
Citation: Xu, H.; Seng, K.P.; Ang,

L.-M. New Hybrid Graph

Convolution Neural Network with

Applications in Game Strategy.

Electronics 2023, 12, 4020. https://

doi.org/10.3390/electronics12194020

Academic Editor: Praveen Kumar

Donta

Received: 2 September 2023

Revised: 21 September 2023

Accepted: 22 September 2023

Published: 24 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

New Hybrid Graph Convolution Neural Network with
Applications in Game Strategy
Hanyue Xu 1, Kah Phooi Seng 1,2,3,* and Li-Minn Ang 3

1 School of AI & Advanced Computing, Xi’an Jiaotong Liverpool University, Suzhou 215123, China;
hanyue.xu19@student.xjtlu.edu.cn

2 School of Computer Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
3 School of Science, Technology and Engineering, University of Sunshine Coast, Petrie, QLD 4502, Australia;

lang@usc.edu.au
* Correspondence: jasmine.seng@xjtlu.edu.cn or kahphooi.seng@qut.edu.au

Abstract: Deep convolutional neural networks (DCNNs) have enjoyed much success in many appli-
cations, such as computer vision, automated medical diagnosis, autonomous systems, etc. Another
application of DCNNs is for game strategies, where the deep neural network architecture can be
used to directly represent and learn strategies from expert players on different sides. Many game
states can be expressed not only as a matrix data structure suitable for DCNN training but also as a
graph data structure. Most of the available DCNN methods ignore the territory characteristics of
both sides’ positions based on the game rules. Therefore, in this paper, we propose a hybrid approach
to the graph neural network to extract the features of the model of game-playing strategies and
fuse it into a DCNN. As a graph learning model, graph convolutional networks (GCNs) provide a
scheme by which to extract the features in a graph structure, which can better extract the features
in the relationship between the game-playing strategies. We validate the work and design a hybrid
network to integrate GCNs and DCNNs in the game of Go and show that on the KGS Go dataset,
the performance of the hybrid model outperforms the traditional DCNN model. The hybrid model
demonstrates a good performance in extracting the game strategy of Go.

Keywords: graph convolutional networks; deep convolutional neural networks; game strategies

1. Introduction

In game theory, strategy is a plan of action developed by players that depends not only
on their own actions but also on whatever options other players have in the environment.
It can serve as a blueprint for the player’s decisions, actions, and interactions in the game
environment. In recent years, due to Google DeepMind’s research in the field of strategy
games such as Go, chess, and shogi [1–3], this has once again become a hot topic. To date,
various decision-making algorithms for strategy games have been proposed. Based on the
operating principle, the algorithm can be divided into two groups, i.e., traditional artificial
intelligence (AI) algorithms and machine learning AI algorithms.

In the early days, most approaches were based on the human formulation of specific
rules and logic for decision-making and inference, such as finite-state machine (FSM) [4],
tree search [5], and utility-based AI [6]. However, these methods are not suitable for
most strategy games because the specific use of algorithms depends on the application
scenario and needs. To alleviate this problem, these methods have been modified in
different decision games; for example, the Monte Carlo tree search algorithm solves the
particularity of excessive search space in the game of Go [7]. While these traditional AI
algorithms require low computing costs and are easy to design and tune, as the game
scene becomes more complex and the number of players increases, the rules become more
difficult to design.

Electronics 2023, 12, 4020. https://doi.org/10.3390/electronics12194020 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12194020
https://doi.org/10.3390/electronics12194020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12194020
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12194020?type=check_update&version=3

Electronics 2023, 12, 4020 2 of 17

Compared with traditional AI algorithms, machine learning AI algorithms can learn
independently of existing player game data and have decision-making capabilities. Deep
learning [8] and reinforcement learning [9] are machine learning AI algorithms commonly
used in the field of gaming. Both methods require a large number of datasets for training.
The difference is that deep learning aims to learn from the experience of existing experts
and imitate their strategies, while reinforcement learning aims to strengthen performance
through self-exploration and repeated practice with itself. Although machine learning
AI algorithms can solve problems for complex scenarios, a single model cannot satisfy
the evaluation of a global game. In the game of Go, the traditional heuristic evaluation
function makes it difficult to evaluate the complexity of the situation accurately; thus, the
reinforcement learning model may be affected.

In deep learning methods, deep convolutional neural networks (DCNNs) have enjoyed
much success in many applications such as computer vision [10], automated medical
diagnosis [11], autonomous systems [12], etc. Another application of DCNNs is for game
strategies, where the deep neural network architecture can be used to directly represent
and learn strategies from expert players on different sides. From the simplest strategy
games, Wang et al. [13] utilized the CNN to simulate the Pac-Man game’s decision-making
process and explain each convolutional layer’s internal logic. Sutskever and Nair [14]
introduced the CNN model to Go, a game with high decision complexity, and the prediction
of expert moves reached 36.9%. To improve decision-making performance, Clark and
Storkey [15] proposed a DCNN model with multiple hidden layers, which combined
features built manually based on Go rules to achieve better prediction results. In addition,
an efficient hardware architecture was used to accelerate the DCNN models. Li et al. [16]
proposed a hardware architecture that can accommodate different field-programmable gate
arrays (FPGA) to speed up the DCNN model and balance processing speed and hardware
resources.

Due to the diversity of strategy game rules, complex distribution space, and different
numbers of players, the extraction of game gradient features is needed in order to satisfy all
the gameplay of strategy games. As shown in Figure 1, space four chess, as a board strategy
game, is different from chess and Go, being a game that can be played in three-dimensional
space. The winning condition is that the pieces of the same color reach four consecutive
placements. The chess pieces not only can achieve the winning states in the horizontal,
vertical, and oblique directions of the plane but also in the oblique placement of the space
(see Figure 1). Because the DCNN is designed for Euclidean data, it is difficult for such a
complex distributed space strategy game to perform as well as it should. While some of
the DCNN-based approaches work well in traditional strategy games to some extent, they
tend to ignore the relevance of camps between gamers. For example, in the game of Go, the
condition of victory is based on the size of the territory occupied by the player’s stones.
Therefore, the correlation between the areas occupied by each stone is significant for the
overall evaluation of the board, which affects the player’s next decision. However, DCNNs
only focus on the information extraction at the image level and ignore the features of the
dimension of correlation between adjacent fields.

Electronics 2023, 12, x FOR PEER REVIEW 2 of 17

Compared with traditional AI algorithms, machine learning AI algorithms can learn
independently of existing player game data and have decision-making capabilities. Deep
learning [8] and reinforcement learning [9] are machine learning AI algorithms commonly
used in the field of gaming. Both methods require a large number of datasets for training.
The difference is that deep learning aims to learn from the experience of existing experts
and imitate their strategies, while reinforcement learning aims to strengthen performance
through self-exploration and repeated practice with itself. Although machine learning AI
algorithms can solve problems for complex scenarios, a single model cannot satisfy the
evaluation of a global game. In the game of Go, the traditional heuristic evaluation func-
tion makes it difficult to evaluate the complexity of the situation accurately; thus, the re-
inforcement learning model may be affected.

In deep learning methods, deep convolutional neural networks (DCNNs) have en-
joyed much success in many applications such as computer vision [10], automated medi-
cal diagnosis [11], autonomous systems [12], etc. Another application of DCNNs is for
game strategies, where the deep neural network architecture can be used to directly rep-
resent and learn strategies from expert players on different sides. From the simplest strat-
egy games, Wang et al. [13] utilized the CNN to simulate the Pac-Man game’s decision-
making process and explain each convolutional layer’s internal logic. Sutskever and Nair
[14] introduced the CNN model to Go, a game with high decision complexity, and the
prediction of expert moves reached 36.9%. To improve decision-making performance,
Clark and Storkey [15] proposed a DCNN model with multiple hidden layers, which com-
bined features built manually based on Go rules to achieve better prediction results. In
addition, an efficient hardware architecture was used to accelerate the DCNN models. Li
et al. [16] proposed a hardware architecture that can accommodate different field-pro-
grammable gate arrays (FPGA) to speed up the DCNN model and balance processing
speed and hardware resources.

Due to the diversity of strategy game rules, complex distribution space, and different
numbers of players, the extraction of game gradient features is needed in order to satisfy
all the gameplay of strategy games. As shown in Figure 1, space four chess, as a board
strategy game, is different from chess and Go, being a game that can be played in three-
dimensional space. The winning condition is that the pieces of the same color reach four
consecutive placements. The chess pieces not only can achieve the winning states in the
horizontal, vertical, and oblique directions of the plane but also in the oblique placement
of the space (see Figure 1). Because the DCNN is designed for Euclidean data, it is difficult
for such a complex distributed space strategy game to perform as well as it should. While
some of the DCNN-based approaches work well in traditional strategy games to some
extent, they tend to ignore the relevance of camps between gamers. For example, in the
game of Go, the condition of victory is based on the size of the territory occupied by the
player’s stones. Therefore, the correlation between the areas occupied by each stone is
significant for the overall evaluation of the board, which affects the player’s next decision.
However, DCNNs only focus on the information extraction at the image level and ignore
the features of the dimension of correlation between adjacent fields.

Figure 1. The rules of space four chess play . Figure 1. The rules of space four chess play.

Electronics 2023, 12, 4020 3 of 17

Many game states can be expressed not only as a matrix data structure suitable for
DCNN training but also as a graph data structure. Graph representation can represent
entities in strategy games (i.e., player camps, the terrain in the map, in-game resources)
as nodes on a graph and relationships between entities (i.e., relationships between camps,
distances between resources in the map) as edges of the graph. Compared with matrix
data, graph data can not only represent non-Euclidean rules in decision games; it can
also consider the adjacency relationship between game players. Graphical representation
methods have been applied to rock–paper–scissors games [17], dominance games [18], and
strategy games [19]. In the game of Go, Graf and Platzner introduced a common fate graph
(CFG) to represent the Go board and extracted features from it to predict moves with the
Monte Carlo tree search method [20]. These methods effectively represent non-Euclidean
games and enhance the relevance of game rules in strategy games.

Recently, the graph neural networks (GCNs) have attracted more and more attention
because of their outstanding processing ability with respect to graph domain data. The
GCN mimics the CNN’s principle of convolution over structured data and is capable of
handling non-Euclidean data that the CNN cannot handle [21]. The GCN has become
a crucial graph analysis approach for a wide range of tasks with complex relationships,
i.e., medical image analysis [22], location recommendation [23], social network [24], and
remote sensing classification [25]. Compared with CNN, because the number of neighbors
of the graph data node is different, it is not possible to directly define the sliding window
of uniform size, so the GCN is also used to explore the correlation between entities in the
image by aggregating the characteristics of the neighbors around the node. Because of
the strength of the GCN in these areas, in this paper we proposed to use a GCN to extract
dependencies between camps in strategy games and explore the potential impact of camp
distribution information on game strategy.

In order to effectively solve the limitations of a standalone deep convolutional neural
network (DCNN) in learning game strategy, we propose a hybrid approach to the graph
neural network (GCN) to extract the features of the model of game-playing strategies and
fuse it into the DCNN. In this paper, this hybrid network will be validated in the game of
Go. As shown in Figure 2, first, we encoded the game data into an array data structure and
extracted the plane features of the board according to the DCNN. Then, we introduced a
method called the common fate graph (CFG) method [26]—which is a graph representation
based on the Go rules of sharing liberty for stones of the same color, combining pieces
of the same color with straight lines in the same vertex—to represent the Go data and
understand the correlation and spatial position characteristics between Go stones based
on GCNs. Unlike traditional methods based on DCNNs, our proposed model can better
predict moves using the relationships between stones and their positions on the board. The
main contributions of this paper are as follows:

1. We propose a novel hybrid deep neural network learning framework that integrates
the DCNN and the GCN to extract planar, spatial, and relational features from games;

2. Our use of the graph data structure to represent the game state emphasizes the impor-
tance of the relationship between collectives and spatial position in game strategy;

3. We develop an integrated method for the fusion of graph data features and image
data features and solve the problem of the incompatibility of feature data in DCNNs
and GCNs;

4. We apply a hybrid model to the classic strategy game “Game of Go” and achieve
better performance than traditional methods.

The rest of the paper is organized as follows: works related to graph-based learning
and methods of hybrid models will be discussed in Section 2; Section 3 introduces our
proposed framework in detail; Section 4 discusses the experiment of a hybrid model that
we proposed to apply to the Go game; and finally, Section 5 summarizes the article and
discusses the direction of future work.

Electronics 2023, 12, 4020 4 of 17
Electronics 2023, 12, x FOR PEER REVIEW 4 of 17

Figure 2. Overview of the proposed methodology.

The rest of the paper is organized as follows: works related to graph-based learning
and methods of hybrid models will be discussed in Section 2; Section 3 introduces our
proposed framework in detail; Section 4 discusses the experiment of a hybrid model that
we proposed to apply to the Go game; and finally, Section 5 summarizes the article and
discusses the direction of future work.

2. Related Works
Machine learning is considered a data-driven task and has proven effective in many

fields. However, in recent years, with the study of graph data, researchers have found
many features and contents in graph data that traditional machine learning methods can-
not explore. Therefore, graph-based learning has attracted much attention and has been
applied to a series of tasks such as graph classification, aggregation, regression, link pre-
diction, etc. For example, in the time and spectral domain, Defferrard et al. [27] proposed
the representation of CNN in the context of spectral graph theory. They designed a fast-
locating convolution filter on the graph for learning local and fixed features on the graph.
Moreover, based on the original network, Kipf and Welling [28] proposed a variant based
on the local first-order approximation of spectral graph convolution to improve the selec-
tion convolution architecture, which significantly improves the GCN with respect to the
node classification task. A critical factor in the CNN’s success is training a deep network
model. However, the multi-layer GCN causes the extraction to disappear, leads to the ex-
cessive smoothing of fixed points, and converges vertex eigenvalues to consistent values,
resulting in the current GCN architecture needing to be improved. Moreover, the recep-
tive field of the shallow GCN is limited. To solve these limitations, by using the concept
of the CNN, Li et al. [29] applied residual and dense connections and dilated convolutions
to the GCN architecture and successfully built a 56-layer GCN with significantly im-
proved performance in semantic segmentation tasks. This research is of great help to the
expansion of the GCN in many fields.

Furthermore, graph learning models are important in space and spatial domains. Gao
et al. [30] proposed that a learnable graph convolution layer (LGCL) can automatically
select a fixed number of adjacent nodes for each feature based on value ranking to enable
convolution operations. This method has achieved good results in the subgraph classifi-
cation of protein structure, which focuses on spatial structure. In addition, Mosella-Mon-
toro and Ruiz-Hidalgo [31] proposed the SkinningNet framework, which utilizes multi-
aggregator graph convolution to extract features in an end-to-end learnable fashion to
help generalize invisible topologies. In games, the GCN model also performs better in

Figure 2. Overview of the proposed methodology.

2. Related Works

Machine learning is considered a data-driven task and has proven effective in many
fields. However, in recent years, with the study of graph data, researchers have found
many features and contents in graph data that traditional machine learning methods
cannot explore. Therefore, graph-based learning has attracted much attention and has
been applied to a series of tasks such as graph classification, aggregation, regression,
link prediction, etc. For example, in the time and spectral domain, Defferrard et al. [27]
proposed the representation of CNN in the context of spectral graph theory. They designed
a fast-locating convolution filter on the graph for learning local and fixed features on the
graph. Moreover, based on the original network, Kipf and Welling [28] proposed a variant
based on the local first-order approximation of spectral graph convolution to improve the
selection convolution architecture, which significantly improves the GCN with respect to
the node classification task. A critical factor in the CNN’s success is training a deep network
model. However, the multi-layer GCN causes the extraction to disappear, leads to the
excessive smoothing of fixed points, and converges vertex eigenvalues to consistent values,
resulting in the current GCN architecture needing to be improved. Moreover, the receptive
field of the shallow GCN is limited. To solve these limitations, by using the concept of the
CNN, Li et al. [29] applied residual and dense connections and dilated convolutions to
the GCN architecture and successfully built a 56-layer GCN with significantly improved
performance in semantic segmentation tasks. This research is of great help to the expansion
of the GCN in many fields.

Furthermore, graph learning models are important in space and spatial domains. Gao
et al. [30] proposed that a learnable graph convolution layer (LGCL) can automatically select
a fixed number of adjacent nodes for each feature based on value ranking to enable convo-
lution operations. This method has achieved good results in the subgraph classification of
protein structure, which focuses on spatial structure. In addition, Mosella-Montoro and
Ruiz-Hidalgo [31] proposed the SkinningNet framework, which utilizes multi-aggregator
graph convolution to extract features in an end-to-end learnable fashion to help generalize
invisible topologies. In games, the GCN model also performs better in predicting game
outcomes than traditional deep learning models. Li et al. [32] represented TUBSTAP game
states as graphical data and utilized the GCN as a value network to predict game outcomes
through supervised learning, improving the accuracy of results prediction compared to the
CNN. With the popularity of multi-agent games, Liu et al. [33] proposed G2AneT, a game
mechanism based on the graph attention network for games with complex relationships,
which shows the importance of complex relationships between game agents and achieves

Electronics 2023, 12, 4020 5 of 17

better performance in multi-agent games. Furthermore, Lee et al. [34] designed a graph neu-
ral network (GNN)-based framework for decentralized strategy problems in multi-agent
defense games to mimic expert strategy, with results that outperform other algorithms and
can be generalized to large-scale games. From the perspective of semi-supervision, Bisberg
and Ferrara [35] proposed a semi-supervised GCN prediction model, GCN-WP, which
included more than 30 functions related to the game and achieved good performance in
victory prediction. These related works demonstrate the feasibility of graph convolutional
networks in games.

With the development of graph learning technology, researchers can analyze the
advantages and disadvantages of graph learning in various fields. As a result, the hybrid
model approach of fusing deep learning models and graph learning models has become
more popular. For example, in hyperspectral image classification, the GCN can use the
correlation between adjacent land cover to convolve irregular regions, but it cannot capture
features at the pixel level. Therefore, Liu et al. [36] propose a hybrid network called the
CNN-enhanced GCN (CEGCN), which generates complementary spectra at the pixel and
superpixel levels, respectively, and which performed well on three datasets. Not only
that, Wang et al. [37] proposed a method based on a dual-coupled CNN–GCN structure
to connect HS and LiDAR data processed by a CNN to construct a graph structure and
extract its structure information by sharing some layers of graph structure through a GCN.
This method greatly improves performance compared to the traditional remote sensing
image classification model. Due to the nature of the CNN model, the spatial information of
the data is challenging to capture. Meng et al. [38] developed a multi-stage aggregation
network that connected the CNN with the attention refinement module (AR) and the GCN
model to enhance the spatial information transmission of ultrasonic medical image data
and significantly improve the accuracy of medical image segmentation tasks.

Based on this framework, Duan et al. [39] proposed a GACNN model composed of
a CNN, a GCN, and an attention mechanism to extract the global and spatial features
of fundus images and improve the network generalization in the classification task by
using a semi-supervised method, which significantly improved the model’s classification
performance in fundus lesion images. Due to the complex parameter tuning of fusion
models, Wang et al. [40] proposed an end-to-end multiscale convolutional neural network–
dynamic graph convolutional network (AMCNN-DGCN) model that can capture highly
discriminative features, and its model can be used to detect the brain waves of driving
fatigue with 95.65% accuracy. The GCN can also be integrated with other deep learning
models. Li and Yu [29] introduced diffused convolutional recurrent neural networks
(DCRNNs), which could capture spatial dependencies using graphically bidirectional
random walks and time dependencies using encoder–decoder architectures with planned
sampling for traffic prediction. This model extended the time-dependent extension of the
graph learning model. Hybrid models based on graph learning have been applied in many
fields, such as biology [41], pharmacy [42], network interconnection [43], etc.

Therefore, based on the research of the hybrid model, we propose a framework for the
fusion of the DCNN and the GCN, utilizing the advantages of the DCNN in plane feature
extraction and the GCN in processing spatial data and entity correlation in games. This
paper will take the game of Go as an example for which to build a graph model of games
and validate the enhancement effect of GCN on traditional deep learning methods on game
strategy.

3. Proposed Methodology

This paper proposes a new hybrid network to integrate the DCNN and the GCN
and applies it in the game of Go to improve move prediction over the traditional DCNN.
Figure 3 shows the architecture of the proposed hybrid network. It contains plane features
extraction based on the DCNN, extraction of graph features in CFG based on the GCN, and
features fusion. In the DCNN part, the method of one-hot encoding was used to map the
stones on the board to a vector that has the length of the board multiplied by the board’s

Electronics 2023, 12, 4020 6 of 17

width. Then, the vectors were input into the DCNN to extract plane features. As part
of the graph features’ extraction, we utilize a common fate graph model to represent the
Go data and input them to R-GCN (relational graph convolutional networks) to extract
graph features which include the position feature of stones and the edge feature of the
relationships between stones in Go data. Finally, the features extracted via the two models
are fused and transferred to a fully connected layer as the classifier in the model to make
the move prediction.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 17

3. Proposed Methodology
This paper proposes a new hybrid network to integrate the DCNN and the GCN and

applies it in the game of Go to improve move prediction over the traditional DCNN. Fig-
ure 3 shows the architecture of the proposed hybrid network. It contains plane features
extraction based on the DCNN, extraction of graph features in CFG based on the GCN,
and features fusion. In the DCNN part, the method of one-hot encoding was used to map
the stones on the board to a vector that has the length of the board multiplied by the
board’s width. Then, the vectors were input into the DCNN to extract plane features. As
part of the graph features’ extraction, we utilize a common fate graph model to represent
the Go data and input them to R-GCN (relational graph convolutional networks) to extract
graph features which include the position feature of stones and the edge feature of the
relationships between stones in Go data. Finally, the features extracted via the two models
are fused and transferred to a fully connected layer as the classifier in the model to make
the move prediction.

Figure 3. The architecture of the proposed method.

3.1. DCNN in Feature Extraction
Unprocessed Go data are represented by the Smart Game format (SGF), which con-

sists of the metadata of the game and the moves played. The framework specifies metadata
by using uppercase letters, encoding the attribute and the corresponding value in square
brackets. For example, the black in the third column of the seventh row is represented by
B[gc], where B is the stone color, and the coordinates of the rows and columns are indexed
alphabetically. This cannot be directly used for network training, so we use the one-hot
encoder method to map the positions of Go stones to vectors that include the length and
width of the board, as seen in Algorithm 1.

Algorithm 1 Encode Go data to vector
Input: game state of current play which includes the position tuple of move in the Go board
[tuple(𝑥 , 𝑦), ⋯ , 𝑡𝑢𝑝𝑙𝑒(𝑥 , 𝑦)], and board size.
Output: board tensor with 11 plane features 𝑣.
1: Initialize board tensor with the size of 19 × 19 zero vector 𝑣.
2: if tuple(𝑥 , 𝑦) is black stone do
3: Add feature: 𝑣[8] = 1
4: else 𝑣[9] = 1
5: for r = 1 to range (1 to the length of the board)
6: for c = 1 to range (1 to the width of the board)
7: 𝑝 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑢𝑝𝑙𝑒(𝑟𝑜𝑤 = 𝑟 + 1, 𝑐𝑜𝑙 = 𝑐 + 1)
8: Find tuple(𝑥 , 𝑦) whether has a stone group
9: if tuple(𝑥 , 𝑦) do not in a stone group do
10: if tuple(𝑥 , 𝑦) is not in ko situation (illegal move) do

Figure 3. The architecture of the proposed method.

3.1. DCNN in Feature Extraction

Unprocessed Go data are represented by the Smart Game format (SGF), which consists
of the metadata of the game and the moves played. The framework specifies metadata
by using uppercase letters, encoding the attribute and the corresponding value in square
brackets. For example, the black in the third column of the seventh row is represented by
B[gc], where B is the stone color, and the coordinates of the rows and columns are indexed
alphabetically. This cannot be directly used for network training, so we use the one-hot
encoder method to map the positions of Go stones to vectors that include the length and
width of the board, as seen in Algorithm 1.

Algorithm 1 Encode Go data to vector

Input: game state of current play which includes the position tuple of move in the Go board
[tuple(x1, y1), · · · , tuple(xn, yn)], and board size.
Output: board tensor with 11 plane features v.
1: Initialize board tensor with the size of 19× 19 zero vector v.
2: if tuple(xi+1, yi+1) is black stone do
3: Add feature: v[8] = 1
4: else v[9] = 1
5: for r = 1 to range (1 to the length of the board)
6: for c = 1 to range (1 to the width of the board)
7: p = position tuple(row = r + 1, col = c + 1)
8: Find tuple(xi, yi) whether has a stone group
9: if tuple(xi, yi) do not in a stone group do
10: if tuple(xi, yi) is not in ko situation (illegal move) do
11: v[10][r][c] = 1
12: else liberty_plane = min(4, stone′s liberty in group)− 1
13: if color of Go group == white do
14: liberty_plane += 4
15: v[liberty_plane][r][c] = 1

Moreover, to make this domain effective, we design some additional features in the
vector. Due to zero padding in the network, the edge feature of stones is ignored. Therefore,

Electronics 2023, 12, 4020 7 of 17

the first plane feature is describing the edge stones; the second four feature planes describe
black stones with one, two, three, or four liberties; and the third four feature planes describe
the white stones, which represent the same liberties as the black. Moreover, the remaining
feature planes are the color of the stone’s turns and are reserved for indicating a ko situation.
This encoder with 11 planes led to notable improvements in model performance.

In the DCNN part, we built neural networks consisting of eight convolutional layers,
all with ReLU activations, as shown in Figure 4. The pooling layers are not added between
the convolutional layers because in the second half of the game, the board is gradually filled
with stones, and each position of the stones affects the overall plane features of the board.
In order to prevent the high layer output from becoming exceedingly small, we introduced
the zero pad before each convolutional layer, and the value of strides is set to 2 to ensure
that the features of the stones at the edge of the board can also be extracted. Therefore,
the formula for calculating the size of the feature graph generated after convolution is as
follows:

w′ =
(x + 2p–k)

s
,

where the input matrix size is x, and k is the convolution kernel size. s denotes the step
length, and the number of zero-padding layers is p.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 17

11: 𝑣[10][𝑟][𝑐] = 1
12: else liberty_plane = 𝑚𝑖𝑛(4, 𝑠𝑡𝑜𝑛𝑒 𝑠 𝑙𝑖𝑏𝑒𝑟𝑡𝑦 𝑖𝑛 𝑔𝑟𝑜𝑢𝑝) − 1
13: if color of Go group == white do
14: liberty_plane += 4
15: 𝑣[𝑙𝑖𝑏𝑒𝑟𝑡𝑦_𝑝𝑙𝑎𝑛𝑒][𝑟][𝑐] = 1

Moreover, to make this domain effective, we design some additional features in the
vector. Due to zero padding in the network, the edge feature of stones is ignored. There-
fore, the first plane feature is describing the edge stones; the second four feature planes
describe black stones with one, two, three, or four liberties; and the third four feature
planes describe the white stones, which represent the same liberties as the black. Moreo-
ver, the remaining feature planes are the color of the stone’s turns and are reserved for
indicating a ko situation. This encoder with 11 planes led to notable improvements in
model performance.

In the DCNN part, we built neural networks consisting of eight convolutional layers,
all with ReLU activations, as shown in Figure 4. The pooling layers are not added between
the convolutional layers because in the second half of the game, the board is gradually
filled with stones, and each position of the stones affects the overall plane features of the
board. In order to prevent the high layer output from becoming exceedingly small, we
introduced the zero pad before each convolutional layer, and the value of strides is set to
2 to ensure that the features of the stones at the edge of the board can also be extracted.
Therefore, the formula for calculating the size of the feature graph generated after convo-
lution is as follows: 𝑤 = (–),
where the input matrix size is 𝑥, and 𝑘 is the convolution kernel size. 𝑠 denotes the step
length, and the number of zero-padding layers is 𝑝.

Figure 4. Architecture of the DCNN part.

Different from traditional frameworks, we do not use a fully connected layer, but a
global averaging pooling layer instead. This retains the previous convolution layers, ex-
tracts spatial information, can be used for fusion with subsequent graph features. The
equation of global averaging pooling is expressed as follows: 𝑉 = ∑ ∑ , ,× ,
where 𝑚 is the feature map from input Go data after convolutional layers, ℎ and 𝑤 are
the length and width of the data vector, respectively, and f is the number of feature chan-
nels. Through the global average pooling layer, the features tensor of input Go data with
the size of ℎ × 𝑤 × 𝑓 can be transferred to a feature vector with the size of 𝑓-dim. Due to
this method, hybrid networks can reduce a large number of weight parameters and main-
tain detailed information in Go data.

3.2. Construct the Graph Data Structure
The traditional plane features cannot represent the connection relationship between

stones, so we need to represent Go as a graph structure for learning these features. Because

Figure 4. Architecture of the DCNN part.

Different from traditional frameworks, we do not use a fully connected layer, but
a global averaging pooling layer instead. This retains the previous convolution layers,
extracts spatial information, can be used for fusion with subsequent graph features. The
equation of global averaging pooling is expressed as follows:

Vf =
∑H

h=1 ∑W
w=1 mh,w, f

H ×W
,

where m is the feature map from input Go data after convolutional layers, h and w are the
length and width of the data vector, respectively, and f is the number of feature channels.
Through the global average pooling layer, the features tensor of input Go data with the
size of h× w× f can be transferred to a feature vector with the size of f -dim. Due to this
method, hybrid networks can reduce a large number of weight parameters and maintain
detailed information in Go data.

3.2. Construct the Graph Data Structure

The traditional plane features cannot represent the connection relationship between
stones, so we need to represent Go as a graph structure for learning these features. Because
of the immutability of the Go board with respect to rotation and mirroring, the position of
the board can be expressed as a full graph representation (FGR) with the structure of a 19
× 19 grid in the graph. However, this representation occupies ample memory space, and
the expression effect is similar to the planar network structure used to train the DCNN. To
improve this approach, we represent the Go board in a common fate graph (CFG), which
represents adjacent stones with the same liberty together as a node, and the connection of
these stones clusters as one edge based on the rules of the Go “group”. This representation

Electronics 2023, 12, 4020 8 of 17

comes from the fact that the straight lines of the same color stones on the board must either
survive together or lose their liberty and all be captured, so these stones have a common
fate on the board. The method is represented as follows:

(v 1, v2, · · · vn)→ V (e 1 ∈ v1, e2 ∈ v2, · · · en ∈ vn)→ E ∈ V ,

where v is a stone in the stone group sharing a common liberty, and e is the connection
of the same stones to the other group in their own group. The CFG not only retains the
characteristics of a single stone but also reduces the space of the graph. Moreover, this
representation also perfectly defines the territory rules with respect to winning at Go.

Not only was the Go data built into the CFG structure; we also manually added some
features to the CFG based on the rules of Go. There are six node features and one edge
feature to help the model to better learn the graph structure, as shown in Table 1. These
features are divided into binary values and into different vectors. For example, regarding
the color of stone, black, white, and empty are split into three different vectors and are
represented as binary values. After extracting node and edge features, this approach can
reduce the contradiction between GCN and plane features.

Table 1. The features of the CFG.

Type Features Num of Vectors Details

Node Black, white, empty 3 The color of the
stones-occupied intersections

Node Per liberty in stone group 4
The liberty in the stone group
divided by the total number
of stones

Node Legal move 1 Whether the move of stone is
legal or not

Node Turns of move 5 The number of moves in the
group

Node Rewarding move 1
Whether a move results in
the capture of an opponent’s
stone

Node Number of captures 8 How many of the opponent’s
stones have been captured

Edge Relationship of groups 3

Whether the connected stone
group is an opponent or
empty point, and if it is an
opponent, whether it is
greater than it

3.3. Branch Model Based on Graph Learning

The Go data represented in the CFG are non-Euclidean data, which means they have
no translation invariance, and traditional deep learning models struggle to learn their
features. In order to extract the connection relationship between Go stones, we utilize the
relational graph neural network (R-GCN), which is a graph neural network, to train the
Go data represented by CFG. The common fate is a graph g = (v, e). v and e represent
the nodes (stones groups) and edges (stones connections in a group), respectively. In
previous studies, Ralaivola et al. [44] extracted game strategy features from CFG models
based on enumeration paths and used support vector machines to help classify expert
moves. In this paper, we construct an R-GCN model with two graph convolutional layers
to extract the graph features. N represents the number of CFG stones groups, and matrix A
represents its adjacency matrix, which is also the relationship between the groups. X is the
N×D-dimensional matrix composed of the features of these groups, where D is the degree
matrix of the adjacency matrix, Dii = ∑ jAij. X and A are the inputs in our model based on

Electronics 2023, 12, 4020 9 of 17

the GCN section. Therefore, as a neural network layer, the GCN propagates between layers
in the following ways [28]:

f (HL, A) = σ(D−
1
2
∼
AD−

1
2 HLWL),

where
∼
A is A+ 1, and the core of spectral convolution is the use of symmetric normalization

Laplacian matrices which are represented as D−
1
2
∼
AD−

1
2 .

The GCN updates the hidden state of a node by weighting its neighbor features and its
own features [28]. The hidden state of each node I passing through the graph convolution
layer of a traditional GCN can be expressed as the following formula:

h(l+1)
i = σ

(
∑

j∈Ni

1
ci

W(l)h(l)j

)
,

where W(l) is the shared weight of all edges in the l layer, and hj is the hidden state of
the neighbor of node i. 1

ci
is a regularization constant, and σ is the activation function.

However, the relationship between different stones nodes is weighted, which is calculated
based on the comparison of the number of Go stones contained between nodes of different
colors.

To aggregate edge information in a common fate graph, the R-GCN makes an improve-
ment on the original basis, so that the edges of different relations use different weights,
only the edges of the same relation type r use the same mapping weight W(l)

r . Therefore,
the formula of hidden state of node is represented as follows [45]:

h(l+1)
i = σ

W(l)
0 h(l)i + ∑

r∈R
∑

j∈Nr
i

1
ci,r

W(l)
r h(l)j

,

where W(l)
0 h(l)i represents the updating of the information of the node i, and Nr

i represents
the set of neighbor nodes of node i under the relation of r ∈ R. Through the convolution
operation of the R-GCN model, the information between adjacent nodes is transferred, and
the connection relationship between nodes is also brought into focus. This method allows
us to effectively extract the relationship between the stones and the spatial relationship
between the territories in the board. Then, we add a global maximum pooling layer to
the last layer to prepare for plane feature aggregation. Algorithm 2 shows the proposed
method for move prediction.

Algorithm 2 The proposed method for move prediction

Input: Plane vector of Go game data D; batch size s; number of epoch in model training
E; learning rate η; number of graph neural networks’ layers l.
Output: The accuracy of move prediction.
1: Train DCNN model by training data of 11 plane features vector D.
2: Fine-tune DCNN model by validation dataset.
3: Generate f -dim plane feature map through global average pool.
4: Construct the CFG, G= [x, edgeindex, pos, edgeattr, y] by manually adding node
features and edge features based on the Go game architecture.
5: for e = 1 to E do
6: Training on R-GCN model in l layers.
7: Calculate loss based on cross-entropy loss function and update weight W through
SGD.
8: end for
9: Calculate the final output through fusion work and conduct move prediction

Electronics 2023, 12, 4020 10 of 17

3.4. Hybrid Model with Feature Fusion

The hybrid network combines the advantages of graph convolution networks (GCNs)
and deep convolutional neural networks (DCNNs). The DCNN model extracted the
plane features of the Go data, and the GCN learned the neglected features of the game by
modeling the dependencies between the game elements and complex territory information.
In order to integrate these two features, we add a feature fusion operation to fuse the
features and transfer them to the final fully connected layer for the prediction of moves.
The process of fusion with two feature descriptors can be described by the following:

F = Cw·(I ⊕ µG),

Where F is the fusion feature, and Cw is a weight parameter in a fully connected layer.
I and G are the features that are extracted in the DCNN and R-GCN, respectively. The
symbol ⊕ denotes an operator in feature fusion for concatenation. The symbol µ represents
the fusion ratio to balance the features from plane and graph, and we set it to 0.7 after the
experiment.

Finally, we utilize the softmax layer to predict the probability of the moves in each
board position. To compute the softmax function for a vector x = (x1, x2 · · · xl) from the
full connection layer, the exponential function is applied to each component to compute ex

i ;
then, each of these values should be normalized:

so f tmax(xi) =
ex

i

∑l
j=1 ex

j

,

where each of these values is the sum of all values to be normalized. By definition, the
components of the softmax function are non-negative and add up to 1, meaning the softmax
returns probabilities.

Due to the game of Go having a maximum of 361 possible moves, the cross-entropy
loss function is leveraged to optimize the parameters to train the hybrid model. It can be
expressed as follows:

L =
1
N ∑i Li = −

1
N ∑i ∑

M
c=1 yiclogpic,

where M denotes the number of moves in the board. The symbol pic is the probability of
moves. If the true class of sample i equals c, yic takes 1; otherwise, it takes 0.

4. Experiments

In this section, we describe the details of a hybrid model integrated with the DCNN
and the GCN and conduct experiments on the KGS Go dataset for predicting moves. The
feasibility of our hybrid network is reported by comparing it with the DCNN model in
the original research. The accuracy of the expert’s moves is used as a criterion by which to
evaluate the model’s performance. We also conducted a series of experiments on hybrid
networks, including on the influence of different features of the model, and we evaluated
the maximum benefit of graph features on the model’s move prediction performance after
several Go players’ moves had been undertaken, as well as the reasonable confidence
interval of the predicted value.

4.1. Experiment Dataset

In this experiment, we used the Go dataset from the KGS Go server on the webpage
http://u-go.net/gamerecords/ (accessed on 28 July 2023), which collected the Go game
records from games played by high-ranking players from 2001 to 2019. It contains about
179,689 expert games (about 4 million move locations) played on boards with a size of
19 × 19 in which at least one of the players was 7 dan or above, or in which both players
were 6 dan. Based on the previous experiment [46], we divided the dataset into the training,

http://u-go.net/gamerecords/

Electronics 2023, 12, 4020 11 of 17

validation, and test sets, accounting for 90%, 2%, and 8% of the dataset, respectively.
Validation sets are used to regulate hyperparameters by monitoring learning and finding
the parameters corresponding to the best-performing model. In the dataset, the entire game
of Go is shuffled, not the state of individual game moves, because the moves within a single
game each depend on one another.

4.2. Details of Implementation

The hybrid networks were constructed in the PyTorch framework and Python-3.9 with
Intel Core i7 CPU and NVIDIA GTX 3050Ti GPU. To further improve the performance of the
move prediction model, we used the stochastic gradient descent (SGD) as an optimizer. The
SGD optimizer was set with a learning rate of 0.001, a 0.1% decay rate, and 90% momentum.
The hybrid model is composed of the DCNN and GCN models, and traisn with a batch
size of 128 for 10 epochs. Table 2 shows the details of the number of layers and the size and
number of filters in each model.

Table 2. Configuration of hybrid mode.

Model Layer Num of Filters Size of Filter

DCNN
3 layers 256 7 × 7
5 layers 128 5 × 5
2 layers 192 5 × 5

R-GCN 1 layer 256

4.3. Experiment Results

We performed several experiments during this analysis to ensure that the results
were stable and not stochastic. The basic DCNN model is used as a baseline by which to
compare the fusion model with the GCN model, and the accuracy of the move prediction
is the evaluation criterion by which we evaluate the reliability of the novelty model. Due
to the dataset being disrupted, and the Go strength (rank) of the players being irregular
with respect to one another in the Go records, it was difficult for the rank of the games in
the training set and test set to be the same, so we conducted average processing. Rank
represents the Go level of the players; the higher the rank, the more potent the player’s
strength in Go. The mean and standard deviation of all experiments were calculated
to evaluate whether the accuracy was within a reasonable range. We also calculate the
standard error (stderr) of the experiment’s accuracy via random sampling, which makes
the experiment more persuasive.

4.3.1. Comparison of Different Models

To validate the performance improvement of the hybrid networks over the traditional
DCNN, we conducted experiments in which the CNN–GCN model and the traditional
DCNN had the same number of convolution layers and other parameters as the DCNN
model of the hybrid model. We measured the move prediction accuracy in the training set
and test set for 10 epochs, and the loss of each epoch is shown in Figure 5. The mean and
standard deviation of the experiment on move prediction are used to evaluate the rigor of
the experiment, as shown in Figure 6. Table 3 shows the difference in accuracy between
the two models according to Chinese rules. Through training, our proposed model can
reach a maximum accuracy of nearly 50% in predicting moves on the KGS GO dataset.
It is worth mentioning that under the same test set verification, the performance of the
hybrid model is improved compared with the traditional DCNN model, and the accuracy
is increased by approximately 2%. To our knowledge, the previously known work on the
KGS dataset adopted a similar algorithm using a smaller 8-layer DCNN model and reached
approximately 45% accuracy with respect to move prediction [15]. Although the dataset
applied by our model has reached its most recent version compared to previous ones, the

Electronics 2023, 12, 4020 12 of 17

predicted results are still in the comparable range. Compared with the prediction result of
the traditional DCNN model, our hybrid model’s accuracy exceeds 4.43%.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 17

model can reach a maximum accuracy of nearly 50% in predicting moves on the KGS GO
dataset. It is worth mentioning that under the same test set verification, the performance
of the hybrid model is improved compared with the traditional DCNN model, and the
accuracy is increased by approximately 2%. To our knowledge, the previously known
work on the KGS dataset adopted a similar algorithm using a smaller 8-layer DCNN
model and reached approximately 45% accuracy with respect to move prediction [15].
Although the dataset applied by our model has reached its most recent version compared
to previous ones, the predicted results are still in the comparable range. Compared with
the prediction result of the traditional DCNN model, our hybrid model’s accuracy exceeds
4.43%.

Table 3. Move prediction in different models.

Model Test Dataset Train Dataset
 Accuracy Rank Stderr Accuracy Rank Stderr

DCNN 46.8% 6.87 1.2% 47.2% 6.35 1.7%
DCNN-(R-GCN) 48.7% 6.87 0.9% 49.8% 6.35 1.9%

Figure 3. Loss of each epoch.

Figure 4. Mean and standard deviation from randomness runs.

4.3.2. Performance of feature extraction.

Figure 5. Loss of each epoch.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 17

model can reach a maximum accuracy of nearly 50% in predicting moves on the KGS GO
dataset. It is worth mentioning that under the same test set verification, the performance
of the hybrid model is improved compared with the traditional DCNN model, and the
accuracy is increased by approximately 2%. To our knowledge, the previously known
work on the KGS dataset adopted a similar algorithm using a smaller 8-layer DCNN
model and reached approximately 45% accuracy with respect to move prediction [15].
Although the dataset applied by our model has reached its most recent version compared
to previous ones, the predicted results are still in the comparable range. Compared with
the prediction result of the traditional DCNN model, our hybrid model’s accuracy exceeds
4.43%.

Table 3. Move prediction in different models.

Model Test Dataset Train Dataset
 Accuracy Rank Stderr Accuracy Rank Stderr

DCNN 46.8% 6.87 1.2% 47.2% 6.35 1.7%
DCNN-(R-GCN) 48.7% 6.87 0.9% 49.8% 6.35 1.9%

Figure 3. Loss of each epoch.

Figure 4. Mean and standard deviation from randomness runs.

4.3.2. Performance of feature extraction.

Figure 6. Mean and standard deviation from randomness runs.

Table 3. Move prediction in different models.

Model Test Dataset Train Dataset

Accuracy Rank Stderr Accuracy Rank Stderr

DCNN 46.8% 6.87 ±1.2% 47.2% 6.35 ±1.7%
DCNN-(R-GCN) 48.7% 6.87 ±0.9% 49.8% 6.35 ±1.9%

4.3.2. Performance of Feature Extraction

We also conducted several experiments on the hybrid model to validate the correlation
effect between Go stones on the move strategy. As shown in Table 4, it was apparent from
the prediction results that the CFG data for building relationship weights between groups
of stones showed better performance after training. Moreover, the construction of plane
features in vector data also affected the learning of the hybrid model. Based on the principle

Electronics 2023, 12, 4020 13 of 17

of R-GCN, feature extraction on the common fate graph only affects the weight division
between different relations, and other parameters are no different from the GCN model.
This shows that the DCNN model has a weakness in analyzing group relationships in game
strategy, but the R-GCN can enhance the performance of the ordinary DCNN model in this
direction. Due to the shuffling of the dataset and the randomness of the experiment, we
also calculated each model’s mean and standard deviation after multiple experiments, as
shown in Figure 7.

Table 4. Accuracy of models with different features.

Model Features Accuracy Stderr

DCNN None 43.1% ±3.0%

DCNN 11 46.8% ±1.2%

DCNN–GCN 11 plane features
No Edge feature 47.9% ±1.5%

DCNN–(R-GCN) 11 plane features
Have Edge feature 48.7% ±1.9%

Electronics 2023, 12, x FOR PEER REVIEW 13 of 17

We also conducted several experiments on the hybrid model to validate the correla-
tion effect between Go stones on the move strategy. As shown in Table 4, it was apparent
from the prediction results that the CFG data for building relationship weights between
groups of stones showed better performance after training. Moreover, the construction of
plane features in vector data also affected the learning of the hybrid model. Based on the
principle of R-GCN, feature extraction on the common fate graph only affects the weight
division between different relations, and other parameters are no different from the GCN
model. This shows that the DCNN model has a weakness in analyzing group relationships
in game strategy, but the R-GCN can enhance the performance of the ordinary DCNN
model in this direction. Due to the shuffling of the dataset and the randomness of the
experiment, we also calculated each model’s mean and standard deviation after multiple
experiments, as shown in Figure 5.

Table 4. Accuracy of models with different features.

Model Features Accuracy Stderr
DCNN None 43.1% 3.0%
DCNN 11 46.8% 1.2%

DCNN–GCN 11 plane features
No Edge feature

47.9% 1.5%

DCNN–(R-GCN) 11 plane features
Have Edge feature

48.7% 1.9%

Figure 5. Mean and standard deviation of models with different features.

4.3.3. Performance of hybrid graph convolution neural networks.
In addition to the accuracy of the moves as a criterion for model evaluation, we also

divided the game into 10 stages, each containing 36 expert moves (because the maximum
number of moves on the board is only 361) to test the performance of the hybrid model in
game playing. In Figure 6, we can see that since there are very few stones on the board at
the beginning, it is difficult for the model to extract useful information, and the relation-
ship between the stones in the common fate graph will lose its function. Until the halfway
point of the game is reached, with the gradual increase in the number of Go stones on the
board, the GCN’s extraction of the relationship features in the graph begin to affect the
model’s training and improve the hybrid model’s performance. This shows that the rela-
tionship between the stones has a significant impact on the evaluation of game strategy.
Thus, the more the game progresses, the better our proposed model performs in move
prediction.

Figure 7. Mean and standard deviation of models with different features.

4.3.3. Performance of Hybrid Graph Convolution Neural Networks

In addition to the accuracy of the moves as a criterion for model evaluation, we also
divided the game into 10 stages, each containing 36 expert moves (because the maximum
number of moves on the board is only 361) to test the performance of the hybrid model in
game playing. In Figure 8, we can see that since there are very few stones on the board at
the beginning, it is difficult for the model to extract useful information, and the relationship
between the stones in the common fate graph will lose its function. Until the halfway point
of the game is reached, with the gradual increase in the number of Go stones on the board,
the GCN’s extraction of the relationship features in the graph begin to affect the model’s
training and improve the hybrid model’s performance. This shows that the relationship
between the stones has a significant impact on the evaluation of game strategy. Thus, the
more the game progresses, the better our proposed model performs in move prediction.

Electronics 2023, 12, 4020 14 of 17

Electronics 2023, 12, x FOR PEER REVIEW 14 of 17

Figure 6. Predictions of expert moves at each stage.

Next, the confident prediction within the number of 𝑛 guesses is also a worthy cri-
terion by which to evaluate the hybrid network. If 𝑛 is small, this means that the network
can predict the outcome of the expert’s moves within a small confidence interval. As
shown in Figure 7, predictions of expert moves become more accurate with more guesses
and converge after about 25 guesses. This shows that the probability of predicting correct
expert moves is in the top 25 for the hybrid model. However, in an actual game, the referee
will not give 25 more chances for the network to guess on the Go board; therefore, com-
pared with actual 7 Dan experts, there is still a notable gap in the model we proposed. As
an auxiliary tool for building game strategies, hybrid model predictions after multiple
attempts can help game programs reduce the search space effectively.

Figure 7. Top-n predictions of expert moves.

4.4. Theoretical applications in other strategy games.
Based on the results of the above evaluations of experiments applied in cases of the

game of Go, the hybrid model that we proposed shows excellent performance and poten-
tial for other strategy games. As a milestone for strategy games, most strategy games are
based on the foundations of Go, so the game of Go contains the characteristics that most
strategy games possess. The performance of the hybrid model in the game of Go indirectly
illustrates the feasibility of the model in other strategy games. For example, in the board
game, “space four chess”, whose pieces have spatial characteristics, it is necessary to con-
struct graph data in order to represent the relationship and position of chess pieces in 3D
space, as shown in Figure 1. In multi-agent strategy games, such as “League of Legends”
and “Dota 2”, these games involve teams of heroes battling each other, which, as in Go,

Figure 8. Predictions of expert moves at each stage.

Next, the confident prediction within the number of n guesses is also a worthy criterion
by which to evaluate the hybrid network. If n is small, this means that the network can
predict the outcome of the expert’s moves within a small confidence interval. As shown
in Figure 9, predictions of expert moves become more accurate with more guesses and
converge after about 25 guesses. This shows that the probability of predicting correct expert
moves is in the top 25 for the hybrid model. However, in an actual game, the referee will not
give 25 more chances for the network to guess on the Go board; therefore, compared with
actual 7 Dan experts, there is still a notable gap in the model we proposed. As an auxiliary
tool for building game strategies, hybrid model predictions after multiple attempts can
help game programs reduce the search space effectively.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 17

Figure 6. Predictions of expert moves at each stage.

Next, the confident prediction within the number of 𝑛 guesses is also a worthy cri-
terion by which to evaluate the hybrid network. If 𝑛 is small, this means that the network
can predict the outcome of the expert’s moves within a small confidence interval. As
shown in Figure 7, predictions of expert moves become more accurate with more guesses
and converge after about 25 guesses. This shows that the probability of predicting correct
expert moves is in the top 25 for the hybrid model. However, in an actual game, the referee
will not give 25 more chances for the network to guess on the Go board; therefore, com-
pared with actual 7 Dan experts, there is still a notable gap in the model we proposed. As
an auxiliary tool for building game strategies, hybrid model predictions after multiple
attempts can help game programs reduce the search space effectively.

Figure 7. Top-n predictions of expert moves.

4.4. Theoretical applications in other strategy games.
Based on the results of the above evaluations of experiments applied in cases of the

game of Go, the hybrid model that we proposed shows excellent performance and poten-
tial for other strategy games. As a milestone for strategy games, most strategy games are
based on the foundations of Go, so the game of Go contains the characteristics that most
strategy games possess. The performance of the hybrid model in the game of Go indirectly
illustrates the feasibility of the model in other strategy games. For example, in the board
game, “space four chess”, whose pieces have spatial characteristics, it is necessary to con-
struct graph data in order to represent the relationship and position of chess pieces in 3D
space, as shown in Figure 1. In multi-agent strategy games, such as “League of Legends”
and “Dota 2”, these games involve teams of heroes battling each other, which, as in Go,

Figure 9. Top-n predictions of expert moves.

4.4. Theoretical Applications in Other Strategy Games

Based on the results of the above evaluations of experiments applied in cases of the
game of Go, the hybrid model that we proposed shows excellent performance and potential
for other strategy games. As a milestone for strategy games, most strategy games are based
on the foundations of Go, so the game of Go contains the characteristics that most strategy
games possess. The performance of the hybrid model in the game of Go indirectly illustrates

Electronics 2023, 12, 4020 15 of 17

the feasibility of the model in other strategy games. For example, in the board game, “space
four chess”, whose pieces have spatial characteristics, it is necessary to construct graph
data in order to represent the relationship and position of chess pieces in 3D space, as
shown in Figure 1. In multi-agent strategy games, such as “League of Legends” and “Dota
2”, these games involve teams of heroes battling each other, which, as in Go, requires the
hybrid model to consider not only the choices of individual agents but also the strategies of
the entire group. Furthermore, in strategy video games such as “Starcraft” and “Age of
Empires”, the hybrid framework can leverage the CNN to deal with the large map in the
game, and the GCN structure can determine the impact of the terrain in the map. Due to
the nature of the graph architecture, the GCN can also analyze the relationship between
the group and the game unit to make strategic decisions. The properties of these different
strategies are all contained in the game of Go, and in the experiment, it can be seen that
they are well solved by the hybrid model.

5. Conclusions and Future Work

In this paper, we designed a hybrid network integrating the GCN and the DCNN
and applied it to a classic strategy game—the game of Go—to validate our work. This
hybrid model not only utilizes the advantages of deep convolutional neural networks
in extracting plane features but also introduces graph neural networks to process graph
structure data constructed according to the game’s rules and learns the correlation and
dependency between the entities in the game. The game of Go, as a complex strategy
game, is just a test for our proposed framework; in simple spatial strategy games, the
fusion framework will show better performance with respect to strategic decision-making.
Based on this experiment, the following are some of the advantages of the hybrid model in
developing strategies in games:

1. Enhance the identification of strategic situations: The model can identify common
formations that indicate strong and weak positions, enhancing the impact of a team’s
overall strength on the game as a whole rather than that of a single individual.

2. Assess the game on multiple levels: The model can consider regional characteristics
based on the graph structure, explicitly capturing the connections between game
nodes (relationships, rewards, resources), their territorial impact, and potential corre-
lations.

3. Adapt to different stages of the game: Strategy games have different stages, such as
the opening, mid-game, and end game. The versatility of the hybrid approach in
capturing different aspects of the game allows it to adapt to the strategic needs of
these different phases. For example, the GCN can learn the long-term dependencies
of games, while the CNN is good at learning tactical patterns.

Therefore, the framework we propose solves the problem of traditional deep learning
models ignoring the relational features and spatial location features of entities when
learning game strategies.

While GCN-assisted hybrid models have shown significant improvements in game
strategy-making compared to traditional methods, some limitations still need to be ad-
dressed in future work. First, at the level of feature fusion, the method we used is relatively
simple and does not consider the particularity of some strategy games in terms of rules.
Therefore, more general fusion methods will be explored in the future. Second, in this
article, our approach to building graph-structured data for games using the CFG is com-
putationally complex and requires the manual features of nodes and edges. To alleviate
this problem, a potential solution is to use the superpixel function to build the game’s
graph data in a follow-up experiment, which is suitable for future expansion to other
strategy games. Third, at the level of graph-based learning, many game states are not fixed
from time to time, so our subsequent work will introduce a time series approach to the
hybrid model to deal with strategy games that need to be structured as dynamic graph
data. Moreover, because of the principle of GCNs, the GCN’s ability to perform in some
games is limited, so in future work, we will explore more graph-based learning models. In

Electronics 2023, 12, 4020 16 of 17

summary, potential future works will involve the addition of superpixel and other methods
to make the hybrid framework more universal and applicable to different strategy games.

Author Contributions: Conceptualization, K.P.S., H.X. and L.-M.A.; resources, K.P.S. and L.-M.A.;
writing—original draft preparation, H.X. and K.P.S.; writing—review and editing, K.P.S., H.X. and
L.-M.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The research dataset is KGS Go. Link: https://u-go.net/gamerecords/.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al.

Mastering the game of Go without human knowledge. Nature 2017, 550, 354–359. [CrossRef]
2. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al.

Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm. arXiv 2017, arXiv:1712.01815.
3. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al.

A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 2018, 362, 1140–1144.
[CrossRef] [PubMed]

4. Neven, F.; Schwentick, T.; Vianu, V. Finite state machines for strings over infinite alphabets. ACM Trans. Comput. Log. 2004, 5,
403–435. [CrossRef]

5. Browne, C.; Powley, E.J.; Whitehouse, D.; Lucas, S.M.; Cowling, P.I.; Rohlfshagen, P.; Tavener, S.; Liebana, D.P.; Samothrakis, S.;
Colton, S. A Survey of Monte Carlo Tree Search Methods. IEEE Trans. Comput. Intell. AI Games 2012, 4, 1–43. [CrossRef]

6. Furukawa, M.; Abe, M.; Watanabe, T. A Study on Utility Based Game AI Considering Long-Term Goal Achievement. J. Soc. Art
Sci. 2021, 20, 139–148. [CrossRef]

7. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Driessche, G.V.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.;
Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]
[PubMed]

8. Hazra, T.; Anjaria, K. Applications of game theory in deep learning: A survey. Multimed. Tools Appl. 2022, 81, 8963–8994.
[CrossRef]

9. Mahajan, C. Reinforcement Learning Game Training: A Brief Intuitive. MatSciRN Other Electron. 2020. [CrossRef]
10. Yasruddin, M.L.; Hakim Ismail, M.A.; Husin, Z.; Tan, W.K. Feasibility Study of Fish Disease Detection using Computer Vision

and Deep Convolutional Neural Network (DCNN) Algorithm. In Proceedings of the 2022 IEEE 18th International Colloquium on
Signal Processing & Applications (CSPA), Selangor, Malaysia, 12–12 May 2022; pp. 272–276.

11. Hou, J.; Gao, T. Explainable DCNN based chest X-ray image analysis and classification for COVID-19 pneumonia detection. Sci.
Rep. 2021, 11, 16071. [CrossRef]

12. Yang, J.H.; Choi, W.Y.; Lee, S.; Chung, C.C. Autonomous Lane Keeping Control System Based on Road Lane Model Using
Deep Convolutional Neural Networks. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC),
Auckland, New Zealand, 27–30 October 2019; pp. 3393–3398.

13. Wang, B.; Ma, R.; Kuang, J.; Zhang, Y. How Decisions Are Made in Brains: Unpack “Black Box” of CNN With Ms. Pac-Man Video
Game. IEEE Access 2020, 8, 142446–142458. [CrossRef]

14. Sutskever, I.; Nair, V. Mimicking Go Experts with Convolutional Neural Networks. In Proceedings of the International Conference
on Artificial Neural Networks, Prague, Czech Republic, 3–6 September 2008.

15. Clark, C.; Storkey, A.J. Training Deep Convolutional Neural Networks to Play Go. In Proceedings of the International Conference
on Machine Learning, Lille, France, 6–11 July 2015.

16. Li, Z.; Zhu, C.; Gao, Y.; Wang, Z.; Wang, J. AlphaGo Policy Network: A DCNN Accelerator on FPGA. IEEE Access 2020, 8,
203039–203047. [CrossRef]

17. Ichsan, M.N.; Armita, N.; Minarno, A.E.; Sumadi, F.D.; Hariyady. Increased Accuracy on Image Classification of Game Rock
Paper Scissors using CNN. J. RESTI (Rekayasa Sist. Dan Teknol. Inf.) 2022, 6, 606–611. [CrossRef]

18. Kamatekar, S.L.; Hiremath, S.M. Domination, Easymove Game Represented in Graph. Int. J. Math. Arch. 2018, 9, 179–185.
19. Yun, W.J.; Yi, S.; Kim, J. Multi-Agent Deep Reinforcement Learning using Attentive Graph Neural Architectures for Real-Time

Strategy Games. In Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Melbourne,
Australia, 17–20 October 2021; pp. 2967–2972.

20. Graf, T.; Platzner, M. Common fate graph patterns in Monte Carlo Tree Search for computer go. In Proceedings of the 2014 IEEE
Conference on Computational Intelligence and Games, Dortmund, Germany, 26–29 August 2014; pp. 1–8.

21. Xia, F.; Sun, K.; Yu, S.; Aziz, A.; Wan, L.; Pan, S.; Liu, H. Graph Learning: A Survey. IEEE Trans. Artif. Intell. 2021, 2, 109–127.
[CrossRef]

https://u-go.net/gamerecords/
https://doi.org/10.1038/nature24270
https://doi.org/10.1126/science.aar6404
https://www.ncbi.nlm.nih.gov/pubmed/30523106
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.3756/artsci.20.139
https://doi.org/10.1038/nature16961
https://www.ncbi.nlm.nih.gov/pubmed/26819042
https://doi.org/10.1007/s11042-022-12153-2
https://doi.org/10.2139/ssrn.3666956
https://doi.org/10.1038/s41598-021-95680-6
https://doi.org/10.1109/ACCESS.2020.3013645
https://doi.org/10.1109/ACCESS.2020.3023739
https://doi.org/10.29207/resti.v6i4.4222
https://doi.org/10.1109/TAI.2021.3076021

Electronics 2023, 12, 4020 17 of 17

22. Zhai, Z.; Staring, M.; Zhou, X.; Xie, Q.; Xiao, X.; Bakker, M.E.; Kroft, L.J.; Lelieveldt, B.P.; Boon, G.J.; Klok, F.A.; et al. Linking
Convolutional Neural Networks with Graph Convolutional Networks: Application in Pulmonary Artery-Vein Separation. In
Proceedings of the Graph Learning in Medical Imaging: First International Workshop, GLMI 2019, Held in Conjunction with
MICCAI 2019, Shenzhen, China, 17 October 2019.

23. Zhong, T.; Zhang, S.; Zhou, F.; Zhang, K.; Trajcevski, G.; Wu, J. Hybrid graph convolutional networks with multi-head attention
for location recommendation. World Wide Web 2020, 23, 3125–3151. [CrossRef]

24. Wilkens, R.S.; Ognibene, D. MB-Courage@EXIST: GCN Classification for Sexism Identification in Social Networks. In Proceedings
of the IberLEF 2021, Málaga, Spain, 21–24 September 2021.

25. Liang, J.; Deng, Y.; Zeng, D. A Deep Neural Network Combined CNN and GCN for Remote Sensing Scene Classification. IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4325–4338. [CrossRef]

26. Graepel, T.; Goutrie, M.; Kruger, M.; Herbrich, R. Learning on Graphs in the Game of Go. In Proceedings of the International
Conference on Artificial Neural Networks, Vienna, Austria, 21–25 August 2001.

27. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering.
In Proceedings of the Conference on Neural Information Processing Systems (NIPS), Barcelona, Spain, 5–10 December 2016.

28. Kipf, T.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907.
29. Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. arXiv 2017,

arXiv:1707.01926.
30. Gao, H.; Wang, Z.; Ji, S. Large-Scale Learnable Graph Convolutional Networks. In Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018.
31. Mosella-Montoro, A.; Ruiz-Hidalgo, J. SkinningNet: Two-Stream Graph Convolutional Neural Network for Skinning Prediction

of Synthetic Characters. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
New Orleans, LA, USA, 18–24 June 2022; pp. 18572–18581.

32. Li, W.; He, H.; Hsueh, C.; Ikeda, K. Graph Convolutional Networks for Turn-Based Strategy Games. In Proceedings of the
International Conference on Agents and Artificial Intelligence, Online Streaming, 3–5 February 2022.

33. Liu, Y.; Wang, W.; Hu, Y.; Hao, J.; Chen, X.; Gao, Y. Multi-Agent Game Abstraction via Graph Attention Neural Network. In
Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019.

34. Lee, E.S.; Zhou, L.; Ribeiro, A.; Kumar, V. Learning Decentralized Strategies for a Perimeter Defense Game with Graph Neural
Networks. arXiv 2022, arXiv:2211.01757.

35. Bisberg, A.; Ferrara, E. GCN-WP—Semi-Supervised Graph Convolutional Networks for Win Prediction in Esports. In Proceedings
of the 2022 IEEE Conference on Games (CoG), Beijing, China, 21–24 August 2022; pp. 449–456.

36. Liu, Q.; Xiao, L.; Yang, J.; Wei, Z. CNN-Enhanced Graph Convolutional Network with Pixel- and Superpixel-Level Feature Fusion
for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 8657–8671. [CrossRef]

37. Wang, L.; Wang, X. Dual-Coupled CNN-GCN-Based Classification for Hyperspectral and LiDAR Data. Sensors 2022, 22, 5735.
[CrossRef] [PubMed]

38. Meng, Y.; Wei, M.; Gao, D.; Zhao, Y.; Yang, X.; Huang, X.; Zheng, Y. CNN-GCN Aggregation Enabled Boundary Regression for
Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-
Assisted Intervention, Lima, Peru, 4–8 October 2020.

39. Duan, S.; Huang, P.; Chen, M.; Wang, T.; Sun, X.; Chen, M.; Dong, X.; Jiang, Z.; Li, D. Semi-supervised classification of fundus
images combined with CNN and GCN. J. Appl. Clin. Med. Phys. 2022, 23, e13746. [CrossRef]

40. Wang, H.; Xu, L.; Bezerianos, A.; Chen, C.; Zhang, Z. Linking Attention-Based Multiscale CNN With Dynamical GCN for Driving
Fatigue Detection. IEEE Trans. Instrum. Meas. 2021, 70, 2504811. [CrossRef]

41. McDonnell, K.; Abram, F.; Howley, E. Application of a Novel Hybrid CNN-GNN for Peptide Ion Encoding. J. Proteome Res. 2022,
22, 323–333. [CrossRef]

42. Liang, Y.; Jiang, S.; Gao, M.; Jia, F.; Wu, Z.; Lyu, Z. GLSTM-DTA: Application of Prediction Improvement Model Based on GNN
and LSTM. J. Phys. Conf. Ser. 2022, 2219, 012008. [CrossRef]

43. Li, B.; Zhu, Z. GNN-Based Hierarchical Deep Reinforcement Learning for NFV-Oriented Online Resource Orchestration in Elastic
Optical DCIs. J. Light. Technol. 2022, 40, 935–946. [CrossRef]

44. Ralaivola, L.; Wu, L.; Baldi, P. SVM and pattern-enriched common fate graphs for the game of go. In Proceedings of the The
European Symposium on Artificial Neural Networks, Bruges, Belgium, 27–29 April 2005.

45. Schlichtkrull, M.; Kipf, T.; Bloem, P.; Berg, R.V.; Titov, I.; Welling, M. Modeling Relational Data with Graph Convolutional
Networks. In Proceedings of the Extended Semantic Web Conference, Portorož, Slovenia, 28 May 28–1 June 2017.

46. Maddison, C.J.; Huang, A.; Sutskever, I.; Silver, D. Move Evaluation in Go Using Deep Convolutional Neural Networks. arXiv
2014, arXiv:1412.6564.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11280-020-00824-9
https://doi.org/10.1109/JSTARS.2020.3011333
https://doi.org/10.1109/TGRS.2020.3037361
https://doi.org/10.3390/s22155735
https://www.ncbi.nlm.nih.gov/pubmed/35957291
https://doi.org/10.1002/acm2.13746
https://doi.org/10.1109/TIM.2020.3047502
https://doi.org/10.1021/acs.jproteome.2c00234
https://doi.org/10.1088/1742-6596/2219/1/012008
https://doi.org/10.1109/JLT.2021.3125974

	Introduction
	Related Works
	Proposed Methodology
	DCNN in Feature Extraction
	Construct the Graph Data Structure
	Branch Model Based on Graph Learning
	Hybrid Model with Feature Fusion

	Experiments
	Experiment Dataset
	Details of Implementation
	Experiment Results
	Comparison of Different Models
	Performance of Feature Extraction
	Performance of Hybrid Graph Convolution Neural Networks

	Theoretical Applications in Other Strategy Games

	Conclusions and Future Work
	References

