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Abstract: Machine learning (ML)-based Network Intrusion Detection Systems (NIDSs) can classify
each network’s flow behavior as benign or malicious by detecting heterogeneous features, includ-
ing both categorical and numerical features. However, the present ML-based NIDSs are deemed
insufficient in terms of their ability to generalize, particularly in changing network environments
such as the Internet of Things (IoT)-based smart home. Although IoT devices add so much to home
comforts, they also introduce potential risks and vulnerabilities. Recently, many NIDS studies on
other IoT scenarios, such as the Internet of Vehicles (IoV) and smart cities, focus on utilizing the
telemetry data of IoT devices for IoT intrusion detection. Because when IoT devices are under attack,
their abnormal telemetry data values can reflect the anomaly state of those devices. Those telemetry
data-based IoT NIDS methods detect intrusion events from a different view, focusing on the attack
impact, from the traditional network traffic-based NIDS, which focuses on analyzing attack behavior.
The telemetry data-based NIDS is more suitable for IoT devices without built-in security mechanisms.
Considering the smart home IoT scenario, which has a smaller scope and a limited number of IoT
devices compared to other IoT scenarios, both NIDS views can work independently. This motivated
us to propose a novel ML-based NIDS to combine the network traffic-based and telemetry data-based
NIDS together. In this paper, we propose a Transformer-based IoT NIDS method to learn the be-
haviors and effects of attacks from different types of data that are generated in the heterogeneous
IoT environment. The proposed method utilizes a self-attention mechanism to learn contextual
embeddings for input network features. Based on the contextual embeddings, our method can solve
the feature set challenge, including both continuous and categorical features. Our method is the first
to utilize both network traffic data and IoT sensors’ telemetry data at the same time for intrusion
detection. Experiments reveal the effectiveness of our method on a realistic network traffic intrusion
detection dataset named ToN IoT, with an accuracy of 97.95% for binary classification and 95.78% for
multiple classifications on pure network data. With the extra IoT information, the performance of our
method has been improved to 98.39% and 97.06%, respectively. A comparative study with existing
works shows that our method can achieve state-of-the-art performance on the ToN IoT dataset.

Keywords: network intrusion detection systems; deep learning; network security

1. Introduction

There has been a growing trend toward smart homes in recent years, driven by
the increasing diversity and availability of heterogeneous devices and smart objects [1].
As technology improves, artificial intelligence (AI) and machine learning (ML) are inte-
grated into smart homes to enhance functionality, such as home automation systems [2],
energy management [3], and home security [4].

Internet of Things (IoT) is a network of physical devices, vehicles, home appliances,
and other items embedded with electronics, software, sensors, and network connectivity,
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which enables these objects to collect, exchange, and analyze data [5]. The wide-ranging
IoT applications have been adopted and deployed in smart homes in the last few years to
increase the ability to monitor and control devices remotely, implemente the automation of
various household tasks and systems, and provide the residents with a more comfortable,
convenient, energy-efficient, and secure living experience [6,7]. The possibilities are endless
as new devices and technologies continue to emerge.

However, many IoT devices have limited or no built-in security features and are
vulnerable to cyberattacks. Some IoT devices can generate, collect and transmit sensitive
data, making them a prime target for cybercriminals. Due to the diversity of devices and
technologies involved in IoT, it can be challenging to ensure consistent and effective security
across the entire system. Some of the security challenges specific to the heterogeneous
nature of IoT include different security standards, incompatibility between devices, vul-
nerability to attack, and complexity in management. Currently, some existing ML-based
IoT IDS approaches [8,9] monitor the IoT telemetry data (such as the GPS location val-
ues, temperature, and atmospheric pressure) to detect attacks against IoT devices. Other
ML-based IoT IDS studies [10,11] follow the traditional NIDSs way by considering the
network traffic only. It is important to note that these two types of NIDS methods are
fundamentally different. The network traffic-based NIDS detects patterns in network traffic
to determine whether it constitutes an attack. In contrast, the telemetry data-based NIDS
monitors the status of potential victim devices by analyzing their telemetry data as input.
While the telemetry data is transmitted in the form of network traffic, the telemetry data-
based NIDS does not analyze the behavior of the traffic. Instead, it focuses on the content
of the traffic, specifically the current telemetry values. The telemetry data-based NIDS
determines whether the devices are under attack, even if the telemetry traffic itself is not
necessarily malicious. For instance, as a result of an attack, a temperature sensor may show
a temperature that is outside the expected range. In summary, the network traffic-based
NIDS focuses on the behavior of attack traffic, whereas the telemetry data-based NIDS
focuses on the impact of attack traffic on the device’s telemetry values.

In this work, we aim to combine network traffic-based NIDS and telemetry data-based
NIDS together. Since each type of those two NIDS methods only has a single view of the
smart home network, it is hard to learn generalized insight knowledge based on the limited
view. Therefore, we propose a transformer-based IoT IDS, which detects each flow by
taking both the flow’s statistical features and the current IoTs’ telemetry values as input. It
is important to note that a smart home network can vary depending on the setup. Figure 1
shows an example of a smart home network and illustrates how our NIDS design can be
integrated into a smart home network.

As Figure 1 shows, we set up a smart home gateway to provide a connection between
the home intranet and the internet. The smart home gateway consists of a NIDS, which is
responsible for securing the whole home intranet, and a middleware server, which runs
all IoT services and provides interfaces for users to access IoT services. The IoT services
indicate that home members and authorized users can connect their smart devices to the
home intranet and control home IoT devices, such as making some coffee, controlling
the gate, or checking the temperature and air quality. In the intranet of the smart home,
the IoT devices publish their telemetry data to the middleware server through the MQTT
protocol (a lightweight, publish-subscribe, machine-to-machine network protocol for IoT
message queue/message queuing service), and users can subscribe to those data (such
as temperature and moisture) on other devices, such as smartphones or PCs, through
the HTTP protocol (an application-layer protocol for web services and other purposes).
Nowadays, various cyber-security incidents (i.e., DDoS and ransomware, XSS—Cross-Site
Scripting, backdoor, and injection) are launched against different IoT sensors [12].
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Figure 1. An example smart home scenario. The smart home gateway consists of the functions
of both NIDS and the middleware server of IoTs. The smart home intranet block represents the
communications of IoT services publish/subscribe through MQTT and HTTP protocols, respectively.
The NIDS monitors all network traffic and all IoT devices’ telemetry values, which are obtained from
the middleware.

NIDS is a beneficial tool for monitoring and securing IoT networks. It can analyze
multiple types of data from various sources, such as network packets, system logs, and ap-
plication data [13]. The use of deep learning for intrusion detection in smart homes and
IoT has been a growing research area, as deep learning algorithms can help detect and
prevent malicious activities on these devices. However, traditional DL-based NIDS faces
some challenges in using the heterogeneous feature tabular data and working with IoT’s
mixed data.

First, it has been well known that the different scales and value types of heterogeneous
features challenge the DL-based models [14]. Heterogeneity is an original property of
features in network traffic data for flow-based NIDS. For instance, KDD-99 [15], UNSW
data [16], and CICIDS data [17] provide tabular data consisting of different types of features
to represent network traffic flow. Those features include both categorical features (such
as “Protocols”, “Service”, and “Flags”) and numerical features (such as “Source bytes”,
“Average Transport Speed”, and “Flow duration”).

Second, current NIDSs may face compatibility issues in integrating and analyzing data
from various data sources in IoT scenarios. Booij et al. [18] demonstrated the relevance of
data set heterogeneity for effective intrusion detection in IoT environments. They proposed
a heterogeneous IoT network architecture, which consists of three components: “Edge
Layer”, “Fog Layer”, and “Cloud Layer”. For the IoT NIDS task, the heterogeneity of IoT
brings mixed data sources to NIDS models. Moreover, traditional network data collected
in the smart home gateway, and distributed IoT devices will also generate telemetry data,
which will be recorded in the IoT middleware server. If IoT devices are being targeted, their
telemetry sensor values can indicate an anomaly trend that can be employed for detecting
intrusions. For instance, if a smart fridge is being attacked, the temperature sensor readings
inside it may display an unusual pattern, either too high or too low, signaling an intrusion.
In order to detect IoT attacks, smart home NIDS should monitor all traffic flows and
telemetry data, but the network data are collected in terms of traffic flow, and the telemetry
data of IoT systems is recorded in terms of time. The NIDS operates on a per-flow basis,
while telemetry data are recorded based on time. As a result, longer network flows can
have several telemetry data records, whereas shorter ones may not have any, leading to
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what is known as a missing sensor record. Therefore, the mismatch of mixed data sources
will result in serious partial data missing in the combination of multiple data sources. It is
important for ML that the learning model receives a fixed-format input for each detection.
In our method, both network flow data and IoT telemetry data are included as parts of the
input. Thus, if there is a mismatch between the two, it can result in incorrect input for the
ML model.

In order to address the mentioned challenges of heterogeneous features and mixed data
sources, we propose a Transformer-based IoT NIDS method. The overview of the proposed
method workflow is shown in Figure 2. The multi-head self-attention mechanism [19],
which is the core component of Transformer, can learn adaptive embedding for both
categorical and numerical features. Compared with traditional ML/DL methods, our
method can match the state-of-the-art performance on binary detection tasks. Further, we
evaluate our method on the ToN IoT dataset for multiple-class detection. The results show
that our method can efficiently distinguish different types of malicious behaviors. Finally,
we test our method on the combination of mixed data sources. We use the network data
source and IoT telemetry data source to simulate smart home scenarios. Our method can
achieve better performance on mixed data sources than using network data only, even if
there is a large amount of “NaN” value in the IoT telemetry part of the combined data.
The results prove that our method has good robustness on mixed data in the aspects of
both feature heterogeneity and source heterogeneity.

We summarize our main contributions as follows:

• Proposing a Transformer-based IoT NIDS method. The method includes a data
processing algorithm for combining IoT data with network traffic data, and an FT-
Transformer-based model can adaptively learn from heterogeneous inputs.

• Evaluating our method on the ToN IoT dataset. The evaluation consists of the binary
and multiple classification performance of our method on network traffic data. Further,
we evaluate our method with the combination of network and IoT telemetry data.
To the best of our knowledge, this paper is the first to use the extra IoT data and
network data of the ToN IoT dataset at the same time.

• The results show that our method can match the performance of the state-of-the-
art methods with 97.95% and 95.78% detection accuracy for binary and multiple
classifications on pure network data. The additional results show that the extra IoT
data can enhance classification performance to 98.39% (+0.44%) and 97.06% (+1.28%),
respectively.

  Datasets preparing    IDS models    Evaluation  

Data processing:

 FT-Transformer-based
NIDSs model

Training data 

Testing data

Train

Test

False Alarm rate

AUC

F1 score

AccuracyNetwork
Data

IoT
Data

ToN_IoT dataset

Feature
Tokenizer

Transformer
Encoders

Output 
layer

Figure 2. The overview of the proposed workflow for intrusion classification in an IoT network.

The remainder of this paper is organized as follows, background and related work are
introduced in Section 2. Section 3 introduces the dataset, and the design of the correspond-
ing data processing method. Section 4 describes the architecture of the transformer-based
IoT Intrusion Detection system. The evaluation results and analysis are shown in Section 5.
Finally, Section 6 presents our conclusion and future work.
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2. Background and Related Work
2.1. IoT Security

The Internet of Things (IoT) has great potential to enable many beneficial applications
in smart homes and has rapidly become more important in creating smart home environ-
ments. However, there are several characteristics of IoT devices that make them vulnerable
to security threats. First, many IoT devices are small and have limited processing power,
memory, and storage. This makes it difficult to install and run security software and to
properly secure data stored on the device. Generally, IoT devices rely on software updates
to fix security vulnerabilities, but many devices do not receive regular updates or are not
updated at all, leaving them vulnerable to attack. Second, since IoT devices communicate
with each other and with cloud services, there are multiple entry points created, which
are the target for attackers. IoT devices often rely on weak authentication mechanisms,
such as passwords, making it easier for attackers to gain access to them. Furthermore,
IoT devices collect, transmit, and store large amounts of sensitive data, such as personal
information, over the network. These data can be vulnerable to interception and theft if the
transmission is not properly secured. Typical types of security attacks that can target IoT
devices include malware attacks, unauthorized access, and network-based attacks, such as
man-in-the-middle attacks, denial-of-service attacks, and packet sniffing [20,21].

2.2. Intrusion Detection Systems

Intrusion detection has a history of more than 25 years, with one of the first workshops
dedicated to it, RAID (Recent Advances in Intrusion Detection), held in 1998. NIDS for IoT
is a software- or dedicated hardware-based system to identify potential security threats
to a network, such as hacking attempts, malware infections, or other types of malicious
activity. Machine learning algorithms have been used to enhance the performance of
IoT NIDS by automatically learning what normal behavior looks like and detecting any
deviations that may indicate an attack [22–24]. Traditional NIDS typically use signature-
based detection methods, which detect known attack patterns by comparing incoming data
with a predefined set of signatures for known attacks [25]. However, this approach may
struggle with detecting unknown or newly evolved attacks. Another NIDS approach is
anomaly detection, where the incoming data are compared to a baseline of normal behavior
to identify deviations that may indicate an intrusion attempt. This approach may be limited
by the quality of the baseline and the accuracy of the deviation detection algorithms [26].

Deep learning (DL) has gained significant attention in the field of intrusion detection
systems due to its ability to handle large amounts of data and perform complex pattern
recognition [27]. DL algorithms can provide better accuracy and improved performance
compared to traditional machine learning techniques through learning and improving
with more data. This has led to the development of several DL-based NIDS models, which
have shown promising results in detecting various types of intrusions, including network
attacks, insider threats, and malware. In 2010, Sommer and Paxson [28] summarized their
experience of applying ML-based intrusion detection in practice, concluding that data
nature is more important than the ML method used. In 2022, Arp et al. [29] gave a general
analysis of the dos and do nots of machine learning in computer security at the USENIX
Security Symposium. Advanced ML-based methods are used for intrusion detection in
commercial IDS systems such as Darktrace [30], as reported. Ashiku et al. [31] used deep
learning architectures to develop adaptive and resilient NIDS to detect and classify network
attacks. Satam et al. [32] proposed a Wireless Intrusion Detection System (WIDS) with an
anomaly behavior analysis for detecting Wi-Fi network attackers with high accuracy and
low false alarms.

The heterogeneous nature of the IoT poses more specific challenges and significant
security concerns that can compromise the privacy and safety of smart home residents.
There are several research approaches that can be used to develop and improve NIDS
solutions for heterogeneous data [13]. Mahadik et al. [33] proposed intelligent NIDS
to identify and mitigate various DDoS attacks in the heterogeneous IoT infrastructure.
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Bertoli et al. [34] described the stacked-unsupervised federated learning (FL) approach to
generalize intrusion detection for heterogeneous networks. Almutairi et al. [35] designed
intelligent NIDS to protect IoT devices by detecting attacks as close as possible to the
corresponding data sources.

2.3. Transformer

In recent years, Transformer-based models have been used in intrusion detection
systems to improve the accuracy and efficiency of threat detection. These approaches allow
NIDS to learn from previous data and detect new and previously unseen threats, making
them a powerful tool in the fight against cyber attacks. Transformer is a deep learning
neural network architecture that has been widely used in various natural language pro-
cessing (NLP) tasks such as language translation and text classification [36], network traffic
generation, and classification [37], and it is also gaining popularity in image classification
and computer vision [38] with the improvement in accuracy and generalization, and the
ability in parallel processing and transfer learning. Wang et al. [39] combined efficient and
scalable Transformers and a convolutional neural network (CNN) to detect distributed
denial-of-service (DDoS) attacks on Software-Defined Networking (SDN). Wu et al. [40]
proposed a robust Transformer-based, all-in-one intrusion detection solution for detect-
ing abnormal activities and applying a self-attention mechanism to facilitate network
traffic classifications.

As a typical neural network structure, the Transformer’s core layers are self-attention
layers, which can dynamically learn from the input context. The basic idea of the self-
attention mechanism is to use the input sequence to compute three vectors for each element:
the query vector, the key vector, and the value vector. These vectors are then used to
compute a weighted sum of the value vectors, where the weights are computed by taking
the dot product of the query vector with the key vector and applying a softmax function to
the result. The resulting weighted sum is the output of the self-attention layer.

3. Dataset and Data Processing

In this section, we introduce the adopted ToN IoT dataset and illustrate the data
processing modules for pure network data and the combination of network and IoT data.

3.1. Dataset ToN IoT

The ToN IoT dataset is the new generation of Industry 4.0/Internet of Things (IoT)
dataset [18], which is collected from a systematic testbed in a lab environment. The ToN IoT
includes mixed data sources, such as sensor data, network data, and log data, which are
collected from the same realistic and large-scale network environment. Such heterogeneity
property of the ToN IoT dataset can reflect the characteristics of the IoT environment.

In this work, we utilize both network and IoT telemetry data in the ToN IoT dataset
to represent the smart home NIDS scenario. For the pure network traffic data, 10 types of
network traffic are included: which are Normal Flow, Scanning Attack, Denial-of-Service
(DoS) Attack, DDoS Attack, Ransomware Attack, Backdoor Attack, Injection Attack, Cross-
Site Scripting (XSS) Attack, Password Attack, and Man-in-the-Middle (MITM) Attack.
In order to classify IoT attacks, 43 features are extracted to illustrate each flow. According
to the types of carried information, all features are divided into 6 sub-sets, which are
connection activity features, statistical activity features, DNS activity features, SSL activity
features, HTTP activity features, and violation activity features. The specific training and
testing sets used in the paper are the officially published sub-set of ToN IoT. This sub-set
includes 300,000 normal flows and 20,000 flows for each class of attack, except the XSS
attack, which only has 1043 flow records. For the purpose of training and testing the ML
model, this sub-set is randomly split into two parts with the ratio 0.6/0.4.

The ToN IoT dataset also provides IoT sensor data, which is sent from IoT devices,
to study the relevance of dataset heterogeneity for effective intrusion detection in IoT [18].
The IoT telemetry data [12] are generated in the same IoT environment by IoT devices, such
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as Fridges, GPS Trackers, Motion Light, Garage Door, Modbus, Thermostat, and Weather
Monitor. To combine the network and IoT telemetry data, our research involves examining
all the data collected by IoT sensors in order to identify data records that are temporally
relevant to the network data records being used. The details of the matching method will
be described in Algorithm 1.

3.2. Data Processing

In order to prepare the input data to be more suitable for our Transformer-based NIDS
model, we design a different data processing module from most NIDS works. Generally,
data processing for NIDS includes four steps: data cleaning, data normalization, feature
selection, and dataset splitting. In this work, we use different data cleaning methods and
different separated data normalizations. Further, we use all of the features instead of only
selecting the important ones. Compared to traditional NIDS modules, the differences in
our data processing modules are as follows:

• The first difference is that we do not clean data by dropping the invalid data samples.
In the ToN IoT dataset, there is a lot of missing data for some functional sub-sets of
features, such as “DNS activity features”, “SSL activity features”, and “HTTP activity
features”. Those missing data points are filled by the string “-”. Instead of dropping
those data records, we transform all invalid values of categorical features into the
string “-” and all invalid values of numerical features into the value “−1”.

• The second difference is that we separately embed numerical features and categorical
features. In many traditional DL-based NIDS methods, the categorical features are
transformed into numerical values first; then all features are normalized in the same
way. In our method, we encode each categorical feature with a value between 0 and U,
where U is the number of unique contents for this categorical feature. The values are
further used to calculate embedding vectors for categorical features (see Equation (2)).
Then we only normalize numerical features.

• The third difference is that we use all the features instead of only using the more
important features.

We make the above changes according to the embedding learning ability of our FT-
Transformer-based model. The FT-Transformer model includes a Feature Tokenizer (FT)
module for embedding the input features into a vector representation. Therefore, we can
make the first difference since those invalid values also can be encoded into representation
vectors for FT-Transformer. In the FT module, the embedding process for numerical
and categorical features is separated. Therefore, we can make the second difference.
Further, the transformer-based method is built upon a self-attention mechanism, which can
generate adaptive attention for all features. In other words, the self-attention mechanism
adaptively learns from more important features. Hence, it is reasonable to use all features
in our method.

Combination of Network data and IoT data. To integrate the network traffic-based
NIDS and telemetry data-based NIDS, we need to merge the two types of input data. Our
NIDS monitors all network traffic and current telemetry data values of IoT devices. For each
traffic flow, the NIDS analyzes its behavior. Simultaneously, the telemetry data values of
IoT devices are collected and utilized to aid in traffic behavior analysis. Consequently, our
NIDS can detect IoT attacks based on both the attack behavior and its impact.

For collecting telemetry data from different IoT devices, it is desirable for NIDS to
monitor all telemetry data from all IoT devices at all available time instances for optimal
detection accuracy. In order to detect any attacks on IoT devices, the telemetry data values
from different IoT devices within the same time instance should be combined into a mixed
telemetry vector. This mixed telemetry vector can aid in network traffic analysis by the
NIDS. The selected telemetry data should be within the same time window as the traffic-
detecting duration, which is typically a very short period. However, to create the mixed
telemetry vector quickly, we use a random selection method to choose telemetry data
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values within the time period for each IoT device. Because this period is very short, we do
not mix flows from different devices in a random way.

In the ToN IoT dataset, the two originally provided data sources cannot be simply
combined. After analyzing the ToN IoT dataset, we found that the network data records
do not match well with IoT data records. The reason is that the network and IoT data are
asynchronous. Specifically, network data samples are recorded in terms of traffic flows,
which have a duration, but IoT sensor data samples are instantaneously recorded with time
stamps. Therefore, we provide a matching algorithm to look for corresponding IoT records
for network data. In this work, we use provided training and testing sets of network data
the same as [18]. Although the ToN IoT dataset also provides a training and testing set
of IoT data, we use the entire IoT data to match the network records as much as possible.
The matching algorithm is shown as Algorithm 1.

Algorithm 1 Matching the network and IoT data

Require: {tra f f ic f low}, {IoT datai}
for n← 1 to length(tra f f ic f low) do

cur ts 1← tra f f ic f lown[ts]
cur ts 2← tra f f ic f lown[ts] + tra f f ic f lown[duration]
for m ∈ {Fridge, Weather, GPS, Motionlight, Garagedoor, Modbus, Thermostat} do

selected setm ← [ ]

while cur ts 1 ≤ IoT dataj
m[ts] ≤ cur ts 2 do

add IoT dataj
m to selected setm

end while
add random(selected setm) to tra f f ic f lown

if none of IoT datam matched,
add invalid values ‘-’ or ‘−1’ to tra f f ic f lown

end for
end for

In Algorithm 1, we first assign the start and end time stamps of a traffic flow as cur ts 1
and cur ts 2. Then we search each type of IoT device’s data to look for all records whose
time stamps are in the range between cur ts 1 and cur ts 2. Then we randomly choose
one for this traffic flow record. The reason is that if our NIDS needs to collect current
telemetry data reflecting the current state of IoT devices (which could be either attacks or
normal traffic), the telemetry data may be updated multiple times throughout the duration
of the traffic flow. We chose random sampling because, during the traffic flow duration,
the telemetry data likely will not change significantly. Additionally, the telemetry data
received from different IoT devices inherently have different time instances, making it
acceptable to select them randomly within a short time period. While there are other ways
to sample telemetry data, random selection has little effect on NIDS detection accuracy,
and speed is crucial for a quick response. Therefore, we made a trade-off by utilizing
random sampling. If there is no IoT record in that duration, we fill in invalid values “-” or
“−1” for the empty categorical and numerical features, respectively.

4. FT-Transformer-Based NIDS Model

In order to solve the heterogeneity problem in IoT NIDS, we design an FT-Transformer-
based NIDS model [41]. The unique designs of the FT-Transformer make it extremely
suitable for heterogeneous data in aspects of both different feature types and different data
sources. The overview of our model is illustrated in Figure 3. The matched IoT data are
concatenated with the original network data. Similar to the network data, all columns of
IoT telemetry data are split into numerical and categorical parts, which are fed into the
model separately. As the model is named, FT-Transformer generally includes a Feature
Tokenizer part and a Transformer part followed by an MLP layer for final classification.
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Feature Tokenizer. The Feature Tokenizer module is responsible for transforming
the input feature values into learnable embeddings. Specifically, the Feature Tokenizer
module takes categorical features and numerical features as two parts of input (xnum

i and
xcat

i ) separately. Each part can include network data only or a combination of network
and IoT data. The categorical features and numerical features are embedded in different
ways, which are explained as Equations (1) and (2) in detail, where Wnum

i and bnum
i are the

weights of the numerical embedding layer and bias, and embed() and bcat
i are the categorical

embedding function and bias.

Enum
i = xnum

i ·Wnum
i + bnum

i (1)

Ecat
i = embed(xcat

i ) + bcat
i (2)

Besides the categorical and numerical embeddings, a learnable classification embed-
ding Ecls, which has the same tensor shape as each feature embedding, is created and
combined with all feature embeddings. The classification embedding Ecls is used for partic-
ipating in the further learning processing and extracting valued features in Transformer.
Therefore, the output embeddings are a normalized concatenation of categorical features,
numerical features, and classification embeddings, which is described in Equation (3).

Eout = Normalize(concat([{Enum
i },

{
Ecat

i
}

, Ecls])) (3)

Transformer blocks. As shown in Figure 3, the output of Feature Tokenizer, Eout, is
fed into multiple Transformer encoders, which is a stack of N = 6 in this work. Each
block [19] has a multi-head attention layer and a fully connected feed-forward network.
Each of them is followed by the residual link and normalization layer. In particular, more
hyperparameters we adopted in this work are 8 heads of multi-head attention layers,
32 embedding dimensions, a 0.1 post-attention dropout ratio, and a 0.1 feed-forward
dropout ratio.

The core component of the Transformer encoder is the multi-head attention (MHA)
layer. MHA allows the model to adaptively learn information from different features’
embedding representations. MHA consists of multiple (M = 8 in this work) heads of
self-attention, which are also named “scaled dot-product attention” [19].

MHA(Eout) = concat([
{

Attention(Eheadi
out )

}
]) (4)

As shown in Figure 3, the output of Feature Tokenizer, Eout, is fed into multiple
Transformer encoders, which is a stack of N = 6 in this work. Each block [19] has a
multi-head attention layer and a fully connected feed-forward network; each of them is
followed by the residual link and normalization layer. Equation (5) illustrates the details of
calculating the attention. Based on the input embedding Eheadi

out , three learned vectors are
calculated: the query (Q) vector, the key (K) vector, and the value (V) vector. Weighted
sums of V vectors are computed using them by taking the dot product of the Q vector with
the K vector and then applying the softmax function to the result to obtain the weights.

Attention(Eheadi
out ) = so f tmax(

Q(Eheadi
out )KT(Eheadi

out )√
d

)V(Eheadi
out ) (5)

Classification. The output of Transformer encoders is the learned embeddings for all
input features, but we do not classify all of them. Instead, we only feed the learned Ecls′ to
the final MLP layers because the input Ecls has taken advantage of the attention mechanism
to extract information from all other feature embeddings. As an independent third-party
embedding (not numerical or categorical feature embeddings), it is more suitable for
final classification.
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Figure 3. The overview of the proposed FT-Transformer-based NIDS model. The model consists of a
Feature Tokenizer, N Transformer encoders, and an MLP layer for classification. The core module of
the Transformer is the multiple head attention layers, which are zoomed in.

5. Results and Discussions

In this section, we first introduce the experimental environment, then we discuss the
experiments and results to show why our method is suitable for IoT NIDS. In Section 5.2,
we evaluate our method on the network data of the ToN IoT dataset for binary and
multi-classes classification. Then we take both the network data and IoT sensor data into
consideration in Section 5.3. In addition, we compare our method with classical ML-based
methods in Section 5.4. Finally, we present an interpretability analysis by visualizing the
attention map in Section 5.5.

5.1. Experimental Environment

To train models, we use a high-performance computer running Ubuntu 18.04 on
3.30GH Intel(R) Core(TM) i9-9820X CPU with 128 GB main memory equipped with two
NVIDIA GeForce RTX 2080 Ti GPUs. All models are built with Pytorch 1.11.0 and dis-
tributed and trained on two GPUs using the Distributed Data-Parallel module.

5.2. Evaluation Results on Pure Network Data on the ToN IoT Dataset

In this section, we evaluate our method on pure network data from the ToN IoT dataset
to prove our method can address the problem of heterogeneous features. The training and
testing data are the same as the data in [18]. The training and testing data are passed to the
data processing module, which is introduced in Section 3.2. During data processing, we first
drop three columns for “ts”, “src ip”, and “dst ip”, which could work as spurious features
to harm IDS models. Then, we separate the other columns by two types of numerical or cat-
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egorical features. We select 12 features as numerical type, which are “src port”, “dst port”,
“duration”, “src bytes”, “dst bytes”, “missed bytes”, “src pkts”, “src ip bytes”, “dst pkts”,
“dst ip bytes”, “http request body len”, and “http response body len”. The other 28 fea-
tures are categorical types. As shown in Figure 3, the numerical or categorical features are
separately fed into the Feature Tokenizer for generating embeddings, which actually are
the instances participating in further learning progress.

Figure 4 shows the binary classification performance by using a confusion matrix,
which performs a total accuracy of 97.95%; both true positive and true negative are around
98%, the false positive is 2.1%, and the false negative is 1.9%. More evaluation results for
the binary classification on network data are shown in the FT-Transformer1 column in Table
3, particularly the F1 score is 97.09% and the AUC score is 99.82%.
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Figure 4. Confusion matrix for binary classification performance on pure network data.

The multiple classification performance on pure network data is shown in Figure 5
and Table 1; our method can achieve 95.78% overall accuracy. Based on the result in
Figure 5, we observe that the three attacks with the worst detection accuracy are “mitm
(Man In The Middle)”, “injection”, and “password” attacks with accuracies of around 65%,
73%, and 85%, respectively. The confusion matrix presents that the poor performance of
“injection” and “password” are caused by the difficulty in distinguishing them from each
other. Around 28% of “mitm” attacks are classified in normal traffic.
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Figure 5. Confusion matrix for multiple classes on pure network data.
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We also evaluate our method in terms of precision, recall, false positive rate (FAR),
and F1 score. More details about multiple classification performance are presented in
Table 1. Although the confusion matrix shows that our model has a high recall on “XSS”
attack, the high FAR 22.48% problem is shadowed. However, the table also illustrates that
our method can successfully detect “normal”, “scanning”, “dos”, “ddos”, “ransomwave”,
and “backdoor” traffic flows.

Table 1. Performance on pure network data of the ToN IoT dataset for 10 classifications.

Class Type Precision Recall False Alarm F1 Score

normal 98.98% 98.29% 1.02% 0.99

scanning 94.91% 93.66% 5.09% 0.94

dos 98.22% 95.33% 1.78% 0.97

injection 82.58% 73.29% 17.42% 0.78

ddos 95.37% 91.21% 4.63% 0.93

password 80.33% 85.10% 19.67% 0.83

xss 77.52% 93.38% 22.48% 0.85

ransomware 96.23% 98.33% 3.77% 0.97

backdoor 98.95% 99.85% 1.05% 0.99

mitm 55.53% 64.99% 44.47% 0.60

5.3. Evaluation Results on Both Network Data and IoT Sensor Data

In this section, we show that our method is capable of handling the data from hetero-
geneous sources. First, the entire IoT data source is matched with the same training and
testing network data, which have been mentioned in Section 5.2, by using Algorithm 1.
The network data and matched IoT data are combined, as shown in Figure 3. For the
seven provided types of IoT device data, there are 11 numerical features, which are
“fridge temperature”, “temperature”, “pressure”, “humidity”, “latitude”, “longitude”,
“FC1 Read Input Register”, “FC2 Read Discrete Value”, “FC3 Read Holding Register”,
“FC4 Read Coil” (which are the “input register”, “discrete value”, “holding register”,
and “coil” of Modbus), and “current temperature”, and six categorical features, which are
“temp condition”, “motion status”, “light status”, “door state”, “sphone signal”, and “ther-
mostat status”. For the reason of asynchronous data collection, we cannot find the matching
IoT data records for many flows’ feature records in network data. In order to maintain the
same training and testing sets of network data as the previous experiment in Section 5.2,
we fill invalid values ’-’ or ’−1’ in the empty positions of categorical and numerical fea-
tures, respectively.

The binary classification performance on the combination of network and IoT data
is shown as the confusion matrix in Figure 6. With the extra IoT sensor data, our method
achieves 98.39% binary accuracy, which increases by 0.44% compared with pure network
data performance. The true positive is around 99% and the true negative is around 98%,
the false positive is 1.9% and the false negative is 1.0%. More evaluation results for binary
classification on the combined data are shown in the FT-Transformer2 column of Table 3.
Specifically, the F1 score is 97.72% and the AUC score is 99.88%.
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Figure 6. Confusion matrix for binary classification performance on the combination of network and
IoT data.

Figure 7 reports the confusion matrix of multiple classification performances on
the combined data. Compared with Figure 5, the performance has improved overall.
In particular, the extra IoT data enhanced the detection performance by around 10%, 16%,
and 4% in terms of true positive ratio on the classes of “mitm”, “injection”, and “password”
attacks, which are hard to detect with only network data. An interesting finding is that
the entire IoT data does not include any records about “mitm” attacks, but the detection
performance on “mitm” is improved after using extra IoT sensor data. We believe there
are two reasons: (1) Only the “mitm” class has data on all IoT-related features that are
invalid values and that can also be recognized as a discriminate character. Given that
features belonging to other types of traffic consistently comprise some valid values in the
IoT-related part, the presence of invalid values indicates a significant likelihood of being
a ’mitm’ attack. (2) The extra IoT data can improve the FT-Transformer model’s ability to
distinguish normal traffic and attacks. Based on Figure 7, we can see that fewer “mitm”
flows are recognized as a “normal” flow.
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Figure 7. Confusion matrix for multiple classes on network and IoT data.

Table 2 reports more evaluation results about the multiple classification performance
on the combined data by using Precision, Recall, False Positive Rate (FAR), and F1 score.
Compared to Tables 1 and 2, the attack classes with high FAR in Table 1, such as “mitm”,
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“xss”, “password”, and “injection”, have all been improved across all evaluation metrics,
specifically, their FARs are decreased by 16.16%, 6.96%, 12.41%, and 4.53%, respectively.

Table 2. Performance on network and IoT data of ToN IoT dataset for 10 classifications.

Class Type Precision Recall False Alarm F1 Score

normal 99.42% 98.51% 0.58% 0.99

scanning 94.69% 95.84% 5.31% 0.96

dos 95.25% 97.23% 4.75% 0.96

injection 87.11% 89.24% 12.89% 0.87

ddos 93.34% 93.85% 6.66% 0.93

password 92.74% 88.81% 7.26% 0.89

xss 84.46% 92.13% 15.54% 0.88

ransomware 96.97% 98.95% 3.03% 0.96

backdoor 99.63% 99.89% 0.37% 0.99

mitm 71.69% 75.30% 28.31% 0.76

The performance on combined data shows that even though the IoT data are asyn-
chronous with network data, our method can still extract valuable information to enhance
the classification performance. Those results prove that our method can achieve the
matched performance with the state-of-the-art on pure network data of ToN IoT. For the
combination of network and IoT data, our method outperforms the state-of-the-art ML
method on all metrics of accuracy, F1 score, and AUC.

5.4. Comparison with Classical ML-Based Methods

We compare the binary classification performance of our FT-Transformer-based NIDS
model with three classical methods: Gradient Boosting Machine (GBM), Random Forest
(RF), and Multi-Layer Perceptron Neural Network (MLP), which have been investigated
in [18]. Meanwhile, we also compare the performance of our FT-Transformer on pure
network data and the combination of network and IoT data.

The evaluation metrics of accuracy, F1 score, and AUC score are presented in Table 3.
In this table, the FT-Transformer1 represents the model, which is trained and tested on pure
network data of the ToN IoT dataset, and the FT-Transformer2 works on the combination
of network and IoT data. If only considering the first three columns of this table, RF has the
best performance of all classical methods with 98.08% accuracy, 97.26% F1 score, and 99.69%
AUC score. As known, the tree-based ML methods normally can achieve better perfor-
mance on tabular data than other NN-based methods, no matter whether deep or not [14].
However, our FT-Transformer-based method can achieve 97.95% (−0.13%) accuracy, 97.09%
(−0.17%) F1 score, and 99.82% (+0.13%) AUC score, a matched performance with RF on
pure network data. Our method outperforms the MLP method, which is also a neural
network method.

Table 3. Performance on the ToN IoT dataset for binary classification compared with [18].

GBM RF MLP FT-Transformer1 FT-Transformer2

Accuracy 94.64% 98.08% 97.82% 97.95% 98.39%

F1 92.58% 97.26% 92.12% 97.09% 97.72%

AUC 98.71% 99.69% 97.85% 99.82% 99.88%
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With extra IoT data, the column of FT-Transformer2 outperforms all of the other
methods with 98.39% accuracy, 97.72% F1 score, and 99.88% AUC score. This result
further proves that the FT-Transformer-based method cannot only address the problem
of heterogeneous features (including both numerical and categorical features) but also
improve performance by combining mixed data sources.

Additionally, we compare the multi-classes classification performance of our proposed
method with that of four existing methods. Two NIDS methods, named CNN-IDS [11]
and FED-IDS [10], are proposed for IoT scenarios. Another two methods, named ResNet-
50 [8] and P-ResNet [9], are proposed to detect intrusion through learning on sensors’
telemetry data. Based on the different “data usage” in the sixth column of Table 4, the CNN-
IDS and FED-IDS only utilize the network data in the ToN IoT dataset, but ResNet-50 and
P-ResNet only utilize the IoT sensors’ telemetry data. Specifically, the result of ResNet-50 [8]
is evaluated on a smaller sub-dataset, which consists of 8 classes, but other methods all
use datasets with 10 classes. Table 4 reports that the FT-Transformer1 outperforms other
network data-based methods. Further, FT-Transformer2, which uses both network and IoT
data, achieves the best performance.

Table 4. Performance on the ToN IoT dataset for multi-classes classification comparison.

Accuracy F1 Recall Precision Data Usage

CNN-IDS [11] 90.55% 90.22% 90.55% 90.75% network

FED-IDS [10] 94.85% 93.13% 93.09% 93.17% network

ResNet-50 [8] 95.84% 95.78% 94.76% 96.86% IoT sensor

P-ResNet [9] 87.0% 86.0% 86.0% 88.0% IoT sensor

FT-Transformer1 95.78% 95.93% 95.71% 96.16% network

FT-Transformer2 97.06% 96.94% 96.67% 97.23% both

5.5. Interpretability Analysis

Our FT-Transformer-based method is built upon the self-attention mechanism, which
can relate different elements of input and compute representation embeddings for each
element. In the self-attention mechanism, the attention matrix, which is described in
Equation (5), is used by the neural architecture to emphasize the relevant element
embeddings.

In our case, the attention matrix can show the relations between input features. A very
important characteristic of FT-Transformer is that the input does not only include the
heterogeneous features but also a learnable classification embedding Ecls, which also
participates in the self-attention calculations and is further used for final classification.
Hence, we can claim that the learned classification embedding Ecls is the element that is
directly relevant to our final task—intrusion detection. Therefore, the attention weights of
the classification embedding Ecls with other features can show the relevance degree of all
input features with Ecls, which can be further considered as the feature importance.

In order to visualize the attention-based feature importance, we extract the attention
matrix of the last Transformer layer. We only select the row of attention values belonging
to Ecls. Before visualizing, we also need a summation of the head dimension for the
reason for our model uses eight heads for MHA, as mentioned in Section 4. We collect the
attention-based feature importance for all testing data and calculate the global average.

The attention-based feature importance figures on pure network data and the com-
bination of network and IoT data are shown in Figures 8 and 9 separately. In Figure 8,
the horizontal axis represents all input features of network data, and the vertical axis is a
different type of flow. For normal and attack flow, a one-dimension heat map of attention
weights is used to show the contribution of each feature. Based on the lightest parts, we
notice that the “duration” makes the most contribution to identifying a normal flow and
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the “ssl established” feature is the most important one for attack flow. Similarly, Figure 9
shows the attention-based feature importance for all features from both network and IoT
sensor data. Comparing these two figures, we find that the “duration” is always a light
region for both images. Additionally, “src bytes” and “dst bytes” are important to detect
an attack for both situations. However, the “ssl established” feature, which has a large
attention weight in Figure 8, becomes less contributed in Figure 9. Therefore, we claim that
the attention weights have limited interpretability and further study and more experiments
are required. Interpretability is important for ML-based NIDS for the reason that users
need to understand why the decision was made.

Figure 8. Attention-based feature importance of binary classification on pure network data.

Figure 9. Attention-based feature importance of binary classification on the combined data.

5.6. Reproducibility Details

We use PyTorch to implement the FT-Transformer-based NIDS model on a server with
GPU machines. The dropout ratio is set to 0.1 for each Feed Forward layer, and for each
attention map in Equation (5), layer normalization is performed before each layer in the
model. The embedding dimension is set to 32 for each input feature. The depth of the
model is set to 6, which is also the number of Transformer encoders. For each MHA layer
in Equation (4), the number of heads is set to eight. The output dimension of the final MLP
layer is set to 10, which is the number of traffic types. During the training process, we used
Adam optimizer [42] with a 0.001 learning rate and a 4096 training batch size. We also
evaluate the efficiency and complexity of our model in our experimental environment by
using the PyTorch profiler. During the execution of the model’s operators for one input,
the model’s total CPU time is 952.775 ms, total CUDA (GPU) time is 367.000 us, total CPU
memory is 372 bits, and total CUDA memory is 2.03 Mb.

6. Conclusions and Future Works

In this paper, we propose an FT-Transformer-based NIDS method for learning the
behaviors of attacks from different types of data, which are generated by heterogeneous
IoT devices in a smart home environment. The Feature Tokenizer module of the proposed
method can separately learn embeddings for numerical and categorical features, reducing
the negative effect of the heterogeneous features. The transformer blocks can use adaptive
attention to emphasize the relevant information and filter the irrelevant, such as the invalid
values, which are caused by asynchronous mixed data sources. The experiment results
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on ToN IoT show that the proposed method can match the performance of the state-of-
the-art on pure network data. Additionally, our method can take advantage of extra
IoT sensor data to further improve intrusion detection performance. Finally, we also
explore the interpretability of the FT-Transformer model by visualizing the attention-based
feature importance.

There are two major limitations of this work. First, our NIDS model is not trained
using a real smart home. Second, the obtained NIDS model is not tested on a real practical
testbed. Instead, we use the real Ton IoT dataset [18] as a realistically representative dataset
to train and test our NIDS model. Our future work will focus on how to reduce the FAR
by using the decoder structure of the Transformer. Furthermore, we will consider how to
make the explanation of the attention-based feature importance to be more clear and more
reasonable.
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