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Abstract: With the significant advancements in deep learning technology, the domain of remote
sensing image processing has witnessed a surge in attention, particularly in the field of object
detection. The detection of targets in remotely sensed images is a challenging task, primarily due to
the abundance of small-sized targets and their multi-scale distribution. These challenges often result
in inaccurate object detection, leading to both missed detections and false positives. To overcome
these issues, this paper presents a novel algorithm called YOLO-GCRS. This algorithm builds upon
the original YOLOv5s algorithm by enhancing the feature capture capability of the backbone network.
This enhancement is achieved by integrating a new module, the Global Context Block (GC-C3), with
the C3 backbone network. Additionally, the algorithm incorporates a convoluted block known as
CBM (Convolution + BatchNormalization + Mish) to enhance the network model’s capability of
extracting depth features. Moreover, a detection head, ECAHead, is proposed, which integrates an
efficient attention channel (ECA) for extracting high-dimensional features from images. It achieves
higher precision, recall, and mAP@0.5 values (98.3%, 94.7%, and 97.7%, respectively) on the publicly
available RSOD dataset compared to the original YOLOv5s algorithm (improving by 5.3%, 0.8%, and
2.7%, respectively). Furthermore, when compared to mainstream detection algorithms like YOLOv7-
tiny and YOLOv8s, the proposed algorithm exhibits improvements of 2.0% and 7.5%, respectively, in
mAP@0.5. These results provide validation for the effectiveness of our YOLO-GCRS algorithm in
addressing the challenges of missed and false detections in remote sensing object detection.

Keywords: deep learning; image processing; multi-scale distribution; remote sensing image; CBM;
ECA; YOLOv5s

1. Introduction

Remote sensing image object detection is an essential technology with significant
applications in various military and civilian applications, including search and rescue,
reconnaissance [1], geological disasters [2], and everyday life [3]. The primary objective
of this system is to identify and accurately locate and classify targets of interest, such as
aircraft, vehicles, and ships, in optically complex remote sensing images. However, remote
sensing images present challenges due to their complex background information, varying
target scales, and abundance of small targets. These factors often result in difficulties in
detection, leading to high numbers of false detections and missed detections. Traditional
methods rely on human extraction of features, such as HoGDetector [4], DPM [5], and other
classical algorithms. However, these approaches suffer from a high algorithmic complexity,
low detection efficiency, and time-consuming processes.

Deep learning has made significant advancements in object detection in recent years [6].
By training deep neural networks on large datasets to learn target feature information, the
proposed algorithm achieves a higher accuracy compared to traditional manual feature
extraction methods while also being easier and more effective to implement. Currently,
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there are two main classes of deep-learning-based object detection algorithms. The first
category comprises traditional algorithms like R-CNN [7], Fast-RCNN [8], and Faster-
RCNN [9]. These algorithms are known for their intricate design, resource-intensive nature,
and relatively slower detection rates. The second type consists of single-stage regression-
based algorithms like SSD [10], RetinaNet [11], and the series of YOLO methods [12–15].
Compared with the two-stage algorithm, the single-stage algorithms have simpler array
designs, higher detection precision, and faster speeds.

In the field of remote sensing object detection, significant research efforts have yielded
successful results. Wen et al. [16] presented an enhanced SSD algorithm that detects objects
at multiple scales in remote sensing images. By incorporating advanced techniques for
background modeling and employing efficient strategies for supervised learning, their
approach significantly enhanced the detection of objects at multiple scales. The algorithm
was evaluated using the COCO dataset and demonstrated an exceptional performance. In
a separate investigation conducted by Qu et al. [17], a YOLOv3 model with an auxiliary
network was proposed to enhance the detection of objects in remote sensing images. To
optimize the detection performance, they incorporated the CBAM attention mechanism,
which effectively suppressed irrelevant information and emphasized critical details. As
a result of these enhancements, the object detection capability of their approach was
significantly improved. Shen et al. [18] aimed to improve cross-scale detection in road
object detection tasks through the utilization of the YOLOv3 model. To achieve this,
they employed the K-means-GIoU algorithm to generate prior boxes and introduced a
specialized detection branch specifically designed for detecting small targets. Furthermore,
they incorporated channel and spatial attention modules to further enhance the overall
performance of the method. These enhancements resulted in a higher mAP value and
improved the detection accuracy, particularly for small-scale objects. Furthermore, Zhu
et al. [19] proposed the addition of a prediction head to the YOLOv5 model for detecting
objects of different scales, which proved to be effective for object detection. To summarize,
deep learning techniques play a crucial role in remote sensing image object detection,
offering significant value and the potential for various applications.

However, the aforementioned existing methods do not adequately address the chal-
lenges of missed detections and false positives that frequently arise in remote sensing
image object detection. In order to tackle these issues, we devised an innovative algorithm
for remote sensing object detection, named YOLO-GCRS. This algorithm builds upon the
YOLOv5 framework and aims to provide effective solutions.

Our research makes significant contributions to the field in several aspects:

• We design the YOLO-GCRS by integrating the global-context-aware mechanism from
YOLOv5 with the C3 architecture in version 6.1 of YOLOv5s. This integration enhances
the network model’s ability to capture the global features of an image. Additionally,
we conducted an analysis to evaluate the detection performance when adding the
mechanism at different positions within the backbone.

• We propose a new convolutional extraction module, CBM, to replace the CBS module
in the original framework. This replacement significantly improves the model’s
detection accuracy when objecting objects.

• Lastly, we introduce a detection head called ECAHead, which incorporates the ECA
attention mechanism. This design allows for the comprehensive extraction of high-
dimensional channel features.

The subsequent sections of this paper are structured as follows: Section 2 presents
a comprehensive overview of the methodology utilized in YOLOv5s. In Section 3, we
introduce our proposed method. The experimental results and analysis are presented
in Section 4. Lastly, Section 5 provides a summary of the paper and discusses potential
avenues for future research.
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2. Background

The YOLOv5s model primarily comprises input data (input), a backbone network
(backbone), neck feature fusion (neck), and a multilevel detection head (head). Figure 1
illustrates the complete structure of YOLOv5s.

In YOLOv5s, the image input module employs a range of data augmentation tech-
niques, including Mosaic4, automatic image cropping, splicing, and scaling, to preprocess
the input images. Furthermore, this module automatically determines the optimal anchor
frame for the model by considering the target size in the training samples. These enhance-
ments contribute to an improved performance in terms of a higher detection accuracy and
faster processing speeds for the single-stage algorithms.

Figure 1. Design of YOLOv5s.

The YOLOv5s backbone network comprises the C3, CBS, and SPPF structures. The C3
structure divides input features into two parts, inspired by the cross-stage network CSP-
Net [20]. The main part progressively extracts features through convolution, normalization,
and activation functions. Meanwhile, the branches adjust the channels using convolu-
tional layers, effectively eliminating redundant gradient information. On the other hand,
the structure of CBS incorporates a Conv layer, a BatchNorm layer with normalization
techniques [21], and the SiLU activation function [22] to enhance feature extraction in multi-
scale object detection. This combination enhances the network’s ability to characterize
the input. Lastly, the SPPF architecture utilizes multiple 5 × 5 maximal pooling layers to
enhance the sensory diversity at various levels of the network, resulting in the incorpora-
tion of more comprehensive hierarchical features. The YOLOv5s backbone network offers
substantial improvements in the design simplicity, accuracy, and speed compared to the
two-stage algorithm by incorporating these structures.

The feature fusion module incorporates two crucial modules: the feature pyramid
network (FPN) [23] and the path aggregation network (PAN) [24]. This integration en-
hances the overall performance of multi-scale object detection by effectively combining the
strengths of both FPN and PAN.
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The forecasting module in YOLOv5s incorporates three detection layers with varying
scales: 80 × 80, 40 × 40, and 20 × 20. These layers serve a vital function by estimating
the categories and positions of targets of different sizes, including small, medium, and
large objects.

The loss functions used in YOLOv5s include the classification loss, target loss, and con-
fidence loss. To handle the classification loss and confidence loss, the BCEWithLogitsLoss
function is utilized, as illustrated in Formula (1). Conversely, the target loss is calculated
using the Intersection over Union (IoU) function [25], and YOLOv5s version 6.1 introduces
the CIoU, as demonstrated in Formula (2).

C = − 1
n ∑

x
[ylna + (1 − y)ln(1 − a)] (1)

The sample is denoted by x, the label by y, the predicted output by a, and the total
number of samples by n.

CIOU = IOU − ρ2(b, bgt)

c2 − αv (2)

where IOU represents the intersection over the union ratio between the predicted and
actual frames, and b and bgt denote the center coordinates of the prediction frame and the
rear frame. ρ represents the Euclidean distance between the centroids of the true frame and
the predicted frame. c represents the diagonal distance between the predicted frame and
the minimum outer join matrix of the true frame. α is a positive trade-off parameter that
influences the evaluation. v is a measure of the aspect ratio consistency parameter.

YOLOv5s utilizes the NMS [26] post-processing technique to eliminate redundant
candidate frames. The process is as follows:

• Group all rectangular boxes based on their category labels and sort the groups in
descending order of confidence scores.

• Start by identifying the rectangular box with the most reliable confidence score in step
1. Proceed by sequentially evaluating the remaining rectangular boxes. Compute the
IOU between every bounding box and the currently chosen box that has the highest
score. Remove any boxes that surpass a predefined IOU threshold, ensuring that only
the most relevant boxes are retained for further analysis.

• Repeat step 2 for the remaining rectangular boxes obtained from step 2 until all boxes
have been processed.

3. Proposed Method

Figure 2 visually represents the overarching structure of our proposed YOLO-GCRS.
The procedure commences by extracting features from the input remote sensing images
employing the GC-C3 and CBM architectures. These structures play a crucial role in
capturing relevant information. Subsequently, the features are fused at multiple scales
through the neck structure, enabling a comprehensive understanding of the image. Finally,
the ECAHead is employed to extract high-dimensional channel information, and the
prediction information is outputted.

3.1. Global Context Block

In object detection, convolutional deep neural networks are commonly used to ex-
tract image feature information. These networks primarily focus on local pixel locations.
However, to capture long-range dependencies, it is necessary to stack convolutional layers
multiple times. Unfortunately, directly stacking these layers repetitively can lead to compu-
tational inefficiency and difficulties in optimizing the model. This is due to the problematic
transfer of information over large distances.
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Figure 2. Design of YOLO-GCRS.

The Global Context Block, as illustrated in Figure 3, consists of two modules: Context
Modeling and Transform. The model’s capacity to capture contextual information is
significantly improved by these modules. The Global Context Block and the SE (Squeeze-
and-Excitation) [27] block differ in their approaches to the Context Modeling module. The
SE utilizes global average pooling, whereas the Global Context Block employs a 1 × 1
convolution and the SoftMax function.

The height and width of the feature map in the figure are denoted by H and W,
respectively, while the number of channels in the feature map is represented by C. In the
Context Modeling section, the main branch first reduces the feature map using a conv 1 × 1
convolution and reshapes it to 1 × W × H. Then, the Softmax operation is applied to obtain
the attention weights. The auxiliary branch multiplies the C × H × W feature map by the
attention weights. Finally, the values within each channel of the feature map are summed
to obtain the global relationship of size C × 1 × 1. The Transform structure incorporates
two conv 1 × 1 operations to minimize the parameter count. Additionally, LayerNorm
is utilized to address model optimization issues. The next step involves combining the
global information of H × W × C and C × 1 × 1 through the broadcast mechanism. This
allows for obtaining the output of crucial global information from the augmented image.
The calculation of the Global Context Block is demonstrated in Equations (3)–(5).

αj =
e

Wkxj

∑m eWkxm
(3)

δ(·) = Wv2ReLU(LN(Wv1(·))) (4)

zi = xi + Wv2ReLU(LN(Wv1

Np

∑
j=1

e
Wkxj

∑
Np
m=1 eWkxm

xj)) (5)
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where xi and xj are an instance of the input sample, αj is the weight of the global atten-
tion pooling, δ(·) represents the Transform structure, and Wv2 and Wk represent linear
transformations.

Figure 3. Design of the Global Context Block.

In order to enhance the feature extraction capabilities of YOLOv5s, a novel network
feature module named GC-C3 block is introduced. This module combines the Global Con-
text Block and the C3 block, as depicted in Figure 4. The GC-C3 block structure incorporates
the GC block into both branches of the C3 block. By integrating these components, the
module enables the extraction of long-range contextual feature information, ultimately
enhancing the network’s performance.

GCC3 GC CBS Bottle
Neck

CBS

Concat CBS

GC

X

Figure 4. Structure of GC-C3 block.
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3.2. CBM Model

The Mish activation function, as shown in Figure 5, does not have an upper bound or
a lower bound. This characteristic helps to prevent saturation caused by capping. Unlike
the ReLU activation function, which has hard zero bounds, Mish has a slight allowance
for negative values. This adaptability facilitates improved gradient movement within the
neural network. Additionally, the Mish activation function, as proposed by Misra et al. [28],
provides a smoother activation function compared to Swish. This smoothness allows for
better information propagation throughout the neural network, resulting in improved
accuracy and generalization.

Equation (6) is utilized to compute the Mish activation function.

Mish(x) = x · tanh(ln(1 + ex)) (6)

where x is the input sample and ln, tanh, and exp are all common math functions.
YOLOv5s utilizes the Convolution + BatchNormalization + SiLU (CBS) convolution

block to extract feature information. The SiLU activation function, which is implemented by
the Swish activation function, is used within this block. A new module called Convolution +
BatchNormalization + Mish (CBM) is introduced to improve the network’s ability to extract
deep-level features and improve the accuracy.The CBM convolutional block’s structure is
shown in Figure 6.

Figure 5. Mish activation function graph.

Figure 6. CBM Model.
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3.3. ECAHead

Hu et al. were the first to introduce the SE attention mechanism, which initially com-
presses the input feature maps, but this compression and dimensionality reduction can
hinder the learning of inter-channel dependencies. In contrast, the ECA attention mech-
anism [29] avoids dimensionality reduction and effectively captures local cross-channel
interactions by utilizing one-dimensional convolutions. This allows for the extraction of
inter-channel dependencies. Figure 7 illustrates the architecture of the ECA attention mech-
anism. The specific implementation steps of the ECA attention mechanism are as follows:

• The global average pooling operation is applied to the input feature map.
• Subsequently, a one-dimensional convolution procedure with a convolution kernel

size of k is executed. The Sigmoid activation function, as demonstrated in Equation (7),
is used to calculate the weights, represented by ω, for each channel.

ω = δ(C1Dk(y)) (7)

where C1D denotes one-dimensional convolution, δ denotes the Sigmoid function,
and ω denotes the weights obtained after computation.

• The original input feature map’s elements are then given weights, leading to the
production of the ultimate output feature map. This multiplication process ensures
that each element of the input feature map is appropriately weighted to contribute to
the final representation.

Figure 7. Structure of the ECA attention mechanism.

The ECA mechanism falls under the category of channel attention mechanisms, and
YOLOv5s exhibits high-dimensional channel features at the Head layer. To efficiently
extract and utilize these high-dimensional channel features, we propose a new module
called ECAHead. This module integrates the ECA attention mechanism with the Head
layer of YOLOv5s.

4. Experiments and Results Analysis
4.1. Experimental Environment

This paper presents the experimental environment, which is detailed in Table 1. The table
provides an overview of the specific conditions under which the experiments were conducted.
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Table 1. Configuration of the experimental environment.

Options Configuration

Operating System Ubuntu
CPU E5-2680 v4
GPU GeForce RTX 3060

Memory 14 GB
CUDA 11.1

Pytorch version 1.10.0

4.2. Datasets

For this experiment, the RSOD dataset [30] was employed. The RSOD dataset is
specifically designed for remote sensing applications and has been made publicly available
by Wuhan University. It comprises four distinct categories, namely aircraft, playground,
overpass, and oil tank. The utilization of this dataset enables the evaluation and analysis of
object detection algorithms in the context of remote sensing scenarios.

Table 2 provides a comprehensive breakdown of the types and quantities of datasets.

Table 2. Distribution of datasets.

Labeling of the Dataset Number of Images

aircraft 446
playground 189

overpass 176
oil tank 165

Additionally, Figures 8 and 9 provide a thorough representation of the sample RSOD
dataset and its fundamental features. The visual representation reveals the presence of nu-
merous small targets within the dataset, accompanied by intricate background information.
Additionally, the dataset exhibits a multi-scale distribution, emphasizing the diverse range
of object sizes present.

Figure 8. Illustrative representation of the RSOD dataset.
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Figure 9. Labeling information distribution.

4.3. Evaluation Metrics
4.3.1. Precision

The precision of a prediction is determined by dividing the number of correct predic-
tions by the total number of results predicted for positive samples. It gauges the precision
of the model in terms of accurately recognizing positive occurrences.

Precision =
TP

TP + FP
(8)

True Positives (TP) refer to cases where the prediction and the label value both cor-
respond to positive examples. On the other hand, False Positives (FP) denote situations
where the forecast is categorized as a positive instance, yet the label value is, in fact, a
negative instance.

4.3.2. Recall

The likelihood of a positive sample being correctly identified among all predicted
positive outcomes is denoted by the recall. This measures the effectiveness of the model in
capturing all relevant positive instances.

Recall =
TP

TP + FN
(9)

False Negatives (FN) are situations where the forecast is labeled as a negative result,
yet the actual result is a positive one. They signify instances where the model fails to
identify a positive instance correctly.

4.3.3. Mean Average Precision

The mAP is a measure that determines the mean precision across all categories. It
provides a comprehensive evaluation of the model’s performance.

mAP =
1
N ∑ APi (10)



Electronics 2023, 12, 4272 11 of 17

The total number of categories is denoted by N, and the average precision in category
i is represented by APi. When evaluating the mAP@0.5, we refer to the average accuracy
value obtained when using an IoU threshold of 0.5. The level of overlap between the
predicted bounding box and the ground truth bounding box is determined by this threshold
in order for it to be deemed a correct detection.

4.3.4. FLOPs

FLOPs, also known as floating point operations, represent the computation amount
and can be utilized as a metric to measure the algorithm complexity. They are characterized
as the quantity of floating point operations carried out. FLOPs are expressed in G(billion).

4.3.5. FPS

The concept of Frames Per Second (FPS) denotes the rate at which frames are trans-
mitted within a single second in a picture or video. It is measured in f rame/s. For this
experiment, the GPU FPS was selected as the standard for evaluating the system perfor-
mance and speed.

FPS =
Frames
Time

(11)

4.4. Parameter Setting and Network Training
4.4.1. Parameter Setting

Table 3 presents the training parameter settings outlined in this research paper.

Table 3. Configuration of the experimental parameters.

Parameters Value

weights yolov5s.pt
division ratio 7:2:1 (train:val:test)

optimizer SGD
batch size 16

epochs 100

The pre-training weights of yolov5s.pt were obtained from the migration of ImageNet.
The division ratio indicates the ratio at which the dataset is split.

4.4.2. Network Training

The network training results are visually represented by the loss function curve.
This research paper introduces a loss function consisting of three primary components:
classification loss, target loss, and confidence loss.

Lloss = Lcls + Lobj + Lbox (12)

Lcls, Lobj, and Lbox correspond to the classification loss, confidence loss, and target loss,
respectively.

An evaluation of the network training effectiveness can be performed by analyzing
the loss function curves. Figure 10 illustrates the loss function curves for the YOLOv5s and
YOLO-GCRS models.

The visualization results suggest that the YOLO-GCRS model reduces the loss as the
number of iterations increases. After around 80 iterations, the loss value stabilizes and con-
verges towards zero, signifying the attainment of optimal effectiveness in model training.
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Figure 10. Loss Curve.

4.4.3. Ablation Experiments

This research paper extensively showcases the designed module’s effectiveness and
sophistication through the conduction of ablation experiments. This study conducted
ablation experiments using the validation set as the dataset.

Initially, we assessed the possible placements of the GC-C3 module in the backbone
and scrutinized their corresponding impacts. Table 4 provides a summary of these findings.

Table 4. Comparison of the GC-C3 effects at different positions.

Method Precision Recall mAP@0.5 FLOPs

YOLOv5s 0.930 0.939 0.950 15.8
+front-2 0.980 0.934 0.970 15.9

+behind-2 0.968 0.950 0.965 16.4
+backbone-4 0.968 0.939 0.956 16.4

We identified three scenarios for the placement of the GC-C3 module in the YOLOv5s
backbone. The first scenario, front-2, involves replacing the initial two C3 structures with
GC-C3. The second scenario, behind-2, entails replacing the last two C3 structures. Lastly,
the backbone-4 scenario involves replacing all C3 structures with GC-C3.

Upon analyzing the results, we observed that the behind-2 experiment yielded the
best outcomes. Specifically, compared to the original YOLOv5s, it showed improvements of
3.8% in precision, 1.1% in recall, and 1.5% in mAP@0.5, with only a marginal 0.6 increase in
FLOPs. Although front-2 exhibited a higher mAP@0.5 metric, a comprehensive evaluation
of precision, recall, and mAP@0.5 revealed that behind-2 outperformed it.

Moving on, we proceed to discuss the proposed base extraction convolutional block
(CBM), as presented in Table 5.

Table 5. Experimental comparison of different loss functions.

Method Precision Recall mAP@0.5 FLOPs

YOLOv5s(CBS) 0.930 0.939 0.950 15.8
+CBR 0.959 0.937 0.958 15.8
+CBM 0.953 0.948 0.967 15.8
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The experiment compares the base extracted convolutional block CBS (Convolution +
BatchNormalization + SiLU) in the original YOLOv5s with two modified versions. CBR
(Convolution + BatchNormalization + ReLU) replaces the activation function with ReLU,
while CBM is a proposed novel base extraction convolution block.

We compared the effectiveness of various activation functions by running experi-
ments with these blocks. Notably, our proposed CBM convolution block consistently
outperformed the others, achieving optimal results in terms of mAP@0.5.

Moving forward, we delve into the effectiveness of ECAHead in detecting objects
at various positions. Table 6 illustrates the different detection effects of ECAHead at
different locations.

Table 6. Evaluating the detection effect of ECAHead in various positions.

Method Precision Recall mAP@0.5 FLOPs

YOLOv5s 0.930 0.939 0.950 15.8
+ECAHead-s 0.964 0.924 0.941 15.8
+ECAHead-m 0.946 0.973 0.973 15.8
+ECAHead-l 0.954 0.942 0.969 15.8
+ECAHead-a 0.944 0.938 0.957 15.8

The detection heads in the original model, ECAHead s, m, l, and a, respectively replace
the small, middle, large, and all detection targets. After evaluating their performance levels,
we discovered that ECAHead-middle yielded the most favorable metric results.

To further highlight the superiority of ECAHead, we integrated it with mainstream at-
tention mechanisms in the head and conducted comparative experiments. Table 7 illustrates
the experimental outcomes of different attentional mechanisms for head detection.

Table 7. Comparison of the experimental effects of different attentional mechanisms for detecting heads.

Method Precision Recall mAP@0.5 FLOPs

YOLOv5s 0.930 0.939 0.950 15.8
+ECAHead 0.946 0.973 0.973 15.8
+SEHead 0.987 0.947 0.964 15.8

+CBAMHead 0.957 0.952 0.962 15.8
+SAHead 0.954 0.931 0.956 15.8

In our comparisons, we evaluated ECAHead against other mainstream attention mech-
anisms, including SE, CBAM [31], and SA (ShuffleAttention) [32]. The results unequivocally
demonstrate that ECAHead consistently outperformed the alternatives, providing strong
evidence for its effectiveness.

We conducted ablation experiments on YOLO-GCRS to demonstrate the module’s
direct impact visually. Table 8 displays the experimental outcomes for each module.

The results of the ablation tests conducted on each module showed marked improve-
ments in the precision, recall, and mAP@0.5 when compared to the initial YOLOv5s.
Specifically, our proposed YOLO-GCRS demonstrated improvements of 5.3% in precision,
0.8% in recall, and 2.7% in mAP@0.5 over the original YOLOv5s. Furthermore, the in-
crease in FLOPs was merely 0.6, ensuring that the real-time detection capabilities with FPS
were maintained within an acceptable range. The findings of the research provide strong
evidence for the effectiveness of YOLO-GCRS.

In addition, to showcase the sophistication of YOLO-GCRS, we compared it with
the most advanced algorithms in its category. Table 9 shows the experimental results for
various mainstream algorithms.
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Table 8. Ablation experiment.

Method Precision Recall mAP@0.5 FLOPs FPS/(frame/s)

YOLOv5s 0.930 0.939 0.950 15.8 76.8
+GC-C3 0.968 0.950 0.965 16.4 43.5
+CBM 0.953 0.948 0.967 15.8 69.1

+ECAHead 0.946 0.973 0.973 15.8 74.7
YOLO-GCRS 0.983 0.947 0.977 16.4 42.6

Table 9. Examining and contrasting mainstream algorithms through experimentation.

Method Precision Recall mAP@0.5

YOLOv5s 0.930 0.939 0.950
YOLOv7-tiny 0.953 0.957 0.957

YOLOv8s 0.871 0.864 0.902
YOLO-GCRS 0.983 0.947 0.977

Our designed YOLO-GCRS algorithm has been proven to achieve superior results
over state-of-the-art peer algorithms on experimental test datasets.

To evaluate the YOLO-GCRS model’s ability to generalize, we conducted comparative
experiments on the NWPU VHR-10 remote sensing dataset. The parameter settings for
these experiments were identical. The results of these experiments are shown in Table 10.

Table 10. Evaluating the performance levels of diverse models on the NWPU VHR-10 dataset.

Method Precision Recall mAP@0.5

YOLOv5s 0.935 0.927 0.942
YOLO-GCRS 0.950 0.933 0.955

The YOLO-GCRS model in the NWPU VHR-10 dataset showed remarkable improve-
ments compared to the initial YOLOv5s. Significantly, it achieved a 1.5% rise in precision
(P), a 0.6% rise in recall (R), and a 1.3% rise in mAP@0.5. These findings serve as strong
evidence for the remarkable generalization ability of the YOLO-GCRS model.

4.4.4. Visualization Experiments

In order to gain a more thorough understanding of how YOLO-GCRS addresses detec-
tion issues in remote sensing datasets, we conducted visual and comparative experiments
in various contexts. These experiments aim to illustrate the efficiency of YOLO-GCRS in
resolving these concerns in a detailed manner.

To begin with, Figure 11 illustrates the challenges linked to the identification of minor
targets, such as missed detections and false detections. By employing the YOLO-GCRS
methodology, we can successfully mitigate the occurrence of false detections and missed
detections in aircraft, particularly when it comes to small targets.

Additionally, Figure 12 illustrates the detection outcomes of targets across various
scales. The complexity of the background information portrayed in Figure 12 is matched
by the multi-scale distribution of the aircraft types. Through the implementation of YOLO-
GCRS, we can effectively reduce the occurrence of missed detections.

Finally, Figure 13 demonstrates the identification of extensive targets with intricate
background information. YOLO-GCRS demonstrates its ability to effectively detect large-
scale targets and reduce the occurrence of false detections in such scenarios.

To conclude, the YOLO-GCRS algorithm tackles the issues of missed detections and
false detections due to the abundance of small targets, multi-scale distribution, and intricate
background data.
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Figure 11. Missed and false detections of small targets in complex backgrounds. The (left) side
displays the identification outcomes of YOLOv5s, while the (right) side exhibits the outcomes of
YOLO-GCRS.

Figure 12. Multi-scale small target missed detections in complex environments. The (left) side
displays the identification outcomes of YOLOv5s, while the (right) side exhibits the outcomes of
YOLO-GCRS.

Figure 13. False detections of large targets in intricate environments. The (left) side displays the
identification outcomes of YOLOv5s, while the (right) side exhibits the outcomes of YOLO-GCRS.
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5. Conclusions

In this paper, we proposed a remote sensing image detection algorithm called YOLO-
GCRS, which incorporates a global contextual attention mechanism. The key innovations
of YOLO-GCRS include the GC-C3 structure, the CBM convolution module, and the
ECAHead structure. The GC-C3 structure enables the model to establish long-range
contextual information, facilitating the extraction of global features. The CBM convolution
module can effectively improve the depth feature extraction ability of the model. Lastly,
the ECAHead structure enhances the extraction of high-dimensional channel features and
improves the focus on features of interest by incorporating attention mechanisms.

YOLO-GCRS attains a mAP@0.5 of 97.7%, surpassing the original YOLOv5s by 2.7%.
In comparison to mainstream detection algorithms such as YOLOv7-tiny and YOLOv8s,
YOLO-GCRS showcases enhancements in the mAP@0.5 metrics, varying between 2% and
7.5%. Our proposed algorithm efficiently resolves the problems of missed detections and
false detections in remote sensing images. Moving forward, we will focus on improving
the lightweight design and enhancing the speed of our models.
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