doi.org/10.1109/ITNEC56291.2023.10082592
http://dx.doi.org/10.1109/JPROC.2019.2918437
http://dx.doi.org/10.12720/sgce.1.1.1-6
http://dx.doi.org/10.1016/j.jnca.2016.09.001
http://dx.doi.org/10.1109/MNET.2018.1700415
http://dx.doi.org/10.1109/TII.2018.2842821
http://dx.doi.org/10.1109/ACCESS.2019.2922399
http://dx.doi.org/10.1109/TII.2019.2908056
http://dx.doi.org/10.1109/COMST.2020.2970550

Electronics 2023, 12, 3330 22 of 22

27. Wang, F.; Wen, H.; Cheng, S. Privacy data protection method for mobile intelligent terminal based on edge computing. Cyberspace
Secur. 2018, 9, 47–50.

28. Deng, R.; Lu, R.; Lai, C.; Luan, T.H.; Liang, H. Optimal workload allocation in fog-cloud computing toward balanced delay and
power consumption. IEEE Internet Things J. 2016, 3, 1171–1181. [CrossRef]

29. Chowdhury, N.M.K.; Rahman, M.R.; Boutaba, R. Virtual network embedding with coordinated node and link mapping. In
Proceedings of the IEEE INFOCOM 2009, Rio de Janeiro, Brazil, 19–25 April 2009; pp. 783–791.

30. Dietrich, D.; Rizk, A.; Papadimitriou, P. Multi-domain virtual network embedding with limited information disclosure. In
Proceedings of the 2013 IFIP Networking Conference, Brooklyn, NY, USA, 22–24 May 2013; pp. 1–9.

31. Yao, H.; Chen, X.; Li, M.; Zhang, P.; Wang, L. A novel reinforcement learning algorithm for virtual network embedding.
Neurocomputing 2018, 284, 1–9. [CrossRef]

32. Zhang, P.; Wang, C.; Kumar, N.; Zhang, W.; Liu, L. Dynamic virtual network embedding algorithm based on graph convolution
neural network and reinforcement learning. IEEE Internet Things J. 2021, 9, 9389–9398. [CrossRef]

33. Zhang, P.; Gan, P.; Kumar, N.; Hsu, C.H.; Shen, S.; Li, S. RKD-VNE: Virtual network embedding algorithm assisted by resource
knowledge description and deep reinforcement learning in IIoT scenario. Future Gener. Comput. Syst. 2022, 135, 426–437.
[CrossRef]

34. Zhang, P.; Zhang, Y.; Kumar, N.; Hsu, C.H. Deep reinforcement learning algorithm for latency-oriented iiot resource orchestration.
IEEE Internet Things J. 2022, 10, 7153–7163.

35. Cheng, X.; Su, S.; Zhang, Z.; Wang, H.; Yang, F.; Luo, Y.; Wang, J. Virtual network embedding through topology-aware node
ranking. ACM SIGCOMM Comput. Commun. Rev. 2011, 41, 38–47.

36. Page, L.; Brin, S.; Motwani, R.; Winograd, T. The PageRank Citation Ranking: Bringing Order to the Web; Technical Report; Stanford
InfoLab: Stanford, CA, USA, 1999.

37. Zhang, P.; Hong, Y.; Pang, X.; Jiang, C. VNE-HPSO: Virtual network embedding algorithm based on hybrid particle swarm
optimization. IEEE Access 2020, 8, 213389–213400. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JIOT.2016.2565516
http://dx.doi.org/10.1016/j.neucom.2018.01.025
http://dx.doi.org/10.1109/JIOT.2021.3095094
http://dx.doi.org/10.1016/j.future.2022.05.008
http://dx.doi.org/10.1109/ACCESS.2020.3040335

	Introduction
	Related Works
	Edge Computing Network
	Multi-Domain Virtual Network
	VNE Based AI

	Network Structure and Problem Description
	Algorithm
	Algorithm Description
	Node Mapping
	Node Features
	 Node Policy Network

	Link Mapping
	Link Features
	 Link Policy Network

	 Mapping Algorithm

	Experimental Results and Analysis
	Experimental Environment and Parameters
	Comparison Algorithms
	 Performance Metrics
	Experimental Results and Analyses
	Training Results
	Comparative Experimental Results

	Conclusions
	Appendix A
	References

