
Citation: Ciardi, R.; Giuffrida, G.;

Bertolucci, M.; Fanucci, L. Design and

Development of a CCSDS 131.2-B

Software-Defined Radio Receiver

Based on Graphics Processing Unit

Accelerators. Electronics 2024, 13, 209.

https://doi.org/10.3390/

electronics13010209

Academic Editor: Duc Thanh

Nguyen

Received: 29 November 2023

Revised: 21 December 2023

Accepted: 30 December 2023

Published: 2 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Design and Development of a CCSDS 131.2-B Software-Defined
Radio Receiver Based on Graphics Processing Unit Accelerators
Roberto Ciardi 1,2,* , Gianluca Giuffrida 2 , Matteo Bertolucci 2 and Luca Fanucci 2,*

1 Department of Information Engineering, University of Pisa, 56122 Pisa, Italy
2 Space Division, IngeniArs S.r.l., 56121 Pisa, Italy; gianluca.giuffrida@ingeniars.com (G.G.);

matteo.bertolucci@ingeniars.com (M.B.)
* Correspondence: roberto.ciardi@phd.unipi.it (R.C.); luca.fanucci@unipi.it (L.F.)

Abstract: In recent years, the number of Earth Observation missions has been exponentially increasing.
Satellites dedicated to these missions usually embark with payloads that produce large amount of
data and that need to be transmitted towards ground stations, in time-limited windows. Moreover,
the noisy nature of the link between satellites and ground stations makes it hard to achieve reliable
communication. To address these problems, a standard for a flexible advanced coding and modulation
scheme for high-rate telemetry applications has been defined by the Consultative Committee for Space
Data Systems (CCSDS). The defined standard, referred to as CCSDS 131.2-B, makes use of Serially
Concatenated Convolutional Codes (SCCC) based on 27 ModCods to optimize transmission quality.
A limiting factor in the adoption of this standard is represented by the complexity and the cost of the
hardware required for developing high-performance receivers. In the last decade, the performance
of software has grown due to the advancement of general-purpose processing hardware, leading to
the development of many high-performance software systems even in the telecommunication sector.
These are commonly referred to as Software-Defined Radio (SDR), indicating a radio communication
system in which components that are usually implemented in hardware, by means of FPGAs or
ASICs, are instead implemented in software, offering many advantages such as flexibility, modularity,
extensibility, cheaper maintenance, and cost saving. This paper proposes the development of an
SDR based on NVIDIA Graphics Processing Units (GPU) for implementing the receiver end of the
CCSDS 131.2-B standard. At first, a brief description of the CCSDS 131.2-B standard is given, focusing
on the architecture of the transmitter and receiver sides. Then, the receiver architecture is shown,
giving an overview of its functional blocks and of the implementation choices made to optimize the
processing of the signal, especially for the SCCC Decoder. Finally, the performance of the system is
analyzed in terms of data-rate and error correction and compared with other SW systems to highlight
the achieved improvements. The presented system has been demonstrated to be a perfect solution
for CCSDS 131.2-B-compliant device testing and for its use in science missions, providing a valid
low-cost alternative with respect to the state-of-the-art HW receivers.

Keywords: CCSDS 131.2-B; software-defined radio; graphics processing unit; receiver; low-cost;
earth observation; new space economy

1. Introduction

In recent years, we have faced a process of commercialization of space exploration.
New actors such as private companies, small and medium-size enterprises (SMEs), and
start-ups are increasing their presence in what is called the New Space Economy (NewS-
pace). NewSpace is seeing enlarging participation of commercial companies in space
exploration, with the purpose of developing faster, better and cheaper access to space and
spaceflight technologies [1,2]. In this scope, the government agencies, which were the main
agents in the past, now are not uniquely responsible for space missions. Big companies
(e.g., SpaceX [3], Blue Origin [4], Virgin Galactic [5]) are investing their funds in researching

Electronics 2024, 13, 209. https://doi.org/10.3390/electronics13010209 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13010209
https://doi.org/10.3390/electronics13010209
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1230-5402
https://orcid.org/0000-0003-3306-5698
https://orcid.org/0000-0003-1537-2520
https://orcid.org/0000-0001-5426-4974
https://doi.org/10.3390/electronics13010209
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13010209?type=check_update&version=3

Electronics 2024, 13, 209 2 of 18

and developing new reusable launchers, hence making it increasingly affordable to launch
products into space. At the same time, smaller companies are involved in the process,
either by deploying and launching small satellites (e.g., CubeSats [6,7], SmallSats [8]), or
by developing new, low-cost solutions dedicated to each part of a space mission (from
ground segment to space segment). The effect that NewSpace is having on the field can be
summarized as the democratization of space exploration: while the space agencies aim to
uniform the space mission paradigm, for example by standardization, private companies
address the research and development of innovative, commercial, low-cost systems for the
aerospace industry. This process allows, on one side, to lower costs and speed up space
mission deployment, and on the other side to promote the presence of even more agents in
the sector [1].

In the past years, during the design of a space mission, each space subsystem was usu-
ally developed ad-hoc for the mission, with little if any re-use from other missions [9,10].
With the advent of NewSpace, the spacecraft industry is now evolving towards standardiza-
tion to promote the re-use of technologies from previous missions [10,11]. Standardization
has become a task of fundamental importance: indeed, the adoption of standard protocols
has a large positive impact on the economics of a space mission by improving subsystem
devices interoperability and promoting design reuse for subsequent missions. In this
scope, the European Space Agency (ESA) is promoting the definition of a set of standards
for communication, mainly through the Consultative Committee for Space Data Systems
(CCSDS) [12] and the European Cooperation for Space Standardization (ECSS) [13]. Adher-
ing to a standard, though, requires the verification of compliance with the standard itself.
Single parts and components shall be tested to abide by the protocol and to intercommuni-
cate correctly. At the same time, newer standards are required to be evaluated and assessed
to be accepted and used in future missions. For this reason, Electrical Ground Support
Equipments (EGSEs), hence instruments to be used on the ground to test the electronics to
be launched, are of fundamental importance in the adoption of a standardized approach,
allowing us to (1) validate spacecraft subsystems against the use of specific standards and
(2) emulate the use of newer protocols to evaluate their characteristics and performance.

A communication standard defined in 2012 by the CCSDS for Telemetry application
is the CCSDS 131.2-B. It is a flexible advanced coding and modulation scheme for high-
rate telemetry, suitable for science missions and in particular for Earth Observation (EO)
missions, where large amounts of data need to be transmitted from satellites to Earth, at
high data rates. Being a recently defined protocol, it has currently never been deployed
in any space mission. A limiting factor for the use of the CCSDS 131.2-B is represented
by the complexity and high cost of the hardware systems required to be compliant with
it and to reach the deserved performance. Both transmitters employed on satellites and
receivers employed on ground stations are expensive to implement and require significant
effort for the complexity of the standard itself. This factor is reflected also in the related
EGSEs, with a consequent slowdown of the whole process of testing and using the protocol.
Specifically, for what concerns CCSDS 131.2-B-compliant receivers, the state-of-the-art
solution is represented by the Cortex High Data-Rate Receiver (Cortex HDR) [14]. It
is a complex system developed by SAFRAN, which may be used in ground stations
for receiving transmissions compliant with the protocol, but also in test facilities to test
transmitters’ capabilities before satellite launch. Although the Cortex HDR is a complete
solution for employing the CCSDS standard, its high cost strongly limits its deployment.
Indeed, as with other HW-based solutions, the Cortex HDR can cost hundreds of thousands
of dollars, making its procurement unfeasible for most of the private companies and for
agencies as well. In fact, not all the ground stations can be equipped with not one but many
of these receivers, for multiple missions. Nonetheless, the high cost also limits the use of
the receiver for testing standard-compliant transmitters. In the ESA roadmap for EO, the
CCSDS 131.2-B standard has been selected to be the reference standard for future missions.
For this reason, it is necessary to dispose of EGSEs compliant with this standard, for testing
on-board and on-ground systems capable of adhering to the CCSDS 131.2-B. Also, it is

Electronics 2024, 13, 209 3 of 18

crucial to provide low-cost systems to allow a wide adoption of the standard, opening its
use to different subjects in the scope of the New Space Economy.

With this in mind, this paper presents the work carried out for developing a low-cost
CCSDS 131.2-B-compliant receiver based on a software implementation. This manuscript
aims to extend the preliminary results presented in [15], where an exploratory implementa-
tion of the decoder part of the receiver, the object of this paper, was presented first with
a discussion of its speed performance. In this paper, a detailed description of the whole
architecture of the system will be given, focusing on its performance, both from error
correction and decoding speed points of view. The presented receiver exploits the use of
graphics processing units (GPUs) for developing a software-defined radio (SDR) solution
capable of reaching high performance while maintaining a high level of flexibility with a
much lower cost with respect to the state-of-the-art solutions. This system would allow
for the easy and low-cost testing of CCSDS 131.2-B compliant systems, promoting the
adoption of this standard for future mission. Also, for missions where requirements are
relaxed, as science missions, a SW receiver would be an easy-to-deploy alternative to the
state-of-the-art receivers.

The remainder of this paper is organized as follows:

• Section 2 describes the CCSDS 131.2-B protocol, focusing on the reason for its definition
and the architecture of compliant transmitter and receiver systems;

• Section 3 delves into the details of a receiver system compliant with the standard,
describing the rationale for implementing an SW-based solution and the development
of its main parts;

• Section 4 shows the performance of the system in terms of both error correction and
data rate, compared with the state of the art of CCSDS 131.2-B receivers;

• Section 5 draws the conclusion of the work and outlines future developments.

2. CCSDS 131.2-B Protocol for High-Rate Telemetry

The CCSDS 131.2-B standard was defined by the CCSDS in 2012 as a flexible advanced
coding and modulation scheme for high-rate telemetry [16]. The standard has been defined
to address the major challenges encountered while operating a transmission above 10 GHz,
in particular at the Ka-band (25.5 GHz to 27 GHz). It is specifically intended for low-Earth
orbit (LEO) satellites, which are visible from Earth in small time windows (∼10 min), in
which all data must be transmitted to the ground stations. In fact, the standard is applied to
create the transmission signal on-board satellite by encoding and modulating the generated
data, to improve the quality of the transmission over the noisy satellite–ground station
channel in a small amount of time. There are different ways of using the Modulation and
Coding (ModCod) techniques on spacecrafts, of which two are usable with CCSDS:

• Variable Coding and Modulation (VCM), where satellite elevation or time coordinates
are taken into account to change the ModCod to maximize link efficiency;

• Adaptive Coding and Modulation (ACM), where both the satellite’s position and
environmental conditions are considered to maximize link occupancy.

For signal coding, many current LEO satellites make use of RS encoders, along with
trellis codes. For example, the satellites of the Sentinel program [17] use 4D-8PSK Trellis
Coded Modulation (4D-8PSK-TCM), which exploits RS coding. CCSDS 131.2-B instead
is based on a turbo-like coding and modulation scheme based on Serially Concatenated
Convolutional Codes (SCCC). This scheme makes use of a set of different modulation
techniques (e.g., QPSK, 8PSK, 16APSK, 32APSK, and 64APSK) and a wide range of coding
rates [16]. The large variety of modulation schemes available, together with a properly
selected coding rate, allows the overall system to efficiently handle the available bandwidth,
adapting itself to the variable conditions of the link. Specifically, the CCSDS 131.2-B makes
use of link adaption strategies based on 27 different ModCods, applied based on VCM
or ACM to overcome major challenges, such as satellite visibility (i.e., due to the satellite
orbit), channel impairments (i.e., due to the wireless channel), or to guarantee specific

Electronics 2024, 13, 209 4 of 18

performance (i.e., in terms of data rate). Using different ModCods aims to maximize the
transmission of data while dealing with varying channel conditions, where a worst-case
sizing of the transmission parameters would result in unacceptable inefficiency, given the
large dynamic of the possible attenuation during a satellite pass over the ground station.

A brief description of the transmitter and receiver sides of CCSDS 131.2-B based
communication is now given.

2.1. Transmitter Side

The definition of the CCSDS 131.2-B is based on the application of efficient coding
schemes that address the problem of bandwidth limitations in the timing-varying Ka-band
channel. All CCSDS 131.2-B 27 ModCods employ efficient, high-speed data transmission
schemes based on an SCCC derived from the Modem for High Order Modulation Schemes
(MHOMS) project [18].

A transmitter compliant with the CCSDS 131.2-B standard executes different functions:
error-control coding (based on serially concatenated convolutional coding), frame valida-
tion, transfer frame synchronization, physical layer (PL) framing, bit synchronization, and
pseudo-randomization. The architecture for an encoder and modulator compliant with
the CCSDS 131.2-B is described in the standard [16] and is shown in Figure 1. The figure
identifies the functional blocks of the system and shows the logical relationships among
them.

Figure 1. Transmitter Architecture.

The transmitting system accepts, as inputs, Transfer Frames (TFs) of fixed length,
performs functions selected for the mission, and transmits a continuous and contiguous
stream of physical channel symbols, obtained from PL frames. In particular, the SCCC
encoder can be considered the main part of the system. It applies convolutional encoding
employing two consecutive convolutional encoders (CC1 and CC2). Moreover, it applies
the puncturing technique, which removes bits after the encoding following specific patterns,
and the interleaving technique, which interleaves the data bits. The encoded bits are framed
in a PL frame that is finally given as input to a baseband filter, applying a Squared-Root
Raised Cosine (SRRC filter, defined in the standard). The input transfer frames have a
specific format defined in the standard, which, together with the structure of the obtained
PL frames, is crucial for supporting data-aided operations carried out at the receiving side.

The SCCC encoder of the transmitter encodes the so-called information blocks, com-
posing output blocks with a dimension that is related to the used ModCod. The same
ModCod scheme is applied to every 16 consecutive blocks, referred to as Codewords
(CWs), that will be grouped to form a PL frame. The length of encoded symbol blocks after
encoding and mapping to modulation symbols is constant (8100 symbols), regardless of the
applied ModCod scheme; this facilitates frame synchronization at the PL for the receiver

Electronics 2024, 13, 209 5 of 18

side. Also, a set of predefined pilot symbols can be inserted inside each CW. Each CW is
therefore divided into 15 subsections, each composed of 540 symbols and each followed by
16 pilot symbols. Overall, a PL frame is composed of a 320-symbol PL header, of which
the first 256 symbols represent the Frame Marker (FM), and the remaining 64 symbols
represent the Frame Descriptor (FD) and 16× 8100-symbol CWs, eventually interleaved
with 240 pilot symbols per CW.

The well-defined structure of the PL frame is crucial at the receiving side for synchro-
nization. In particular, the FM is used to detect the start of a PL frame, as defined in the
standard. The FD instead carries the information about the ACM format of the PL frame
and the presence/absence of pilot symbols. These symbols are used on the receiving side
for phase synchronization.

2.2. Receiver Side

Transmitter functions of the standard have to be implemented on satellites, for trans-
mitting data towards Earth. On the other side, ground stations need to implement a
standard-compliant receiver to receive and decode the signal. The general architecture of a
receiver compliant with the CCSDS 131.2-B standard is detailed in Figure 2.

Figure 2. Receiver Architecture.

The receiver side is composed of a sequence of blocks that aims to extract and decode
the information sent by the transmitting side. First, an ADC block should sample the
incoming IF signal that is then down-converted to the base-band. This can be carried out
for example by using a local digital quadrature oscillator. The signal is then filtered and
decimated up to an integer number of samples required by the timing synchronization
algorithm. The latter is used to recover the transmission clock; thus, it samples the data
stream in the correct instant, to recover the amplitude and phase-modulated symbols. After
that, the frame marker detector block allows the recovery of the PL frame structure by
applying a correlation between the reference FM and the received bits. This is crucial to
enhance the data-aided algorithms used for frequency correction and phase correction,
whereas the previous blocks (i.e., timing recovery) must be capable of performing their
functions without knowing the structure of the frame and in the presence of a frequency
error. After compensating for the frequency impairment, the symbols are unscrambled
according to the standard. This allows us to mitigate the effect of transmitter pseudo-
randomization, re-establishing pilot values. At the same time, the descriptor decoder,
analyses the FD of the frame, identifying the presence/absence of pilots and the ModCod
used. The last part of the architecture is preceded by the estimation of the signal-to-noise
ratio (SNR) and the correction of the amplitude of the symbols to match the reference
constellation. This step is needed to compute the log–likelihood ratio (LLR) of the received
bits by the constellation demapper module. Finally, the SCCC decoder uses this soft-bit
information (i.e., the LLRs) to recover errors in the satellite transmission and produce the
information bits.

Electronics 2024, 13, 209 6 of 18

The structure of the described receiver is quite complex, both for impairment recovery
and for the internal architecture of the SCCC decoder. For decoding information at a high
data rate, it is necessary to compute many operations on a large quantity of data in a small
amount of time. For this reason, the state-of-the-art receivers for CCSDS 131.2-B commu-
nication are based on complex and expensive HW solutions, such as the aforementioned
Cortex HDR [14]. The limiting factor of this receiver, and other HW receivers as well,
is not only represented by the complexity of the design, but also by its very high cost,
which restricts the testing and adoption of the standard. This is currently one of the main
factors limiting the use of the CCSDS 131.2-B standard, considering also that it could be
involved also for science missions where the performance requirements can be relaxed;
hence, there is no need to reach the highest performance provided by a HW receiver (i.e.,
500 Mbaud). For these reasons, this paper describes the implementation of a SW receiver to
provide a low-cost alternative to HW receivers for promoting the use of the CCSDS 131.2-B
standard by implementing easier and lower-cost EGSEs to test the transmission and satisfy
the requirements of science missions. At the state of the art, as far as the author knows,
the only SW solution for CCSDS 131.2-B is represented by the so-called SW EGSE [19].
It is a software simulator based on Matlab SW [20], capable of emulating the downlink
communication compliant with the standard. This has been implemented for testing the
communication and above all for testing the standard itself, as well as for assessing its
capabilities. For its very low performance, it is impossible to use the SW EGSE both for
testing real transmitters and for receiving data on ground stations. In particular, the SW
EGSE is capable of decoding a single Codeword (8100 symbols) in, at minimum, more
than 3 s, making its use unfeasible for any real-use case (in comparison, a HW receiver
as the Cortex can decode about 60 k Codewords per second). The poor performance of
the SW EGSE is due to the implementation of the EGSE itself, which was not explicitly
developed for reaching high performance, but also due to the implicit limitation of SW
implementation on Matlab.

In recent years, the evolution of general-purpose processing HW has increased soft-
ware performance. Applications like synthesizers, modulators/demodulators, and en-
coders/decoders can now be implemented in software thanks to the use of ad hoc embed-
ded systems or high-performance processors. This is the case for the so-called Software-
Defined Radios (SDRs), which represent radio communication systems that exploit SW to
implement components that are usually implemented on FPGAs or ASICs, such as filters,
amplifiers, modulators, and demodulators. This approach has gained traction also in the
space telecommunication sector [21–24]. A significant help to SDR performances has been
given in recent years by General-Purpose Graphics Processing Units (GP-GPUs). In this
scope, we have worked on the design and development of an SDR receiver, exploiting
GP-GPUs to implement a system compliant with the CCSDS 131.2-B standard. The SDR
approach offers manifold advantages with respect to the HW approach such as extensibility,
flexibility, cheaper development and maintenance, upgradability, and potential future
development [21,25].

The next section describes the development of the SW-based receiver, focusing on the
implementation choices carried out to obtain good performance in terms of data-rate and
error correction. Such performances are discussed and evaluated in Section 4.

3. Software Receiver Implementation

To develop a high-performance SW receiver, the parallelization of operations is a
crucial task, carried out thanks to the use of GP-GPUs. GP-GPUs disperse the execution
of a single instruction over all available data, boosting the application throughput, in
accordance with the Single Instruction Multiple Data (SIMD) paradigm, on the other
side’s central processing units (CPUs) to follow the Single Instruction Single Data (SISD)
paradigm, serially processing single data blocks. Large-scale data processing challenges
are particularly well-suited for GP-GPUs, which provide the benefits of high-performance
parallel processing at a cheaper cost than HW solutions like FPGAs. An example of an SDR

Electronics 2024, 13, 209 7 of 18

receiver exploiting GPUs is given in [26]. Naturally, all communication systems that need
to handle massive volumes of data, like the CCSDS 131.2-B standard, can benefit from this
concept.

Even though current CPUs are manufactured with such high frequency, they are often
built to operate in a serial fashion, with the goal of minimizing latency for individual tasks.
For this reason, CPUs are commonly not used for parallel processing, involving a large
quantity of data. GP-GPUs, on the other hand, provide a versatile throughput-oriented
processing architecture to easily support parallel computing. The main tasks covered by
GPUs are related to graphics (e.g., computer vision, video rendering) or physics simulation.
In general, the types of applications that must be run and the types of data that must be
processed have a significant impact on the benefits and drawbacks of utilizing GPUs other
than CPUs.

A comparison between the high-level architecture of CPUs and GPUs is depicted in
Figure 3.

Figure 3. General CPU architecture (left) compared with general GPU architecture (right).

CPUs (Figure 3 left) are usually composed of a few cores (blue blocks), generally from
2 to 16, which are responsible for the parallel (or serial) execution of processes and threads.
Typically, every CPU core carries out distinct tasks on distinct sets of data, with the aim of
reducing the time lag between receiving an instruction and completing it. Additionally,
each core handles requests of a higher priority that may arise from various peripherals,
such as interrupts, exceptions, and user commands. With respect to GPUs, CPUs provide
the best performance when:

• Task parallelism is necessary, meaning that several different jobs must be completed
simultaneously while utilizing separate or even the same set of data;

• Tasks follow distinct instructions, meaning that each task’s instructions provide its
own objective;

• Each process/thread is programmed individually.

GPUs (Figure 3 right), on the other hand, are made up of thousands of cores (blue
blocks), each of which is capable of processing thousands of threads at once, while con-
centrating on maximizing the application data throughput. Specifically, GPU threads
perform the same instruction on distinct data blocks, exploiting the SIMD paradigm. With
this method, enormous volumes of data can be managed effectively; all threads execute
the identical instructions concurrently, but on distinct batches or segments of data. Also,
GPUs usually are equipped with on-chip memories, which are crucial for allowing fast
and eventually shared access to the data, by the threads. An efficient use of GPU memory,
as well as of the several threads that can be instantiated, is of fundamental importance to
guarantee fast access and processing of data.

Electronics 2024, 13, 209 8 of 18

In general, GPUs provide the best performance when:

• Data parallelism is necessary, meaning that the same activity must be executed on
multiple data;

• A high-rate throughput is necessary.

This is needed for example for image processing, video rendering, and signal data
processing when it is necessary to use algorithms to quickly run the same code on enormous
amounts of data.

To develop a real-time SDR system compatible with the CCSDS-131.2-B standard, it
was necessary to select an appropriate general-purpose GPU processor. Specifically, the
NVIDIA Quadro RTX 4000 GPU, released by NVIDIA at the end of 2018 [27], has been
selected. It has been programmed by means of the Computed Unified Device Architecture
(CUDA), a C++ based framework, which allows us to develop functions to be executed in
parallel on the multiple GPU cores. This NVIDIA GPU comprises 8 GB of memory and is
equipped with 2304 CUDA cores, with a clock speed of 1005 MHz. Thanks to CUDA, the
GPU is capable of instantiating 1024 threads per block and 65,535 × 65,535 blocks per grid,
allowing us to parallelize the thread executions on the multiple CUDA cores. The adopted
GPU is not the highest-performance GPU available on the market, but it has been chosen
to demonstrate the potential of the system implemented on a low-cost device. Indeed, at
the time of writing, the cost of this device is lower than one thousand $. The implemented
Receiver has been developed on a workstation mounting a commercial CPU, an Intel Core
i9-12900K.

To implement a flexible and easily maintainable SDR, each block of the Receiver
has been developed following a programming paradigm called Factory Method Design
Pattern [28]. This is an Object-Oriented Programming (OOP) technique based on the
definition of abstract classes that are extended by sub-classes, which determine the nature
of the instantiated object. In this way, the receiver blocks have initially been defined as
abstract classes, with their specific communication interface, while the implementation is
demanded to the programmer, with the possibility of easily employing and testing different
solutions for each block. Following this design rule offers multiple benefits:

• It allows us to change the internal implementation of a block without modifying its
interface, i.e., for adopting different algorithms;

• It ensures the possibility of changing each block modifying only a single module of it,
without interfering with its entire functionality i.e., without affecting modules inside
it or interfacing with it;

• It allows us to enable/disable the hardware acceleration support, creating both serial
and parallelized code versions, for debugging and performance purposes;

• It compiles only a portion of the entire system, encapsulating possible errors inside
the newly developed module and reducing the management time due to bug fixes;

• It allows for the extension of the developed blocks for eventually implementing new
communication protocols, exploiting the same logical structure.

Thanks to this approach, the receiver has been implemented to be extremely flexible
and modular, allowing alternating parallel code, executed on GPU, to serial code, executed
on CPU. At the end of the day, the receiver was implemented as a class object, instantiating
each single submodule and exploiting the Factory Method Design Pattern.

The architecture of the receiver, shown in Figure 2, has been logically divided into two
main parts: the digital front-end section and the back-end section. The first one contains all
the processing blocks that are responsible for recovering the signal impairments (i.e., from
Frequency Correction block to Digital AGC block), whereas the back-end section only includes
the generation and decoding of the soft-bit information (i.e., the Constellation Demapper and
the SCCC Decoder blocks).

3.1. Front-End

Figure 4 describes the architecture of the implemented front-end section.

Electronics 2024, 13, 209 9 of 18

Figure 4. Implemented Front-End Architecture.

The organization of these modules slightly differs from the general architecture given
in Figure 2, to be adapted to the SW implementation. The front-end modules need to be
executed in a chain, where the result of each module is given to the subsequent module. For
this reason, the parallelism of the front end is constrained, and it is necessary to optimize
each single module to speed up this part of the receiver. Nonetheless, the front-end part
of the system is the less expensive one in terms of processing power; hence, the GPU
parallelism has been limited to the data parallelism of each single block. The studies
conducted on the performance of the overall system have identified in the back end the
bottle-neck of the system, as will be made clear in the next Section. For this reason, the
implementation of the single blocks of the front end part of the system will not be discussed
in this scope. Overall, to develop the front end part of the receiver, a hybrid paradigm has
been used, exploiting the GPU when working on large amounts of data in parallel (i.e.,
when working on the whole PL frame) and exploiting the CPU when higher frequency is
needed and less data are processed (i.e., when working on frame header and descriptor).

3.2. Back-End

The back-end subsystem is composed of the constellation demapper and the SCCC
Decoder. The two blocks are responsible for transforming the received symbols in the
output bits, reducing the errors due to channel impairments. As seen in the previous
section, the front end of the receiver was not highly computationally intensive. On the
other hand, the back end has been computed to be the most computationally intensive
part of the receiver. For its recursivity and because of the several executed operations, the
back end has been demonstrated to be the bottleneck of the receiver. For this reason, the
development of the receiver has focused on the implementation of the back-end blocks on
GPU, for optimizing their execution and improving the overall performance of the system.
It is worth mentioning that both the constellation demapper and the SCCC decoder have
been implemented entirely on the GPU with the input data that are moved to GPU memory
before entering the back end and are moved back to the CPU (to be processed at the output)
only at the end of the chain.

Specifically, the demapper block aims to transform the constellation symbols, corrected
by the demodulator blocks, into soft bits represented as LLRs. Then, the SCCC decoder
block eventually corrects transmission bit errors, providing the correct information bits.
Figure 5 shows the architecture of the implemented back end, with a focus on the internal
architecture of the SCCC decoder.

A detailed description of the development of the two back-end blocks (i.e., demapper
and decoder) is reported in [15]. Here, an overview of the implementation choices is given
to introduce the performance evaluation carried out in the next section.

Electronics 2024, 13, 209 10 of 18

Figure 5. Implemented Back−End Architecture.

3.2.1. Constellation Demapper

For the implementation of the constellation demapper of the receiver, soft demapping
has been considered due to its known superior performance with respect to hard demap-
ping [29]. The input of the demapper module is the set of symbols of a PL frame (8100
symbols× 16 codewords), previously detected at front end and provided as a set of couples
of in-phase (I) and quadrature (Q) elements. Also, the demapper gets as input the ModCod
and SNR estimated at the front end, and processes each of the 16 parts of the PL frame
(8100 symbols) to produce 16 Codewords to be given as input to the SCCC decoder.

The Demapper computes n Euclidean distances between each I and Q couple and the
constellation points related to the used modulation, i.e., QPSK (ACM 1-6), 8PSK (ACM
7-12), 16APSK (AMC 13-17), 32APSK (ACM 18-22), 64APSK (ACM 23-27).

For instance, for a QPSK, there are four points, so the demapper would compute four
Euclidean distances between each input point, with coordinates I and Q, and the four
points of the constellation. Each computed distance is then multiplied by the estimated
SNR.

Considering that a CW contains 8100 symbols, for ACM 27, the demapper has to
compute more than 3 million (384× 8100) distances and multiplications. These would be
calculated in a serial process by using two nested iterative cycles, with a subsequent high
computational cost. Instead, on a GPU, a single thread can compute a single Euclidean
distance, with a number of threads executed in parallel that is equal to the number of
distances to be computed. In this way, all the computations can be resolved in just one
instruction, eliminating the iterative execution. After the computation of the distances,
the demapper finds a set of m LLR values for each symbol, with m that is the modulation
cardinality, proportional to the ACM. To do so, it computes the Jacobian logarithm [30],
referred to as max? (1).

max?(a, b) ∆
= ln(ea + eb) = max(a, b) + ln(1 + e−|a−b|) (1)

Specifically, the max? is computed on m sub-sets of distances, reducing the initial
values to the final m values, for each I, Q couple. At the end of the demapper, 16 codewords
with a size equal to m× 8100 will be produced.

Thanks to the use of GPU, the Euclidean distances computation is processed in a few
microseconds, while the max? function, because of its nature (i.e., the efficiency of the
logarithm and exponential functions) and because of the large number of max? operations
to be computed, represents the most computation-intensive part of the demapper.

Electronics 2024, 13, 209 11 of 18

The design of the demapper itself shows how an efficient use of GPU parallelization
can increase the performance of the implemented receiver. These design choices will be
further investigated in Section 4, where the performance of the receiver will be evaluated
in comparison with the state of the art.

3.2.2. SCCC Decoder

The SCCC decoder can be considered the main section of the receiver, responsible
for recovering the information bits from the encoded ones. Its input is the quantized soft
bits from the constellation demapper module, representing the confidence of the encoded
bits being one or zero. The information bits are decoded using a turbo-like structure as in
Figure 5, where multiple iterations are used to improve the confidence of the bits, before
the final hard decision. Also, for the internal architecture of the SCCC decoder, the Factory
Method Design Pattern has been exploited, developing each single module to be highly
flexible and easy to interface with the other modules.

The SCCC decoder implemented is based on the BCJR algorithm, defined by Bahl,
Cocke, Jelinek, and Raviv [31]. It is an iterative Maximum A Posteriori (MAP) Trellis-based
algorithm that aims to reconstruct the a posteriori probabilities by means of Soft-Input
Soft-Output (SISO) decoders [32]. The nature of the SISO decoders, and the iterations
needed to decode the signal, make the SCCC decoder the most computationally intensive
part of the receiver.

Puncturing/de-puncturing and interleaving/de-interleaving modules aim to respec-
tively remove/add redundancy bits and interleave/de-interleave bits according to a set of
predefined rules. These modules have been developed following GPU-aided parallelism
and they can be executed in a few microseconds.

The most important modules of the SCCC decoders are obviously the SISO decoders.
Further details about the implemented BCJR algorithm can be found in [33]. Specifically,
the trellis processing is performed in two steps: forward and backward. For this reason,
the BCJR is also called the forward-backward algorithm. These steps must be performed
iteratively, limiting the use of parallelization, and slowing down the whole process. Also,
each step requires the computation of the already-mentioned max? equation, which is
known to be computationally intensive. Overall, three operations are the most complex to
be designed and accelerated for the SISO decoders:

• The forward recursion, which calculates the α values iteratively, limits the application
of the SIMD technique because each value is dependent on the elements computed
before it.

• The backward recursion, which calculates the β values iteratively, limits the application
of the SIMD technique because each value is dependent on the elements computed
before it.

• The max? that requires the computation of a logarithm and an exponential, both
intensive functions due to the software abstraction needed.

To increase the performance-exploiting GPU programming as far as possible, different
techniques have been used. First of all, the GPU memory has been exploited to guarantee
fast and shared access to data for each thread. Then, to parallelize α and β computation, the
windowing technique has been employed [32]. This procedure involves parallelizing the
computation of sets of samples by computing the metrics in successive windows. With an
effective number of windows, this procedure parallelizes the whole computation, without
a significant implementation loss. The windows number is strongly related to the number
of inputs of the SISO decoders, which is proportional to the used ModCod. The larger the
number of windows, the larger the speed of the process. In our implementation, the ideal
number of windows for ACM 1 has been computed to be about 15 windows, while for
ACM 27, we could employ up to 60 windows, without significant loss in error correction
performance. On the other hand, to avoid the slowing factor introduce by the Jacobian
logarithm (1), we have chosen an approximation of it. Several approximations of this
function have been proposed in literature [34,35]. One of these proposes to use the classic

Electronics 2024, 13, 209 12 of 18

max instead of the max? function, introducing an implementation loss in error decoding
performance [32].

These choices are investigated in the next section, where the overall speed of the
system is analyzed when using windowing and the simplified Jacobian logarithm, focusing
on the introduced performance improvements and implementation loss.

4. SDR Receiver Performance Evaluation

The performance of the implemented system has been evaluated from two points of
view, considering data-rate and error correction performance. To evaluate the system, a
compliant SW transmitter has been developed to produce input data for the receiver. To
decouple transmitter and receiver speed, the encoded bits were computed offline and then
provided to the receiver as sets of thousands of PL frames. Also, for evaluating the error
correction performance of the system, the channel was emulated by adding Additive White
Gaussian Noise (AWGN) to the input. This has been used to compute the Bit Error Rate
(BER) of the system, compared with the ideal BER given by the standard [36]. In this case,
the input of the system was computed as a well-known Pseudo-random Noise sequence
(PN23) [37]. To describe the performance of the system, the implementation choice for
the development of the SCCC decoder will be taken into account. For the other modules,
indeed, the parallel GPU implementation has been demonstrated to be enough to optimize
the execution of the receiver. The achieved results will be analyzed step-by-step while
investigating the added optimization of the code (e.g., Jacobian logarithm approximation,
windowing). Regarding the speed performance of the system, it has been compared with
the aforementioned SW EGSE [19], but also with two other systems which have been
implemented for reference, referred to as Matlab Script and Serial Process. The Matlab Script
is a system implemented on Matlab, modeled on the SW EGSE, but excluding the debug
options, to optimize the computation. The serial process was implemented in C++, without
exploiting parallel computation. It is the same version of the receiver where each module is
executed on a CPU instead of a GPU. As explained before, this implementation has been
possible without additional effort, thanks to the use of the Factory Method Design Pattern.
Both the Matlab and the C++ solution were executed on the same CPU used for the SDR
receiver (i.e., Intel Core i9-12900K).

For the implemented GPU receiver, three different versions have been developed,
optimizing the system at each step. In particular, the first system, referred to as GPU1, is the
first developed system, where the code is optimized only for parallel execution on a GPU.
The second system (GPU2) has been optimized by an efficient use of the GPU memory
and by introducing the approximation of the Jacobian logarithm, while the third system
(GPU3) has been further optimized by implementing windowing, with a variable number
of windows, based on the applied ACM. The three distinct GPU receiver implementations
have been compared, demonstrating not only the performance increase over the state-of-
the-art receiver, but also the performance improvement across the various implementations.
To comprehensively evaluate the speed performance of the system, the NVIDIA CUDA
profiling tools have been used [38]. This has allowed for not only the evaluation of the
speed of each single developed module, but also for the evaluation of the GPU memory
occupancy and read/write operation, to optimize the code.

To evaluate the error correction performance of the system, the BER was computed,
applying AWGN impairment to the input and modifying the applied signal-to-noise ratio
(Eb_N0) to produce the so-called BER curves. The BER curves show the decrease in the error
rate when increasing the Eb_N0, hence the number of symbols with respect to the noise.
BER curves have been computed for all the ACM, considering at minimum a number of
1000 PL frames as input, and for all the GPU implementation, to show the implementation
loss introduced by optimizing the code. The ideal BER curves are defined in the CCSDS
130.11-G report [36] and are depicted in Figure 6.

Electronics 2024, 13, 209 13 of 18

Figure 6. Ideal BER on Linear AWGN Channel for PSK Modulations (left) and APSK Modulations
(right)—as defined in [36].

Results

Table 1 shows the comparison of the measured performance of the SW EGSE, Matlab
Script, Serial Process, and GPU implementations for receiving a PL frame, recovering the
impairments at front end, and finally producing the output bits related to the first PL frame
codeword. The performance was measured on ModCods 1, 15, and 27, which require an
increasingly larger number of operations.

Table 1. Execution time comparison to decode 1 Codeword with different ACMs.

Implementation Time (ms)
ACM1 ACM15 ACM27

SW EGSE ∼3000 ∼13,000 ∼25,000
Matlab Script 876.15 2182.23 4519.16
Serial Process 31.56 134.32 309.12

GPU1 36.17 143.32 268.55
GPU2 10.17 37.32 68.55
GPU3 1.32 2.88 4.24

ACM 1 is the case that requires the smaller number of operations, proportional to
the size of the data. In this case, GPU1 is executed in 36.17 milliseconds for a CW, which
represents an improvement of ∼80× with respect to the SW EGSE implementation. ACM
15 and 27 deal with larger sets of data, requiring a larger number of operations. Specifically,
for ACM 27, the parallelization introduced in GPU1 produces a performance improvement
of ∼90× with respect to the SW EGSE. In general, the GPU1 version is more efficient than
both the SW EGSE and the Matlab script, but, for ACM 1 and ACM 15, where smaller sets of
data are processed, the serial process on the CPU is faster. This shows how an efficient CPU
can actually perform better than a GPU when fewer data are processed. This happens in
our case for the ACMs from 1 to 15, hence QPSK, 8PSK and 16APSK. From ACM 16, which
is still a 16APSK ModCod, the number of bits per codeword to be processed increases to
25,918. Given the larger datasets, the use of a GPU guarantees an efficiency gain that is then
reflected for all the larger ACMs, which require us to process datasets with a number of
bits larger than 25,918, up to 43,678 bits for ACM 27. With larger datasets, the GPU SIMD
paradigm allows the GPU1 version performance to overcome serial process performance,
giving an insight of GPU potential.

The BER curves of the GPU 1 version are shown in Figure 7. We can see that the
error decoding performance of this system is similar to the one of the ideal system: the
implementation loss introduced in this version is small, with an offset of about 0.2/0.3 dB
with respect to the ideal BER curves. This allows us to easily recover the transmitted
information bits, also with the possibility of optimizing the code, as has been conducted for
the GPU2 and GPU3 versions. The GPU2 and GPU3 naturally add an implementation loss
that is reflected on the BER curves computed for these cases.

Electronics 2024, 13, 209 14 of 18

Figure 7. BER curves on linear AWGN channel, drawn for GPU1 implementation.

Thanks to the optimization mentioned in Section 3.2.2, the GPU2 version, speeding up
memory accesses, and implementing a simplified version of the Jacobian logarithm, per-
forms better than the GPU1 version, with a gain of 3× in the case of ACM1, up to ∼4× for
the highest ModCod (ACM27). Concerning the SW EGSE, the GPU2 version performance
gain is up to ∼360×. Differently from the GPU1, the GPU2 version outperforms the serial
process also when processing fewer data, hence for the lower ModCods. In comparison
with the GPU1 implementation, the GPU2 system shows an implementation loss increment
of about 0.3 dB, as shown in Figure 8. Hence, this optimized version, introducing a 3×
performance improvement (in the worst case), suffers an implementation loss of about
0.6 dB. We consider an implementation loss below 1 dB to be acceptable for increasing the
performance of the system. So, the loss of the GPU2 version is still considered negligible
with respect to the ideal BER values. For example, for ACM 6, the BER drops to 10−6 for
an Eb/N0 value around 3.7 dB, whereas in the ideal curves, the Eb/N0 value is about 3.3.
In this case, we have an implementation loss of around 0.4 dB. For ACM 22 and ACM 23
(32APSK and 64APSK), instead, the BER value of 10−6 is reached with a Eb/N0 of around
9 dB; on the other side, the ideal value is around 8.4/8.5 dB, with an implementation loss
that increases with respect to lower ACMs.

Finally, the GPU3 version of the code, that is the further-optimized implementation,
shows, as expected, the best performances. Concerning the other GPU versions (GPU1 and
GPU2), it shows a performance regain of more than 10×, while for ACM 27, it has a gain
factor larger than 5500× with respect to the SW EGSE. In comparison with the ideal BER
curves, the GPU3 system shows an implementation loss of between 0.7 dB and 0.9 dB, as
shown in Figure 9. Overall, we consider the error decoding performance of the system,
comprising windowing and simplified max?, to be more than acceptable: the acceptable
error recovery performance of a system may vary from case to case and is strongly related
to the requirements of the single mission. However, we think that a 1 dB implementation
loss can be tolerable for most of the ESA EO missions.

In the end, the proposed solutions have demonstrated to have higher data rate perfor-
mance than the state-of-the-art SW system, with an implementation loss that is negligible.
With respect to the HW solution, the GPU3 version allows us to decode more than 200 CWs
per second (in the worst case), while a HW receiver can decode up to 60 k CWs per second.
Obviously, the SDR is still much slower than a HW receiver, but, given the flexibility and
the low-cost of the system, it can be an acceptable alternative of HW receivers, especially
for testing transmitters or for receiving data in science missions. Also, it is important to
note that using a higher-performance GPU would provide a proportional performance gain
for the implemented receiver, allowing us to speed up the overall execution. Furthermore,
given the flexibility of the developed code, and thanks to CUDA framework, the code can
be easily re-used on different NVIDIA GPUs or extended to multiple GPUs of the same
family, potentially doubling the speed of the system.

Electronics 2024, 13, 209 15 of 18

Figure 8. BER curves on linear AWGN channel, drawn for GPU2 implementation.

Figure 9. BER curves on linear AWGN channel, drawn for GPU3 implementation.

5. Conclusions

The recent investments by private companies and start-ups in the space exploration
sector have kicked off the so-called New Space Economy. The objective of New Space is to
democratize space exploration, making it increasingly accessible to launch products into
space. In this scope, the space agencies, and in particular the ESA, are working on the
definition of newer communication standards to be adopted in present and future missions,
for enhancing the re-usability of deployed systems and consequently providing a positive
impact on the economy of space missions. This paper has presented the development of an
EGSE for promoting the adoption of the CCSDS 131.2-B standard for telemetry applications
in Earth observation missions. This is the standard selected by the ESA for future EO
missions. For this reason, it is crucial to dispose of EGSEs compliant with it, for testing and
evaluating satellites’ transmissions and ground stations’ receptions. Also, it is fundamental
to provide low-cost systems to boost the use of CCSDS 131.2-B standard, fostering its early
adoption in the next-generation missions.

The standard itself is very complex and expensive to implement for both the transmit-
ter and the receiver side, and, at the time of writing, is not used in any mission. To overcome
this limitation, the implementation of a low-cost, flexible, SDR receiver based on GP-GPUs
has been presented. It aims to provide a cheaper solution with respect to the state-of-the-art
receivers, both for on-ground testing of CCSDS 131.2-B compliant transmitters and to be
employed in next-generation missions, for receiving data from EO satellites.

The proposed solution has been analyzed, presenting an overview of its structure
and the development of the architecture, focusing on the implementation choices made
to provide a high-performance solution. Then, the performance of the system has been
evaluated, in terms of error recovery and data rate. Overall, the system has been demon-
strated to have good performance with respect to other SW-based solutions, setting itself as
a valid alternative with respect to the complex and expensive HW system at the state of the
art. In fact, it is a flexible system and is easy to deploy and has a much lower cost (a few
thousand dollars) with respect to the state-of-the-art HW receivers (hundreds of thousands
of dollars).

The presented solution will provide fundamental aid for the adoption of the CCSDS
131.2-B standard for next-generation EO ESA missions. It will promote the standard use by

Electronics 2024, 13, 209 16 of 18

allowing the easy and low-cost testing of transmitters compliant with it, and by supporting
the reception of data for missions where the requirements are relaxed (i.e., science missions).
Moreover, the flexibility of the system easily allows for future development, involving the
use of more GPUs in parallel, or higher-performance GPUs, increasing the data rate of the
system.

Author Contributions: Conceptualization, R.C., G.G. and M.B.; methodology, R.C., G.G. and M.B.;
software, R.C.; validation, R.C., G.G. and M.B.; formal analysis, R.C. and G.G.; investigation, R.C.
and G.G.; resources, G.G. and M.B.; data curation, R.C., G.G. and M.B.; writing—original draft
preparation, R.C.; writing—review and editing, L.F.; visualization, R.C.; supervision, L.F.; project
administration, L.F.; funding acquisition, L.F. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Derived data supporting the findings of this study are available from
the corresponding author on request.

Acknowledgments: The work presented in this paper has been carried out in collaboration with
IngeniArs S.r.l., a SME working in the Aerospace industry.

Conflicts of Interest: Authors Gianluca Giuffrida and Matteo Bertolucci were employed by the
company IngeniArs S.r.l. The remaining authors declare that the research was conducted in the
absence of any commercial or financial relationship that could be construed as a potential conflict
of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ACM Adaptive Coding and Modulation
AWGN Additive White Gaussian Noise
BER Bit Error Rate
CCSDS Consultative Committee for Space Data Systems
CER Codeword Error Rate
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
CW CodeWord
ECCS European Cooperation for Space Standardization
EGSE Electrical Ground Support Equipment
EO Earth Observation
ESA European Space Agency
FD Frame Descriptor
FER Frame Error Rate
FM Frame Marker
GP-GPU General-Purpose Graphics Processing Unit
HW Hardware
LEO Low-Earth Orbit
LLR Log-Likelihood Ratio
MAP Maximum A-Posteriori
MHOMS Modem for High Order Modulation Schemes
ModCod Modulation and Coding
NewSpace New Space Economy
PL Physical Layer
SCCC Serial Concatenated Convolutional Codes
SDR Software Defined Radio
SIMD Single Instruction Multiple Data
SISD Single Instruction Single Data
SISO Soft-In Soft-Out
SME Small Medium-Size Enterprise

Electronics 2024, 13, 209 17 of 18

SNR Signal to Noise Ratio
SRRC Squared-Root Raised Cosine
SW Software
TF Transfer Frame
VCM Variable Coding and Modulation

References
1. Parrella, R.M.; Spirito, G.; Cirina, C.; Falvella, M.C. The New Space Economy and New Business Model. New Space 2022, 10,

291–297. [CrossRef]
2. Orlova, A.; Nogueira, R.; Chimenti, P. The present and future of the space sector: A business ecosystem approach. Space Policy

2020, 52, 101374. [CrossRef]
3. SpaceX Website. Available online: https://www.spacex.com (accessed on 25 November 2023).
4. Blue Origin Website. Available online: https://www.blueorigin.com (accessed on 25 November 2023).
5. Virgin Galactic Website. Available online: https://www.virgingalactic.com (accessed on 25 November 2023).
6. Selva, D.; Krejci, D. A survey and assessment of the capabilities of Cubesats for Earth Observation. Acta Astronaut. 2012, 74, 50–68.

[CrossRef]
7. Liddle, J.D.; Holt, A.P.; Jason, S.J.; O’Donnell, K.A.; Stevens, E.J. Space science with CubeSats and nanosatellites. Nat. Astron.

2020, 4, 1026–1030. [CrossRef]
8. Wekerle, T.; Pessoa, J.B.; Costa, L.E.V.L.; Trabasso, L.G. Status and trends of smallsats and their launch vehicles. An up-to-date

review. J. Aerosp. Technol. Manag. 2017, 9, 269–286. [CrossRef]
9. Fortescue, P.; Swinerd, G.; Stark, J. Spacecraft Systems Engineering, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011.
10. Lange, C.; Grundmann, J.T.; Kretzenbacher, M.; Fischer, P.M. Systematic reuse and platforming: Application examples for

enhancing reuse with model-based systems engineering methods in space systems development. Concurr. Eng. 2018, 26, 77–92.
[CrossRef]

11. Baiocco, P. Overview of reusable space systems with a look to technology aspects. Acta Astronaut. 2021, 189, 10–25. [CrossRef]
12. Consultative Committee for Space Data Systems (CCSDS) Website. Available online: https://public.ccsds.org/default.aspx

(accessed on 25 November 2023).
13. European Cooperation for Space Standardization (ECSS) Website. Available online: https://ecss.nl (accessed on 25 November

2023).
14. Cortex High Data Rate (HDR) Receiver for Space Science and Earth Observation. Available online: https://www.safran-group.

com/sites/default/files/2021-05/col000016.4.0_cortex_hdr_a4_2.pdf (accessed on 25 November 2023).
15. Ciardi, R.; Giuffrida, G.; Bertolucci, M.; Pagani, E.; Fanucci, L. CCSDS 131.2-B-1 Software Defined Radio receiver featuring

GPU accelerators: Up to 1000x with respect to CPU implementation. In Proceedings of the IEEE 9th International Workshop
on Tracking, Telemetry and Command Systems for Space Applications (TT&C) ESA-ESTEC, Noordwijk, The Netherlands,
28 November–1 December 2022.

16. Consultative Committee for Space Data Systems (CCSDS). CCSDS 131.2-B-2 Recommended Standard: Flexible Advanced Coding and
Modulation Scheme for High Rate Telemetry Applications; Consultative Committee for Space Data Systems (CCSDS): Sanford, FL,
USA , 2023.

17. Berger, M.; Moreno, J.; Johannessen, J.A.; Levelt, P.F.; Hanssen, R.F. ESA’s sentinel missions in support of Earth system science.
Remote. Sens. Environ. 2012, 120, 84–90. [CrossRef]

18. Benedetto, S.; Garello, R.; Montorsi, G.; Berrou, C.; Douillard, C.; Giancristofaro, D.; Ginesi, A.; Giugno, L.; Luise, M. MHOMS:
High-speed ACM modem for satellite applications. IEEE Wirel. Commun. 2005, 12, 66–77. [CrossRef]

19. Diana, L.; Giuffrida, G.; Marini, M.; Cassettari, R.; Davalle, D.; Fanucci, L. SCCC SW EGSE: A software simulator of a satellite
downlink communication compliant with the CCSDS 131.2-B-1 standard, with Hardware-In-The-Loop capabilities. In Proceedings
of the IEEE 8th International Workshop on Tracking, Telemetry and Command Systems for Space Applications (T&TC), ESA-
ESTEC, Noordwijk, The Netherlands, 24–27 September 2019.

20. The MathWorks Inc. MATLAB Website. Available online: https://www.mathworks.com (accessed on 25 November 2023).
21. Ulversoy, T. Software defined radio: Challenges and opportunities. IEEE Commun. Surv. Tutor. 2010, 12, 531–550. [CrossRef]
22. Akeela, R.; Dezfouli, B. Software-defined Radios: Architecture, state-of-the-art, and challenges. Comput. Commun. 2018, 128,

106–125. [CrossRef]
23. Kacpura, T.J.; Eddy, W.M.; Smith, C.R.; Liebetreu, J. Software defined radio architecture contributions to next generation space

communications. In Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2015; pp. 1–12.
24. Pugh, M.; Kuperman, I.; Aguirre, F.; Mojaradi, H.; Spurgers, C.; Kobyashi, M.; Satorius, E.; Jedrey, T. The universal space

transponder: A next generation software defined radio. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT,
USA, 4–11 March 2017; pp. 1–14.

25. Arslan, H. Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems; Springer: Dordrecht, The Netherlands, 2007.

http://doi.org/10.1089/space.2021.0020
http://dx.doi.org/10.1016/j.spacepol.2020.101374
https://www.spacex.com
https://www.blueorigin.com
https://www.virgingalactic.com
http://dx.doi.org/10.1016/j.actaastro.2011.12.014
http://dx.doi.org/10.1038/s41550-020-01247-2
http://dx.doi.org/10.5028/jatm.v9i3.853
http://dx.doi.org/10.1177/1063293X17736358
http://dx.doi.org/10.1016/j.actaastro.2021.07.039
https://public.ccsds.org/default.aspx
https://ecss.nl
https://www.safran-group.com/sites/default/files/2021-05/col000016.4.0_cortex_hdr_a4_2.pdf
https://www.safran-group.com/sites/default/files/2021-05/col000016.4.0_cortex_hdr_a4_2.pdf
http://dx.doi.org/10.1016/j.rse.2011.07.023
http://dx.doi.org/10.1109/MWC.2005.1421930
https://www.mathworks.com
http://dx.doi.org/10.1109/SURV.2010.032910.00019
http://dx.doi.org/10.1016/j.comcom.2018.07.012

Electronics 2024, 13, 209 18 of 18

26. der Heide, S.V.; Luis, R.S.; Puttnam, B.J.; Rademacher, G.; Koonen, T.; Shinada, S.; Awaji, Y.; Furukawa, H.; Okonkwo, C.
10,000 km Straight-line Transmission using a Real-time Software-defined GPU-Based Receiver. In Proceedings of the 2021 IEEE
Optical Fiber Communications Conference and Exhibition (OFC), Washington, DC, USA, 6–11 June 2021; pp. 1–3.

27. NVIDIA QUADRO RTX 4000 Datasheet. Available online: https://www.nvidia.com/content/dam/en-zz/Solutions/design-
visualization/quadro-product-literature/quadro-rtx-4000-datasheet-us-nvidia-1060942-r2-web.pdf (accessed on 25 November
2023).

28. Ellis, B.; Stylos, J.; Myers, B. The factory pattern in API design: A usability evaluation. In Proceedings of the 29th International
Conference on Software Engineering (ICSE’07), Minneapolis, MN, USA, 20–26 May 2007.

29. Vucetic, B.; Yuan, J. Turbo Codes: Principles and Applications; Springer Science & Business Media: New York, NY, USA, 2012;
Volume 559.

30. Huber, K. Some comments on Zech’s logarithms. IEEE Trans. Inf. Theory 1990, 36, 946–950. [CrossRef]
31. Bahl, L.; Cocke, J.; Jelinek, F.; Raviv, J. Optimal decoding of linear codes for minimizing symbol error rate (corresp.). IEEE Trans.

Inf. Theory 1975, 20, 284–287. [CrossRef]
32. Boutillon, E.; Douillard, C.; Montorsi, G. Iterative decoding of concatenated convolutional codes: Implementation issues. Proc.

IEEE 2007, 95, 1201–1227. [CrossRef]
33. Abrantes, A.S. From BCJR to Turbo Decoding: MAP Algorithms Made Easier; Faculdade de Engenharia da Universidade do Porto

(FEUP): Porto, Portugal, 2004.
34. JGross, W.; Gulak, P.G. Simplified MAP algorithm suitable for implementation of turbo decoders. Electron. Lett. 1998, 34,

1577–1578. [CrossRef]
35. Cheng, J.; Ottosson, T. Linearly approximated log-MAP algorithms for turbo decoding. In Proceedings of the IEEE 51st Vehicular

Technology Conference, Tokyo, Japan, 15–18 May 2000; Volume 3, pp. 2252–2256.
36. Consultative Committee for Space Data Systems (CCSDS). CCSDS 131.11-G-2 Informational Report: SCCC—Summary of Definition

and Performance; Consultative Committee for Space Data Systems (CCSDS): Sanford, FL, USA, 2023.
37. CCITT. Specification on Measuring Equipment—Digital Test Patterns for Performance Measurements on Digital Transmission Equipment;

International Telecommunication Union: Geneva, Switzerland, 1992.
38. Bridges, R.A.; Imam, N.; Mintz, T.M. Understanding GPU power: A survey of profiling, modeling, and simulation methods.

ACM Comput. Surv. 2016, 49, 1–27. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-4000-datasheet-us-nvidia-1060942-r2-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-4000-datasheet-us-nvidia-1060942-r2-web.pdf
http://dx.doi.org/10.1109/18.53764
http://dx.doi.org/10.1109/TIT.1974.1055186
http://dx.doi.org/10.1109/JPROC.2007.895202
http://dx.doi.org/10.1049/el:19981120
http://dx.doi.org/10.1145/2962131

	Introduction
	CCSDS 131.2-B Protocol for High-Rate Telemetry
	Transmitter Side
	Receiver Side

	Software Receiver Implementation
	Front-End
	Back-End
	Constellation Demapper
	SCCC Decoder

	SDR Receiver Performance Evaluation
	Conclusions
	References

