
Citation: Koochemeshkian, P.; Ihou

Koffi, E.; Bouguila, N. Hidden

Variable Models in Text Classification

and Sentiment Analysis. Electronics

2024, 13, 1859. https://doi.org/

10.3390/electronics13101859

Academic Editors: Ruifeng Xu and

Praveen Kumar Donta

Received: 25 March 2024

Revised: 30 April 2024

Accepted: 7 May 2024

Published: 10 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Hidden Variable Models in Text Classification and
Sentiment Analysis
Pantea Koochemeshkian * , Eddy Ihou Koffi and Nizar Bouguila

Concordia Institute for Information Systems Engineering (CIISE), Montreal, QC H3G 1M8, Canada;
k_ihou@encs.concordia.ca (E.I.K.); nizar.bouguila@concordia.ca (N.B.)
* Correspondence: p_kooche@encs.concordia.ca

Abstract: In this paper, we are proposing extensions to the multinomial principal component
analysis (MPCA) framework, which is a Dirichlet (Dir)-based model widely used in text document
analysis. The MPCA is a discrete analogue to the standard PCA (it operates on continuous data using
Gaussian distributions). With the extensive use of count data in modeling nowadays, the current
limitations of the Dir prior (independent assumption within its components and very restricted
covariance structure) tend to prevent efficient processing. As a result, we are proposing some
alternatives with flexible priors such as generalized Dirichlet (GD) and Beta-Liouville (BL), leading to
GDMPCA and BLMPCA models, respectively. Besides using these priors as they generalize the Dir,
importantly, we also implement a deterministic method that uses variational Bayesian inference for
the fast convergence of the proposed algorithms. Additionally, we use collapsed Gibbs sampling to
estimate the model parameters, providing a computationally efficient method for inference. These
two variational models offer higher flexibility while assigning each observation to a distinct cluster.
We create several multitopic models and evaluate their strengths and weaknesses using real-world
applications such as text classification and sentiment analysis.

Keywords: multinomial PCA; generalized Dirichlet MPCA; Beta-Liouville MPCA; topic modeling;
text classification; sentiment analysis; variational inference; collapsed Gibbs sampling; dimensionality
reduction; text clustering

1. Introduction

In this fast-paced world of technological advances, one of the most significant con-
tributing factors has been the emergence of various digital data forms, opening oppor-
tunities in different fields to gather helpful information. Everyday, massive amounts of
digital data are stored in digital data archives. The same distinction can be made for the
enormous quantity of textual data available on the Internet. Therefore, it is critical to
developing effective and scalable statistical models to extract hidden knowledge from such
rich data [1].

One of the main challenges in the statistical analysis of textual data is capturing and
representing their complexity. Different approaches have been applied to deal with this
problem. Furthermore, due to information technology’s rapid development, vast quantities
of scientific documents are now freely available to be mined. Thus, the analysis and mining
of scientific documents have been very active research areas for many years.

Data projection and clustering are crucial for document analysis, with projections
aimed at creating low-dimensional, meaningful data representations and clustering and
grouping similar data patterns [2,3]. Traditionally, these methods are studied separately,
but they intersect in many applications [3]. K-means clustering, though widely used
for creating compact cluster representations, does not fully capture document semantics.
This gap has led to the adoption of machine learning and deep learning for text mining
challenges, including text classification [4], summarization [5], segmentation [6], topic
modeling [7], and sentiment analysis [8].
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In this paper, we will focus on topic modeling aspects. Topic models are generally
classified into two categories: those based on matrix decomposition, like singular value
decomposition (SVD), and generative models [9]. The matrix decomposition approach,
such as probabilistic latent semantic analysis (PLSA) [10,11], analyzes text via mining and
requires a deep understanding of the corpus structure. PLSA, also known as probabilistic
latent semantic indexing (pLSI) [11], represents documents as a mix of topics by performing
matrix decomposition on the term–document matrix and is effective in identifying relevant
words for each topic. In contrast, the generative approach of topic modeling focuses on
the context of words across the entire document corpus. These models use latent variable
models, and a document is treated as a combination of various topics, each represented by
a random vector of words [3].

Meanwhile, the research by [12] indicates that while the probabilistic latent semantic
indexing (pLSI) model offers some insights, it falls short in clustering and as a generative
model due to its inability to generalize to new documents. To address these limitations,
latent Dirichlet allocation (LDA) [12] was introduced, enhancing pLSI using a Dirichlet
distribution for topic mixtures. LDA stands out as a more effective generative model,
though it still lacks robust clustering capabilities [3]. The integration of clustering and
projection into a single framework has been a recent focus in this field, recognizing the
need to combine these two approaches [13,14].

The LDA model [12] has been proposed to solve these shortcomings, and this model
has proved to be an efficient and scalable data processing method [15,16].

The main issue with current text analysis models is their failure to clearly define a
probability model encompassing hidden variables and assumptions [11,17–19]. To address
this, variational Expectation Maximization (EM) has been utilized, notably in Multinomial
PCA (MPCA), which links topics to latent mixture proportions in a probabilistic matrix
factorization framework [19,20]. Extensions of LDA, like its hierarchical [21] and online
versions [22], have been developed, although they lack the integration of Dirichlet priors
in modeling. Researchers have explored alternative models using conjugate priors and
methods, like Gibbs sampling and Markov Chain Monte Carlo (MCMC) methods [23],
which, despite their effectiveness, require longer convergence times compared to the
variational Bayes approach.

In this paper, we introduce two novel models, GDMPCA and BLMPCA, that sig-
nificantly improve text classification and sentiment analysis by combining generalized
Dirichlet (GD) and Beta-Liouville (BL) distributions for a more in-depth understanding of
text data complexities [16,24,25]. Both models employ variational Bayesian inference and
collapsed Gibbs sampling for efficient and scalable computational performances, which is
critical for handling large datasets.

The generalized Dirichlet (GD) distribution, introduced in [26], exhibits a more flexible
covariance structure than its Dirichlet counterpart. Similarly, the Beta-Liouville (BL) distri-
bution, enriched with additional parameters, offers improved adjustments for data spread
and modeling efficiency. Our contribution was validated through a rigorous empirical
evaluation on real-world datasets, which demonstrated our models’ superior accuracy and
adaptability. This work represents a significant step forward in text analysis methodolo-
gies, bridging theoretical innovation with practical application, with experimental results
demonstrating the relationships between these models.

The structure of the rest of this paper is as follows. In Section 2, we cover the related
work. Section 3 introduces the extension of MPCA with generalized Dirichlet and Beta-
Liouville distributions with all the details about the parameters estimation. Section 4 is
devoted to the discussion of the experimental results. Finally, we conclude our work in
Section 6.

2. Related Work

In this section, we delve into the vast array of the literature on topic modeling
approaches. The foundation of this field is built upon traditional topic modeling tech-
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niques [10,11], with significant contributions from topic-class modeling [27–29] and the
nuanced exploration of global and local document features [30,31].

Innovative strides have been made with the introduction of a two-stage topic extraction
model for bibliometric data analysis, employing word embeddings and clustering for a
more refined topic analysis [32]. This approach provides a nuanced lens with which to
view the thematic undercurrents of scholarly communication.

The landscape of sentiment analysis is similarly evolving, with breakthroughs like
a term-weighted neural language model paired with a stacked bidirectional LSTM (long
short-term memory) framework, enhancing the detection of subtle sentiments like sarcasm
in text [33]. Such advancements offer deeper insights into the complexities of language and
its sentiments.

Cross-modal sentiment analysis also takes center stage with deep learning techniques,
as seen in works that identify emotions from facial expressions [34]. These studies, which
utilize convolutional neural networks and Inception-V3 transfer learning [35], pave the
way for multimodal sentiment analysis, potentially influencing strategies for textual senti-
ment analysis.

A hybrid deep learning method has been introduced for analyzing sentiment polarities
and knowledge graph representations, particularly focusing on health-related social media
data, like tweets on monkeypox [36]. This underscores the importance of versatile and
dynamic models in interpreting sentiment from real-time data streams.

Collectively, these contemporary works highlight the expansive applicability and
dynamic nature of deep learning across various domains and data types. Their inclusion in
our review underlines the potential for future cross-disciplinary research, expanding the
scope of sentiment analysis to include both text and image data.

Alongside these emerging approaches, well-established techniques such as principal
component analysis (PCA) and its text retrieval counterpart, latent semantic indexing [37],
continue to be pivotal. Probabilistic latent semantic indexing (pLSI) [11] and latent Dirichlet
allocation (LDA) [12] further enrich the discussion on discrete data and topic modeling.
Non-negative matrix factorization (NMF) [17] has also demonstrated effectiveness, em-
phasizing the need for models that can simultaneously handle clustering and projection.
In addressing a gap in the literature, a multinomial PCA model has been proposed to
offer probabilistic interpretations of the relationships between documents, clusters, and
factors [19].

Our focus on the MPCA model and its extensions aims to consolidate these dis-
parate strands of research, presenting a comprehensive framework for topic modeling that
accounts for both clustering and projection, reflecting the ongoing dialogue within the
research community on these topics.

2.1. Multinomial PCA

Probabilistic approaches to reducing dimensions generally hypothesize that each
observation xi corresponds to a hidden variable, referred to as a latent variable θi. This
latent variable exists within a subspace of dimension K. Typically, the relationship involves
a linear mapping (β) within the latent space coupled with a probabilistic mechanism.

In the probabilistic PCA (pPCA) framework, as detailed in the work in [38], it is posited
that each observation xi originates from a standard Gaussian distribution NK(0K; ZK).
The assumption of a Gaussian distribution is also employed for the conditional distribution
of the observations:

xi|θi ∼ Nv(βθi + µ, σ2ZV) (1)

where Z is a “standard” normal distribution, (β, µ) are the model parameters, and σ2 is the
variance that is learned using maximum likelihood inference.

The Gaussian assumption is suitable for real-valued data, yet it is less applicable
to non-negative count data. Addressing this, [19] introduced a variant of pPCA where
the latent variables are modeled as a discrete probability distribution, specifically using a
Dirichlet distribution, where as m ∼ Dir(α),
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D(m; α) =
1

Z(α)

K

∏
k=1

mαk−1
k (m) (2)

where α = (α1, . . . , αk) ≥ 0.
Then, the probabilistic function is assumed to be multinomial:

m ∼ Dirichlet(α)

C ∼ Multinomial(m, L),

wk ∼ Multinomial(Ωk, ck)

(3)

The variables m and w are assumed to be hidden parameters for each document. For
the parameter estimation of MPCA, first, the variable Ω is estimated using the Dirichlet
prior on m using parameters α [19]. The likelihood model for the MPCA is given as
follows [20]:

p(m, w|α, Ω) =
Γ(∑k αk)

∏k Γ(αk)
CL

w1,1,w1,2 ...,wk,1,w1,J ...wK,J ∏
K

mak−1
K ∏

k,j
m

wk,j
k Ω

wk,j
k,j (4)

In the MPCA model, it is assumed that each observation xi can be broken down into
a probabilistic mixture of K topics that represent the whole corpus. Then, m indicates the
observation with mixture weights in the latent space, and Ω is a global parameter that
encapsulates all the information at the corpus level.

As a result, the following equation is derived when the hidden variables have a
Dirichlet prior [19]:

m ∼ Dirichlet(α)

Ωk ∼ Dirichlet(2 f )
(5)

The following updated formula converges to the local maximum log p(Ω, αm|r), where
Γ(∑k αk)
∏k Γ(αk)

is a normalizing constant for the Dirichlet, and r is the total row-wise number of
words in the document representation with the k component [19]:

γj,k,[i] =
Γ(∑k αk)

∏k Γ(αk)

1
Ωk,jmk,[i]

(6)

mk,[i] =
Γ(∑k αk)

∏k Γ(αk)

(
ak − 1 + ∑

j
rj,[i]γj,k,[i]

)
(7)

Equations (8) and (9) are the parameters for a multinomial and a Dirichlet, respectively.

Ωk,j =
Γ(∑k αk)

∏k Γ(αk)

(
2 f + ∑

i
rj,[i]γj,k,[i]

)
(8)

Ψ0(ak)− Ψ0(∑
k

ak) =
log(1/k) + ∑i log(mk,[i])

1 + I
(9)

According to the exponential family definition (Appendix A), Equation (9) rewrites α
in terms of its dual representation. Minka’s approach is used to derive α, where nk is the
number of times that the outcome was k [39]:

nk = ∑
i

δ(xi − k)

ni = ∑
k

nik
(10)
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αnew
k = ak

∑i Ψ(nik + ak)− Ψ(ak)

∑i Ψ(nik + ∑k ak)− Ψ(∑k ak)
(11)

Connection between MPCA and LDA

The multinomial PCA model is closely connected to LDA [12] and forms the founda-
tion over several topic models.

In text analysis, an observation typically refers to a document represented by a se-
quence of tokens or words, denoted as wi = win, where n = 1 . . . Li. Each word win within
a document i is initially linked to a topic, which is specified by a vector zin that is de-
rived from a Multinomial(1, βk) distribution. The model for any given document i can be
described as follows:

θk ∼ Dirichlet(α)

zin|θi ∼ Multinomial(1, θi)

win|zink ∼ Multinomial(1, βk)

(12)

At the word level, marginalizing on zin yields a distribution similar to Equation (3):

win|θi ∼ Multinomial(1, βθi) (13)

Furthermore, the distinction between LDA and MPCA is that LDA is a word-level
model, whereas MPCA is a document-level model. Since GDMPCA and BLMPCA are new
variations of MPCA, both new models are assumed to be document-level in the following
proposed approaches.

3. Proposed Models

In this section, we present two pioneering models, generalized Dirichlet Multinomial
Principal Component Analysis (GDMPCA) and Beta-Liouville Multinomial Principal Com-
ponent Analysis (BLMPCA), which were designed to revolutionize text classification and
sentiment analysis. At the core of our approaches is the integration of generalized Dirichlet
and Beta-Liouville distributions, respectively, into the PCA framework. This integration is
pivotal, as it allows for a more nuanced representation of text data, capturing the inherent
sparsity and thematic structures more effectively than traditional methods.

The GDMPCA model leverages the flexibility of the generalized Dirichlet distribution
to model the variability and co-occurrence of terms within documents, enhancing the
model’s ability to discern subtle thematic differences. On the other hand, the BLMPCA
model utilizes the Beta-Liouville distribution to precisely capture the polytopic nature of
texts, facilitating a deeper understanding of sentiment and thematic distributions. Both
models employ variational Bayesian inference, offering a robust mathematical framework
that significantly improves computational efficiency and scalability. This approach not
only aids in handling large datasets with ease but also ensures that the models remain
computationally viable without sacrificing accuracy.

To elucidate the architecture of our proposed models, we delve into the algorithmic
underpinnings, detailing the iterative processes that underlie the variational Bayesian
inference technique. This includes a comprehensive discussion of the optimization strate-
gies employed to enhance convergence rates and ensure the stability of the models across
varied datasets. Moreover, we provide a comparative analysis, drawing parallels and
highlighting distinctions between our models and existing text analysis methodologies.
This comparison underscores the superior performances of GDMPCA and BLMPCA in
terms of accuracy, adaptability, and computational efficiency, as evidenced by an extensive
empirical evaluation on diverse real-world datasets.

Our exposition on the practical implications of these models reveals their broad
applicability across numerous domains, from automated content categorization to nuanced
sentiment analysis in social media texts. The innovative aspects of the GDMPCA and
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BLMPCA models, coupled with their empirical validation, underscore their potential to set
a new standard in text analysis, offering researchers and practitioners alike powerful tools
for uncovering insights from textual data.

Table 1 summarizes the relevant variables for the proposed models.

Table 1. Parameters of generalized Dirichlet and Beta-Liouville distributions.

Parameter Generalized Dirichlet (GDMPCA) Beta-Liouville (BLMPCA)

ξ Parameters of GD distribution Not applicable
Υ Not applicable Parameters of BL distribution
m Mixture weights (GD) Mixture weights (BL)
z Topic assignments Topic assignments
w Words in documents Words in documents
Ω Multinomial parameters (words) Multinomial parameters (words)
L Number of words per document Number of words per document
C, Ωk , ck Multinomial parameters for topics Multinomial parameters for topics

3.1. Generalized Dirichlet Multinomial PCA

Bouguila [40] demonstrated that when mixture models are used, the generalized
Dirichlet (GD) distribution is a reasonable alternative to the Dirichlet distribution for
clustering count data.

As we mentioned previously, the GD distribution, like the Dirichlet distribution, is a
conjugate prior to the multinomial distribution. Furthermore, the GD has a more general
covariance matrix [40].

Therefore, the variational Bayes approach will be utilized to develop an extension
of the MPCA model incorporating the generalized Dirichlet assumption. GDMPCA is
anticipated to perform effectively because the Dirichlet distribution is a specific instance
of the GD [41]. Like MPCA, GDMPCA is a fully generative model applied to a cor-
pus. It considers a collection of M documents represented as the corpus, denoted by
D = {w1, w2, . . . , wM}. Each document wm consists of a sequence of Nm words, expressed
as wm = (wm1, . . . , wmNm). Words within a document are represented by binary vectors
from a vocabulary of V words, where if the j-th word is selected, wn

j = 1, and if not,
wn

j = 0 [42]. The GDMPCA model then describes the generation of each word in the
document through a series of steps involving c, a d + 1 dimensional binary vector of topics:

m ∼ GD(ξ)

z ∼ Multinomial(m, L)

wk ∼ Multinomial(Ωk, ck)

(14)

If the i-th topic is chosen, zn
i = 1, and in other cases, zn

i = 0. m = (m1, . . . , md+1) ,
where md+1 = 1 − ∑d

i=1 mi.
The multinomial probability p(wn | zn, Ωw) is conditioned on the variable zn. The dis-

tribution GD(ξ) is a d-variate generalized Dirichlet distribution characterized by the pa-
rameter set ξ = (a1, b1, . . . , ad, bd), with its probability distribution function denoted by p,
where γi = bi − ai+1 − bi+1 [42]:

p(m1, . . . , md|ξ) =
d

∏
i=1

Γ(al + bl)

Γ(al)Γ(bl)
mal−1

i (1 −
i

∑
j=1

mj)
γi (15)

The GD distribution simplifies to a Dirichlet distribution when bi = a(i+1) + b(i+1).
The mean and the variance matrix of the GD distribution are as follows [41]:

E(mi) =
al

al + bl

i−1

∏
k=1

bk
ak + bk

(16)

var(mi) = E(mi)

(
al + 1

al + bl + 1

i−1

∏
k=1

bk + 1
ak + bk

+ 1 − E(θi)

)
(17)
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and the covariance between mi and mj is given by

cov(mi, mj) = E(mj)

(
al

al + bl + 1

i−1

∏
k=1

bk + 1
ak + bk

+ 1 − E(mi)

)
(18)

The covariance matrix of the GD distribution offers greater flexibility compared to the
Dirichlet distribution, due to its more general structure. This additional complexity allows
for an extra set of parameters, providing d− 1 additional degrees of freedom, which enables
the GD distribution to more accurately model real-world data. Indeed, the GD distribution
fits count data better than the commonly used Dirichlet distribution [43]. The Dirichlet and
GD distributions are both members of the exponential family (Appendix A). Furthermore,
they are also conjugate priors to the multinomial distribution. As a result, we can use the
following method to learn the model.

The likelihood for the GDMPCA is given as follows:

p(m, w|ξ, Ω) =
Γ(ai + bi)

Γ(ai)Γ(bi)
zL

w1,1,w1,2 ...,wk,1,w1,J ...wK,J
mbk−1−1

k

k−1

∏
i=1

[
mai−1

i

( k

∑
j=1

mj
)bi−1+(ai+bi)]∏

k,j
m

wk,j
k Ω

wk,j
k,j

(19)

Hence, when hidden variables are assigned GD priors, and given a defined universe
of words, we use an empirical prior derived from the observed proportions of words in the
universe, denoted by f , where ∑k fk = 1. The equation, then, is structured as follows:

m ∼ GD(ξ)

Ωk ∼ GD(2 f )
(20)

where 2 shows the small size of the prior sample size.
First, we will calculate the parameters of GD utilizing the Hessian matrix as described

in Appendix B.1.2, following Equations (19) and (20). To find the optimal variational
parameters, we minimize the Kullback–Leibler (KL) divergence between the variational dis-
tribution and the posterior distributions p(m, w|Ω, ξ). This is achieved through a repetitive
fixed-point method. We specify the variational parameters as follows:

q(m, c|γ, Φ) = q(m|γ)
K

∏
k=1

q(ck|Φk) (21)

As an alternative to the posterior distribution p(m, c, w, ξ, Ω), we determine the varia-
tional parameters γ and Φ through a detailed optimization process outlined subsequently.
To simplify, Jensen’s inequality is applied to establish a lower bound on the log likelihood,
which allows us to disregard parameters γ and Φ [44]:

log p(w|ξ, Ω) = log
∫

∑
z

p(m, c, w|ξ, Ω)dm

= log
∫

∑
z

p(m, c, w|ξ, Ω)q(m, c)
q(m, c)

dm

≥
∫

∑
z

log p(m, c, w|ξ, Ω)q(m, c)dm

−
∫

∑
z

q(m, c) log q(m, c)dm

= E[log p(m, c, w|ξ, Ω)]− E[log q(m, c)]

(22)
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Consequently, Jensen’s inequality provides a lower bound on the log likelihood for
any given variational distribution q(m, c|γ, Φ).

If the right-hand side of Equation (22) is denoted as L(γ, Φ; ξ, Ω), the discrepancy
between the left and right sides of this equation represents the KL divergence between
the variational distribution and the true posterior probabilities. This re-establishes the
importance of the variational parameters, leading to the following expression:

log p(w|ξ, Ω) = L(γ, Φ; ξ, Ω) + D(q(m, c|γ, Φ))|p(m, c|x, ξ, Ω) (23)

As demonstrated in Equation (23), maximizing the lower bound L(γ, Φ; ξ, Ω) with
respect to γ and Φ is equivalent to minimizing the Kullback–Leibler (KL) divergence
between the variational posterior probability. By factorizing the variational distributions,
we can describe the lower bound as follows:

L(γ, Φ; ξ, Ω) = Eq[log p(m|ξ)] + Eq[log p(c|m)] + Eq[log p(w|c, Ω)]

− Eq[log q(m)]− Eq[log q(c)]
(24)

After that, we can extend Equation (A7) in terms of the model parameters (ξ, Ω) and
variational parameters (γ, Φ) (A13).

In order to find ϕnl , we proceed to maximize with the respect to ϕnl , so we have the
following equations:

L[mnl ] = mnl(Ψ(γl)− Ψ(γl + Φ)) + mnl log Ωw(lv) − mnl log mnl

+ λn(
d+1

∑
ll=1

mn(ll) − 1)
(25)

and therefore, we have

∂L
∂ϕnl

= (Ψ(γl)− Ψ(γl + Φ)) + log Ωlv − log ϕnl − 1 + λn (26)

Setting the above equation to zero leads to

mnl = Ωlve(λn−1)e(Ψ(γl)−Ψ(γl+Φ)) (27)

Next, we maximize Equation (A13) with respect to γi. The terms containing γi are

L[ξq] =
d

∑
l=1

[al(Ψ(γl)− Ψ(γl + Φ)) + (Ψ(γl)−

Ψ(γl + Φ))(bl − al+1 − bl+1)]

+
N

∑
n=1

mnl(Ψ(γl)− Ψ(γl + Φ) +
N

∑
n=1

mn(d+1)(Ψ(γd)− Ψ(γd + Φd))

−
d

∑
l=1

(log Γ(γl + Φl)− log Γ(γl)− log Γ(Φl))

+
d

∑
l=1

(Ψ(γl)− γl(Ψ(γl + Φl))

+ (Ψ(Φ)− Ψ(Φ + γl))(Φ − γl+1 − Φl+1)))

(28)

Setting the derivative of the above equation to zero leads to the following updated parameters:

γl = al +
N

∑
n=1

mnl (29)
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Φl = bl +
N

∑
n=1

d+1

∑
l=l+1

mn(l) (30)

The challenge of deriving empirical Bayes estimates for the model parameters ξ and
Ω is tackled by utilizing the variational lower bound as a substitute for the marginal log
probability, using variational parameters γ and Φ. The empirical Bayes estimates are
then determined by maximizing this lower bound in relation to the model parameters.
Until now, our discussion has centered on the log probability for a single document; the
overall variational lower bound is computed as the sum of the individual lower bounds
from each document. In the M-step, this bound is maximized with respect to model
parameters ξ and Ω. Consequently, the entire process is akin to performing a coordinate
ascent as outlined in Equation (31). We formulate the update equation for estimating Ω
by isolating terms and incorporating Lagrange multipliers to maximize the bound with
respect to Ω:

L[Ω] =
M

∑
d=1

Ns

∑
n=1

K+1

∑
l=1

V

∑
j=1

mdnlw
j
dn log Ω(l j) +

K+1

∑
l=1

λl
( V

∑
j=1

Ωw(ij)
)

(31)

To derive the update equation for Ω(l j), we take the derivative of the variational lower
bound with respect to Ω(l j) and set this derivative to zero. This step ensures that we find
the point where the lower bound is maximized with respect to the parameter Ω(l j).

Ω(l j) ∝
M

∑
d=1

Nd

∑
n=1

mdnlw
j
dn (32)

The updates mentioned lead to convergence at a local maximum of the lower bound of
log p(Ω, ξ|r), which is optimal for all product approximations of the form q(m)q(w) for the
joint probability p(m, w|Ω, ξ, r). This approach ensures that the variational parameters are
adjusted to optimally approximate the true posterior distributions within the constraints of
the model.

Φl =
Γ(ai + bi)

Γ(ai)Γ(bi)
mnl(Ψ(γl)− Ψ(γl + Φ)) (33)

γl = al +
N

∑
n=1

mnl (34)

Ω(l j) =
Γ(ai + bi)

Γ(ai)Γ(bi)
(2 f j

M

∑
d=1

Nd

∑
n=1

mdnlw
j
dn) (35)

Collapsed Gibbs Sampling Method

Utilizing the fundamental procedure of the GD distribution as delineated in the
all-encompassing generative formula p(c, z, θ, φ, w|, Ω, ξ, µ) within our innovative method-
ology, we can express it in the following manner:

p(c, z, θ, φ, w|, Ω, ξ, µ) = p(w|µ)p(θ|Ω)p(φ|ξ)×
N

∏
n=1

p(zn|θ)p(xn|znn, φ) (36)

Here, p(θ|Ω) signifies the GD document prior distribution, where Ω = (a1, b1, . . . , an, bn)
serves as a hyperparameter. Simultaneously, p(φ|ξ), with ξ = (α1, β1, . . . , αd, βd) as its
hyperparameters, represents the GD corpus prior distribution. The process of Bayesian
inference seeks to approximate the posterior distribution of hidden variables z by integrating
out parameters, which can be mathematically depicted as follows:

p(c, z|w, Ω, ξ) = W
∫

θ

∫
φ

p(c, z, θ, φ, |Ω, ξ)dφdθ (37)
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Crucially, the joint distribution is expressed as a product of Gamma functions, as high-
lighted in prior research [12,45,46]. This expression facilitates the determination of the
expectation value for the accurate posterior distribution:

p(zij = k|c, w, Ω, ξ) = Ep(z−ij |w,c,Ω,ξ)[p(zij = k|z−ij, c, w, Ω, ξ)] (38)

Employing the GD prior results in the posterior calculation as outlined below:

p(zij = k|z−ij, c, w, Ω, ξ) ∝
[ (N−ij

jk + αwk)(βwk + ∑K+1
l=k+1 N−ij

jl )

(αwkβwk + ∑K+1
l=k+1 N−ij

jl )

]

×
[ (N−ij

kvij
+ av)(bv + ∑V+1

d=v N−ij
kdij

)

av + bv + ∑V+1
d=v N−ij

kdij
)

]
= A(K)

(39)

This leads to a posterior probability normalization as follows:

p(zij = k|z−ij, x, Ω, ξ) =
A(k)

∑K
k′=1 A(k′)

(40)

The sequence from Equation (38) to Equation (40) delineates the complete collapsed
Gibbs sampling procedure, encapsulated as follows:

p(zij = k|c, w, Ω, ξ) = Ep(z−ij |w,c,Ω,ξ)

[
A(k)

∑K
k′=1 A(k′)

]
(41)

The implementation of collapsed Gibbs sampling in our GD-centric model facilitates
sampling directly from the actual posterior distribution p, as indicated in Equation (41).
This sampling technique is deemed more accurate than those employed in variational
inference models, which typically approximate the distribution from which samples are
drawn [46,47]. Hence, our model’s precision is ostensibly superior.

Upon the completion of the sampling phase, parameter estimation is conducted using
the methodologies discussed.

3.2. Beta-Liouville Multinomial PCA

For the Beta-Liouville Multinomial PCA (BLMPCA) model, we define a corpus as
a collection of documents with the same assumption described in the GDMPCA section.
Hence, we have the following procedure for the model for every single word of the docu-
ment. The BLMPCA model proceeds with generating every single word of the document
with the following steps, where c is a d + 1-dimensional binary vector of topics defined:

m ∼ BL(Υ)

z ∼ Multinomial(m, L),

wk ∼ Multinomial(Ωk, ck)

(42)

In the model described, each topic is represented by a binary variable, where zn
i = 1

indicates that the i-th topic is chosen for the n-th word, and zn
i = 0 indicates it is not chosen.

The vector zn is a (D + 1)-dimensional binary vector representing the topic assignments
across all D + 1 topics for a given word. The vector m is defined as m = (m1, m2, . . . , mD+1),
where mD+1 = 1 − ∑D

i=1 mi captures the distribution of topic proportions across the docu-
ment, ensuring that the sum of proportions across all topics equals 1.

A chosen topic is associated with a multinomial prior w over the vocabulary, where
Ωwij = p(wj = 1|zi = 1) describes the probability of the j-th word being selected given
that the i-th topic is chosen. This formulation allows for each word in the document to be
drawn randomly from the vocabulary conditioned on the assigned topic.
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The probability p(wn|zn, Ωw) is a multinomial probability that conditions on the topic
assignments zn and the topic-word distributions Ωw, effectively modeling the likelihood of
each word in the document given the topic assignments.

Additionally, BL(Υ) represents a d-variate Beta-Liouville distribution with param-
eters Υ = (α1, ..., αD, α, β). The probability distribution function of this Beta-Liouville
distribution encapsulates the prior beliefs about the distribution of topics across docu-
ments, accommodating complex dependencies among topics and allowing for flexibility in
modeling topic prevalence and co-occurrence within the corpus.

P(θ1, . . . , θD|Υ) =
Γ(∑D

d=1 αd)Γ(α + β)

Γ(α)Γ(β)

D

∏
d=1

θ
αd−1
d

Γ(αd)
×

( D

∑
d=1

θd

)α−∑D
l=1 αl

×
(

1 −
D

∑
l=1

θl

)β−1
(43)

A Dirichlet distribution is the special case of BL if βd = αd+1 + βd+1 [42,45]. The mean,
the variance, and the covariance in the case of a BL distribution are as follows [45]:

E(θd) =
α

α + β

αd

∑D
d=1 αd

(44)

var(θd) = (
α

α + β
)2 αd(αd + 1)
(∑D

m=1 αm)(∑D
m=1 αm + 1)

− E(θd)
2 α2

d

(∑D
m=1 αm)2

(45)

and the covariance between θl and θk is given by

Cov(θl , θk) =
αlαk

∑D
d=1 αd

( (α+1)(α)
(α+β+1)(α+β)

∑D
d=1 αd + 1

−
α

α+β

∑D
d=1 αd

)
(46)

The earlier equation illustrates that the covariance matrix of the Beta-Liouville distribu-
tion offers a broader scope compared to the covariance matrix of the Dirichlet distribution.
For the parameter estimation of BLMPCA, first, the parameter Ω is estimated using the
Beta-Liouville prior on m using parameter Υ [19]. The likelihood model for the BLMPCA is
given as follows:

p(m, w|Υ, Ω) =
Γ(α)Γ(β)

Γ(∑D
d=1 αd)Γ(α + β)

zL
w1,1,w1,2 ...,wk,1,w1,J ...wK,J

[ 1
Γ(αd)

mαd−1
k +

∑
k

mα−∑d αd
k + (1 − ∑

k
mk)

β−1]∏
k,j

m
wk,j
k Ω

wk,j
k,j

(47)

For the Beta-Liouville priors, we have the following:

m ∼ BL(Υ)

Ωk ∼ BL(2 f )
(48)

In the following step, we will estimate the parameters for Ω using the Beta-Liouville
prior and the Hessian matrix (Appendix C). As we explained in the previous Section 3.1,
we should estimate the model parameters (Υ, Ω) and the variational parameters (γ, Φ)
according to Equations (21), (22) and (A7) to find mnl , and we proceed to maximize with
respect to mnl ; so, we have the following equations:
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L(γ, Φ; Υ, Ω) = log(Γ(
D

∑
d=1

αd)) + log(Γ(α + β))− log(Γ(α))

− log(Γ(β))−
D

∑
d=1

log Γ(αd) +
D

∑
d=1

αd(Ψ(γd)− Ψ(
D

∑
l=1

γl)

+ α(Ψ(αγ)− Ψ(αγ + βγ)) + β(Ψ(βγ)

− Ψ(αγ + βγ)) + β(Ψ(βγ)− Ψ(αγ + βγ))

+
N

∑
n=1

D

∑
d=1

mnd(Ψ(γd)− Ψ(
D

∑
l=1

γl) + Ψ(αγ)− Ψ(αγ + βγ))

+
N

∑
n=1

mn(D+1)(Ψ(βγ)− Ψ(αγ + βγ))

+
N

∑
n=1

D+1

∑
l=1

V

∑
j=1

mnlw
j
n log(Ωl j)

−
(

log(Γ(
D

∑
l=1

αl)) + log(Γ(α + β))− log Γ(α)− log Γ(β)

−
D

∑
i=1

log Γ(αi)

+
D

∑
i=1

αi(Ψ(γmi)− Ψ(
D

∑
l=1

γm(l))) + α(Ψ(αmγ)

− Ψ(αmγβmγ)) + β(Ψ(βmγ)− Ψ(αmγ + βmγ))
)

−
( N

∑
n=1

D+1

∑
l=1

mnl log(mnl)
)

(49)

To find mnl , we proceed to maximize with respect to ϕnl :

L[mnl ] = mnl(Ψ(γi)− Ψ(
D

∑
l=1

γl)) + mnl log βw(iv) − mnl log(mnl)

+ λn(
D

∑
l=1

mnl − 1)

(50)

Therefore, we have

∂L
∂ϕnl

= (Ψ(γd)− Ψ(
D

∑
l=1

γl)) + log βw(iv) − log ϕnl − 1 + λn (51)

The next step is to optimize Equation (49) to find the update equations for the
variational; we separate the terms containing the variational Beta-Liouville parameters
once more.
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L[ξq] = αd(Ψ(γd))− Ψ(
D

∑
l=1

γl) + α(Ψ(αγ)− Ψ(αγ

+ βγ)) + β(Ψ(αγ)− Ψ(αγ + βγ))

+
N

∑
n=1

ϕn(Ψ(γl)− Ψ(
D

∑
l=1

γl) + Ψ(αγ)− Ψ(αγ + βγ))

+
N

∑
n=1

ϕn(D+1)(Ψ(βγ)− Ψ(αγ + βγ))

− (log(Γ(
D

∑
l=1

γl)) + log(γ(αγ + βγ)− log(Γ(αγ))

− log(Γ(βγ))− log(Γ(γl))

+ γl(Ψ(γl) + Ψ(αγ)− Ψ(αγ + βγ))− Ψ(
D

∑
l=1

γl)

+ αγ(Ψ(αγ)− Ψ(αγ + βγ))

+ βγ(Ψ(βγ)− Ψ(αγ + βγ)))

(52)

Selecting the terms containing variational Beta-Liouville variables γi, αγ, and βγ,
we have

L(γi) = αi(Ψ(γi))− (
D

∑
l=1

αl)(Ψ(
D

∑
l=1

γl)) +
N

∑
n=1

ϕni(Ψ(γi)− Ψ(
D

∑
l=1

γl))

− (log Γ(
D

∑
l=1

)− log Γ(γi) + γi(Ψ(
D

∑
l=1

γl)
D

∑
d=1

γd)

(53)

and

L[αγ] = α(Ψ(αγ)− Ψ(αγ + βγ)) + β(−Ψ(αγ + βγ))

+ (Ψ(αγ)− Ψ(αγ + βγ))
N

∑
n=1

D

∑
i=1

ϕni

N

∑
n=1

ϕn(D+1)(−Ψ(αγ + βγ))

− (log(αγ + βγ)− log(Γ(αγ)) + αγ(Ψ(αγ)− Ψ(αγ + βγ))

+ βγ(−Ψ(αγ + βγ)))

(54)

Setting Equations (52)–(54) to zero, we have the following update parameters:

γi = α +
N

∑
n=1

ϕni (55)

αγ = α +
N

∑
n=1

D

∑
d=1

ϕnd (56)

βγ = β +
N

∑
n=1

ϕn(D+1) (57)

We address the challenge of deriving empirical Bayes estimates for the model parame-
ters Υ and Ω by utilizing the variational lower bound as a substitute for the marginal log
likelihood. This approach fixes the variational parameters γ and Φ at values determined
through variational inference. We then optimize this lower bound to obtain the empirical
Bayes estimates of the model parameters.

To estimate Ωw, we formulate necessary update equations. The process of maximizing
Equation (52) with respect to Ω results in the following equation:
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L[Ωw] =
M

∑
d=1

Ns

∑
n=1

D+1

∑
l=1

V

∑
j=1

ϕdnlw
j
dn log(Ωw(l j)) +

D+1

∑
l=1

λl(
V

∑
j=1

Ωw(l j) − 1) (58)

Taking the derivatives with the respect to βw(l j) and setting it to zero yields in
Appendix C.1:

Ωw(l j) ∝
M

∑
d=1

Nd

∑
n=1

mdnlw
j
dn (59)

Beta-Liouville Parameter

The objective of this subsection is to determine the estimates of the model’s parameters
using variational inference techniques [48].

L[ξ] =
M

∑
m=1

(log(Γ(
D

∑
l=1

αl)) + log(Γ(α + β))− log Γ(α)− log Γ(β)

−
D

∑
i=1

log Γ(αi) +
D

∑
i=1

αi(Ψ(γmi)− Ψ(
D

∑
l=1

γm(l)))

+ α(Ψ(αmγ)− Ψ(αmγβmγ)) + β(Ψ(βmγ)− Ψ(αmγ + βmγ)))

(60)

The derivative of the above equation with respect to the BL parameter is given by

∂L[ξ]
∂αl

= M(Ψ(
D

∑
l=1

)− Ψ(αl)) +
M

∑
m=1

(Ψ
′
(γml)− Ψ(

D

∑
l=1

γm(l)))

∂L[ξ]
∂α

= M[Ψ(α + β)− Ψ(α)] +
M

∑
m=1

(Ψ(αmγ)− Ψ(αmγ + βmγ))

∂L[ξ]
∂β

= M[Ψ(α + β)− Ψ(β)] +
M

∑
m=1

(Ψ(βmγ)− Ψ(αmγ + βmγ))

(61)

From the equations presented earlier, it is evident that the derivative in Equation (52)
with respect to each of the BL parameters is influenced not only by their individual values
but also by their interactions with one another. Consequently, we utilize the Newton–
Raphson method to address this optimization problem. To implement the Newton–Raphson
method effectively, it is essential to first calculate the Hessian matrix for the parameter
space, as illustrated below [49]:

∂2L[ξ]
∂αlαj

= M(−δ(i, j)Ψ
′
(αi) + Ψ

′
(

D

∑
l=1

αl))

∂2L[ξ]
∂α2 = M(Ψ

′
(α + β)− Ψ

′
(α))

∂2L[ξ]
∂α∂β

= MΨ
′
(α + β)

∂2L[ξ]
∂β2 = M(Ψ

′
(α + β)− Ψ

′
(β))

(62)

The Hessian matrix shown above is very similar to the Hessian matrix of the Dirichlet
parameters in the MPCA model and generalized Dirichlet parameters in GDMPCA. In fact,
the above matrix can be divided into two completely separate matrices using parameters
αd, α, and β. Each of the two parts’ parameter derivation will be identical to the Newton–
Raphson model provided by MPCA and GDMPCA.
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3.3. Inference via Collapsed Gibbs Sampling

The collapsed Gibbs sampler (CGS) contributes to the inference by estimating posterior
distributions through a Bayesian network of conditional probabilities, which are deter-
mined through a sampling process of hidden variables. Compared to the traditional Gibbs
sampler that functions in the combined space of latent variables and model parameters,
the CGS offers significantly faster estimation times. The CGS operates within the collapsed
space of latent variables, where, in the joint distribution p(X, z, θ, ϕ, w|Ω, Υ, µ), the model
parameters θ and ϕ are marginalized out. This marginalization leads to the marginal joint
distribution p(X, z, w|Ω, Υ, µ), which is defined as follows:

p(x, z, w|Ω, Υ) = W
∫

θ

∫
φ

p(X, z, θ, φ, w|Ω, ξ)dφdθ (63)

In using Equation (63), the method calculates the conditional probabilities of the latent
variables zij by considering the current state of all other variables while excluding the
specific variable zij itself [50]. Meanwhile, the collapsed Gibbs sampler (CGS) determines
the topic assignments for the observed words by employing the conditional probability of
the latent variables, where “−ij” indicates counts or variables with zij excluded [50]. This
specific conditional probability is defined as follows [51]:

p(zij = k|z−ij, X, w, Ω, Υ) =
p(zij, z−ij, X, w|Ω, Υ)

p(z−ij, X, w|Ω, Υ)
(64)

The sampling mechanism of the collapsed Gibbs approach can be summarized as an
expectation problem:

p(zij = k|X, w, Ω, Υ) = Ep(z−ij |w,X,Ω,Υ)[p(zij = k|z−ij, X, w, Ω, Υ)] (65)

The collapsed Gibbs sampling Beta-Liouville multinomial procedure consists of two
phases for assigning documents to clusters. First, each document is assigned a random
cluster for initialization. After that, each document is assigned a cluster based on the
Beta-Liouville distribution after a specified number of iterations.

The goal is to use a network of conditional probabilities for individual classes to
sample the latent variables from the joint distribution p(X, z|w, Ω, Υ). The assumption of
conjugacy allows the integral in Equation (63) to be estimated.

p(X, z|w, υ) = C
M

∏
j=1

[
Γ(∑k

i=1 αi)Γ(α + β)

∏k
i=1 Γ(αi)Γ(α)Γ(β)

]
× ∏k

i=1 Γ(α
′
i)Γ(α

′
)Γ(β

′
)

Γ(α′ + β
′)Γ(∑K

i=1 α
′
i)

(66)

The likelihood of the multinomial distribution, defined by the parameter Υ, and the
probability density function of the Beta-Liouville distribution can be expressed as follows:

p(X|Υ) =
∫

p(X|θ)p(θ|α1, . . . , β, α)dθ

=
∫ k

∏
k=1

θ
mk
k

Γ(∑k
k=1 αk)Γ(α + β)

Γ(α)Γ(β)

K

∏
k=1

θ
αk−1
k

Γ(αk)

× (
K

∑
k=1

θk)
α−∑ αk (1 −

K

∑
k=1

θk)
β−1dθ

(67)

By integrating the probability density function of the Beta-Liouville distribution
over the parameter θ and incorporating updated parameters derived from the remain-
ing integral in Equation (69), we are able to express it as a fraction of Gamma functions.
The following shows the updated parameters, where Njk represents counts corresponding to
variables [45,51]:
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α
′
K = αk +

k

∑
j=1

Njk

α
′
= α + Njk

β
′
= β + Njk

(68)

Equation (67) is then equivalent to

p(k|α1, . . . , αk, β, α) =
Γ(∑K

k=1 αk)Γ(α + β)Γ(α + ∑k−1
k=1 mk)Γ(β + mk)

Γ(α)Γ(β)∏K
k=1 Γ(αk)Γ(∑

K
k=1(αk + mk))

∏K
k=1 Γ(αk + mk)

Γ(α + ∑K−1
k=1 mk + β + mk)

(69)

The parameters α1, . . . , αk, α, and β correspond to the Beta-Liouville distribution, while
mk represents the number of documents in cluster k.

After the sampling process, parameter estimation is performed. Subsequently, the em-
pirical likelihood method [47] is utilized to validate the results using a held-out dataset. Ulti-
mately, this process leads to the estimation of the class conditional probability p(X|w, Ω, Υ)
within the framework of collapsed Gibbs sampling:

p(X|w, Ω, Υ) = ∏
ij

K

∑
k=1

1
S

S

∑
s=1

θ̃jks φ̃kws (70)

The parameters are then computed as follows:

θ̃jks =
(Njk + αk)(αjk + ∑K+1

l=k+1 Njl)(Njk + βk)

(akbk + ∑K+1
l=k+1 Njl)(αj + ∑K+1

l=k+1 Njl)
(71)

φ̃kws =
(Njk + αw)(αjw + ∑K+1

l=k+1 Njl)(Njk + βw)

(αwbw + ∑K+1
l=k+1 Njl)(αwj + ∑K+1

l=k+1 Njl)
(72)

where S is the size of a sample.

4. Experimental Results

In this section, we validate our proposed algorithms’ efficiency for two distinct and
challenging applications, namely, topic modeling for medical text and sentiment anal-
ysis. Each model’s evaluation is based on the success rate for each dataset and the
perplexity [3,9,52,53], which is a common measure used in language modeling and is
defined as:

prep(Dtest) = exp
(− ln p(Dtest)

∑d |wd|

)
(73)

where |wd| is the length of document d. A lower perplexity score indicates better general-
ization performance. In addition to the perplexity metric, the success rate is employed as a
key performance indicator to evaluate our models, reflecting the proportion of correctly
identified topics within a corpus in topic modeling. The success rate serves as a straightfor-
ward measure of a model’s efficacy, capturing its ability to accurately classify documents
into the correct topical categories, which is essential for effective information retrieval and
knowledge discovery in the domain of text analysis. The main goal of both applications
is to compare the GDMPCA, BLMPCA, and MPCA performances. The choice of these
datasets is pivotal to our research as they offer a broad spectrum of analytical scenarios,
from topic modeling for medical text to sentiment analysis, thus enabling a thorough
investigation into the models’ adaptability and accuracy. By encompassing datasets with
distinct characteristics, we are able to demonstrate the strengths of our proposed models in
varied contexts, highlighting their potential as a versatile tool in the field of text analysis.
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4.1. Topic Modeling

The goal of text classification is to assign documents to predefined subject categories,
a problem extensively researched with various approaches [42,54,55]. Topic modeling,
a common application in natural language processing, is used for analyzing texts from
diverse sources and for document clustering [56]. It identifies key “topics” in a text
corpus using unsupervised statistical methods, where topics are keyword mixtures with a
probability distribution, and documents are composed of topic mixtures [12]. The “CMU
Book Summary Dataset” was used to validate the model performance, containing plot
summaries and metadata for 16,559 books [57]. The models’ accuracy was tested by training
on various document numbers and observing the impact of latent topics on the classification
accuracy. Using variational Bayes inference, the models showed similar performances,
but BLMPCA excelled, particularly in classifying similar classes.

In Tables 2–4, we present the first three topics, the perplexity measurements, and
time complexity for all models compared in this study. The success rates obtained using
GDMPCA, BLMPCA, and MPCA are depicted in Figure 1. These examples demonstrate
that our proposed models, which incorporate Generalized Dirichlet and Beta-Liouville
distributions, yield more accurate classifications in scenarios where distinct classes ex-
hibit similarities, in contrast to the traditional MPCA which is a Dirichlet-based model.
Additionally, in Tables 5 and 6, we show the results for the collapsed Gibbs sampling.

Table 2. Common topics identified with the BLMPCA model on the CMU Book dataset, each defined
by a set of keywords.

Topic Number Topics

Topic 1 girl, tells, find, two, man, when, return, after, also, finds, time, kill, later, help, killed
Topic 2 he, one, back, man, time, house, father, police, story, mother, young, school, love, time, first
Topic 3 tells, they, return, find, girl, back, one, house,story , after, dragon, find, schools, boy, jack
Topic 4 earth, world, one, human, ship, book, planet, space, human, systems, time, years, in, people, would
Topic 5 war, novel, new, world, army, story, one, group, book, states, general, british, president, first, american

Table 3. A comparison of the perplexity of the MPCA, GDMPCA, and BLMPCA models, indicating
the model fit quality across different topic numbers (K) on the CMU Book dataset.

K 5 10 15 20

MPCA 1455 1422 1320 1215
GDMPCA 1326 1430 1190 1178
BLMPCA 1319 1203 1198 1177

Table 4. Time complexity comparison for MPCA, GDMPCA, and BLMPCA at varying topic levels (K)
on the CMU Book dataset.

K 5 10 15 20

MPCA 107.803 140.1439 150.9242 161.7045
GDMPCA 225.04 230.544 347.056 408.064
BLMPCA 251.64 327.132 352.296 377.46

Table 5. Comparison perplexity scores of MPCA, GDMPCA, and BLMPCA, reflecting the model fit
as the topic count (K) increases on the CMU Book dataset with CGS inference.

K 5 10 15 20

MPCA 1391.5 1448.6 1516 1580
GDMPCA 1291.2 1316 1428 1413
BLMPCA 1310.4 1324.8 1416 1483.2

Table 6. Time complexity comparison for MPCA, GDMPCA, and BLMPCA with increasing topics (K)
using CGS inference on the CMU Book dataset.

K 5 10 15 20

MPCA 431.212 536.57 634.69 687.818
GDMPCA 19125.2 1138.264 2429.392 2964.51
BLMPCA 1998.84 2289.924 3018.368 3497.14
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Figure 1. Success rate for CMU Book data.

4.2. Topic Modeling for Medical Text

Topic modeling plays a crucial role in navigating the complexities of health and
medical text mining, despite the inherent challenges of data volume and redundancy in
this domain. The study by Onan et al. [58] marked a significant advancement, presenting
an optimized topic modeling approach that utilizes ensemble pruning. This method
significantly improves the categorization of biomedical texts by enhancing precision and
managing the computational challenges posed by the extensive data typical of medical
documents. With vast amounts of health-related data, specialists struggle to find pertinent
information, exemplified by the millions of papers on PubMed and hospital discharge
records in the United States in 2015. This study utilized the TMVAr corpus from PubMed
and the TMVAr-Dataset containing health-related Twitter news to evaluate models [59–64].

TMVAr Dataset

The TMVar Corpus dataset, comprising 500 PubMed papers with manual annotations
of various mutation mentions, was utilized to evaluate our models. Tables 7 and 8 elucidate
the perplexity comparison and time complexity for the TMVAR dataset, offering insight
into the performances of our proposed methods. Moreover, Tables 9 and 10 present the
outcomes of the collapsed Gibbs sampling. As indicated in the tables, the time complexity
of this method is higher, yet the perplexity is lower.

Furthermore, as shown in Table 11, the BLMPCA model successfully extracts pertinent
topics, which is indicative of the model’s nuanced analytical capabilities. Figure 2 further
illustrates the success rate of our proposed models in comparison to the traditional MPCA,
highlighting the enhanced classification accuracy achieved by our methods.

Table 7. Comparison of the perplexity of the MPCA, GDMPCA, and BLMPCA models, indicating
the model fit quality across different topic numbers (K) on the TMVAR dataset with variation
EM inference.

K 5 10 15 20

MPCA 2115 2083 1984 1977
GDMPCA 1996 1989 1968 1959
BLMPCA 1983 1965 1954 1949

Table 8. Time complexity comparison for MPCA, GDMPCA, and BLMPCA with increasing topics (K)
using variation EM inference on the TMVAR dataset.

K 5 10 15 20

MPCA 9.53 22.543 26.092 28.458
GDMPCA 11.83 24.843 28.392 30.758
BLMPCA 18.57 38.997 44.568 48.282
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Table 9. Comparison of the perplexity of the MPCA, GDMPCA, and BLMPCA models, indicating the
model fit quality across different topic numbers (K) on the TMVAR dataset with CGS inference.

K 5 10 15 20

MPCA 2132.5 2232.8 2376.0 2460
GDMPCA 1360.9 1182.4 1345.6 1938
BLMPCA 1938.5 11350.5 1340.5 1440

Table 10. Time complexity comparison for MPCA, GDMPCA, and BLMPCA with increasing topics
(K) using CGS inference on the TMVAR dataset.

K 5 10 15 20

MPCA 45.74 62.89 108.20 200.63
GDMPCA 56.74 163.95 252.35 273.70
BLMPCA 165.57 336.93 376.45 392.71

Table 11. Common topics identified with the BLMPCA model in the TMVAR dataset, each defined
by a set of keywords.

Topic Number Topics

Topic 1 mutations, mutation, gene, family, patients, iron, exon, novel, autosomal, associated
Topic 2 gene, p, cancer, polymorphism, expression, patients, associated, deletion, study, region
Topic 3 gene, patients, dna mutation, polymorphism, detected, samples, family, study, results, dna
Topic 4 dna mutation, mutations, homozygous, variants, family, ct, position, methods, associated, substitution
Topic 5 gene, patients, protein mutation, dna, exon, study, genetic, cancer, substitution, genotype

Figure 2. Success rate for Tmvar corpus data.

4.3. Sentiment Analysis

Sentiment analysis, crucial for interpreting emotions in texts from various sources,
benefits from advanced methodologies beyond mere word analysis [65]. Recent studies,
such as [66,67], have demonstrated the effectiveness of deep learning and text mining in
capturing nuanced sentiment expressions. Additionally, the authors of [68] highlighted the
potential of ensemble classifiers in improving the sentiment classification accuracy. These
innovations showcase the shift toward more complex analyses that consider semantics,
context, and intensity for a more accurate sentiment understanding.

The “Multi-Domain Sentiment Dataset”, containing Amazon.com product reviews
across various domains, was used for analysis [69]. This dataset, with extensive reviews on
books and DVDs, provides data for basic analysis. The applied model, using K = 8 topics,
assumed that each topic comprises a bag of words with specific probabilities, and each
document is a mix of these topics. The model’s goal was to learn the distributions of words
and topics in the corpus.

We demonstrated that the overall sentiment of the dataset tends to be positive, in-
fluenced by the presence of high-frequency words with positive connotations within the
corpus. This observation is substantiated by the sentiment analysis framework we em-
ployed. Tables 12 and 13 provides a detailed explanation of the perplexity measures and
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time complexity tested for sentiment analysis. Furthermore, the findings from the topic
modeling of eight emotions and two sentiments are displayed in Tables 14 and 15. Figure 3
shows that our proposed models outperform the previous model. Figure 3 shows the
success rates for MPCA, GDMPCA, and BLMPCA on sentiment analysis, with GDMPCA
and BLMPCA outperforming MPCA as the number of emotions analyzed increases. This in-
dicates their better suitability for complex emotion detection tasks in practical applications.

Figure 3. Success rate for sentiment dataset.

Furthermore, Tables 16 and 17 present the results for the collapsed Gibbs sampling.
Additionally, Tables 18 and 19 display the accuracy and recall of various classifiers utilized
for emotion detection. Table 20 shows the F1-scores for various classifiers, indicating the bal-
anced harmonic mean of the precision and recall for SVM, Naive Bayes, and MLP classifiers
when applied with MPCA, GDMPCA, and BLMPCA models in sentiment analysis.

Table 12. Comparison of the perplexity of the MPCA, GDMPCA, and BLMPCA models, indicating the
model fit quality across different topic numbers (K) on sentiment data with variation EM inference.

K 2 3 5 8

MPCA 1551 1531 1542 1529
GDMPCA 1549 1539 1524 1521
BLMPCA 1448 1540 1531 1518

Table 13. Time complexity comparison for MPCA, GDMPCA, and BLMPCA with increasing topics
(K) using variational EM inference on the sentiment analysis application.

K 5 10 15 20

MPCA 130.54 169.702 182.756 195.81
GDMPCA 142.876 185.7388 200.0264 214.314
BLMPCA 158.23 205.699 221.522 237.345

Table 14. Frequency of emotions identified in text data via topic modeling.

Emotions Count

satisfied 78,901
angry 21,345
happy 6521
joy 82,345
disgust 7125
Perfect 45,459
Tearful 3451
sad 4387
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Table 15. The counts of positive, negative, and unlabeled sentiments identified through senti-
ment analysis.

Sentiment Count

Positive 213,232
Negative 36,308
Unlabeled 23,451

Table 16. Comparison of the perplexity of the MPCA, GDMPCA, and BLMPCA models, indicating
the model fit quality across different topic numbers (K) on sentiment data with CGS inference.

K 2 3 5 8

MPCA 1451 1511 1589 1639
GDMPCA 1332 1393 1422 1502
BLMPCA 1316 1401 1413 1498

Table 17. Time complexity comparison for MPCA, GDMPCA, and BLMPCA with increasing topics
(K) using CGS inference on the sentiment analysis application.

K 5 10 15 20

MPCA 830.54 1069.702 1282.756 1495.81
GDMPCA 924.451 1258.78 1319.46 1383.17
BLMPCA 1085.42 1264.24 1390.12 1473.623

Table 18. Accuracy comparisons for sentiment analysis classifiers

Classifier SVM NaiveBayes MLP

MPCA 0.62 0.68 0.67
GDMPCA 0.80 0.85 0.87
BLMPCA 0.83 0.88 0.88

Table 19. Recall metrics for SVM, Naive Bayes, and MLP classifiers using MPCA, GDMPCA, and
BLMPCA in sentiment analysis.

Classifier SVM NaiveBayes MLP

MPCA 0.61 0.59 0.66
GDMPCA 0.79 0.76 0.85
BLMPCA 0.85 0.82 0.89

Table 20. F1-score metrics for SVM, Naive Bayes, and MLP classifiers using MPCA, GDMPCA,
and BLMPCA in sentiment analysis.

Classifier SVM Naive Bayes MLP

MPCA 0.6195 0.6041 0.6697
GDMPCA 0.7999 0.7701 0.8593
BLMPCA 0.8593 0.8313 0.8999

5. Discussion

We delved into the comparative advantages of the GDMPCA and BLMPCA models
over existing methods in text classification and sentiment analysis. The superior perfor-
mances of our proposed models can be attributed to several key factors. Firstly, the in-
corporation of Generalized Dirichlet and Beta-Liouville distributions allows for a more
nuanced modeling of text data, which captures the intricacies of word distributions more
effectively than traditional methods. This results in a more accurate representation of
the underlying thematic structures in the data. For instance, in the CMU Book Summary
Dataset, the intricacies of literary themes were better represented, showcasing the models’
aptitude for multifaceted textual analysis. This was attributed to the models’ ability to
account for the co-occurrence and complex interrelationships of terms within documents,
a feature less emphasized in MPCA due to its assumption of component independence.

In the TMVAR Corpus from PubMed, the medical text presented a challenge due to its
specialized lexicon and the density of information. The BLMPCA model excelled by ex-
ploiting its additional parameters, optimizing data representation in this high-dimensional
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space, thus underscoring the importance of model selection aligned with dataset character-
istics. The sentiment analysis on the Multi-Domain Sentiment Dataset further emphasized
the adaptability of our models. Here, BLMPCA demonstrated its finesse in discerning
subtle sentiments from Amazon.com reviews, outperforming traditional approaches that
may not have captured the emotional granularity present in user-generated content.

However, the sophistication of GDMPCA and BLMPCA comes with greater com-
putational demands, as reflected in longer convergence times. This trade-off between
accuracy and computational efficiency underscores the necessity of careful model selection
in practice, considering the scale of the data and available computational resources. Al-
though our proposed models signify a leap forward in text analysis methodologies, they are
not without limitations. The reliance on variational inference and assumptions specific to
the models may not be universally applicable to all types of textual data, suggesting room
for future refinement and the exploration of alternative distributions or learning strategies.

The findings of this study illuminate the potential of integrating advanced probabilistic
distributions into PCA to uncover deeper insights within text data. It is a testament to the
evolution of statistical models in text analysis, pointing toward an exciting trajectory for
future research in the field. The ongoing dialogue within the academic community on these
topics is reflective of the dynamic nature of machine learning and its applications to natural
language processing. As we continue to push the boundaries, it is imperative to balance
innovation with practicality, ensuring that our models are not only theoretically robust but
also computationally viable and accessible for varied applications.

6. Conclusions

In this paper, two novel models, generalized Dirichlet Multinomial PCA and Beta-
Liouville Multinomial PCA, were proposed to improve the accuracy of the MPCA model
for multi-topic modeling and text classification. We followed a Bayesian analysis that
considers the generalized Dirichlet and Beta-Liouville assumptions. We demonstrated that
our two proposed models have more flexibility. The models were used in two separate
applications: text classification and sentiment analysis. The results show that the two
proposed models, in all applications, achieved superior performances, as represented by
the high prediction accuracy in comparison to that of the MPCA. It could be claimed
that the proposed models, using different prior assumptions, yield better results than the
standard methods. Specially, the BLMPCA provides the best improvement compared to
the GDMPCA and MPCA for all the tested data. Crucially, the employment of collapsed
Gibbs sampling for parameter inference was proven efficient and effective, despite its
time-consuming nature. This method substantially boosts our models’ computational
capabilities, allowing for the superior discovery of latent topics in text corpora and marking
a noteworthy advancement over the MPCA model. Future approaches for research will
concentrate on model modifications and improvements to achieve greater precision in topic
modeling. In addition, future works could be devoted to extending the proposed models
to other applications and significantly extending the proposed model to fit a variety of data
as well as real-time streaming data.
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Appendix A. Exponential Family Distribution

The following introduces the general exponential family of distributions:
We have a vector of T functions t(x) and d parameters θ for each individual sample

point, which is a vector of measurements x, both of dimension T and likely subject to some
additional constraints. The following is the likelihood q(x|θ) [70]:

q(x|θ) = 1
Yt(x)Zt(θ)

exp(t(x)∓θ) (A1)

Zt(θ) is modified to Z, or a distinguishing subscript is inserted. When y is distributed
as q(y|ϕ), the notation Eq(y|ϕ) is used to describe the expected value of quantity A. There
are two main concepts that must be given [71]:

µt ≡ Eq(y|ϕ){t(x)} =
∂ log Zt

∂θ
(A2)

Σt ≡ Eq(y|ϕ){(t(x)− µt)(t(x)− µt)
∓)} =

∂2 log Zt

∂θ∂θ
=

∂µt

∂θ

The mean vector µt shares the same dimensionality as θ, and the matrix Σt encapsulates
the covariance of t(x), as noted in [20]. Notably, µt serves as a counterpart to the parameter
set θ. Specifically, when µt is fully ranked, it functions as the Hessian for changes in the
basis. Moreover, µt represents the expected Fisher Information of the distribution. Both t
and Σt can be directly derived from Zt, indicating a unique relationship where µt acts as a
complementary parameter set to θ. In situations where µt possesses maximum rank, it is
instrumental in basis transformations and also signifies the intended Fisher Information for
the distribution.

We further detail the characteristics of the exponential family for the Dirichlet, general-
ized Dirichlet, and Beta-Liouville distributions in Table A1. Another essential feature of the
exponential family is the computation of the maximum a posteriori (MAP) estimates for
parameters, derived from a dataset consisting of I data points. This setup often reflects the
structure of a conjugate prior, facilitating the estimation process. One common approach
involves the use of an “effective” prior sample size, characterized by relevant statistics νt
and a prior sample size of St. This special method for calculating MAP for parameters
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within the exponential family provides an approximation for their dual aspects, as explored
in [20].

µ̂t =
νt + Σit(xi)

St + I
(A3)

Table A1. Exponential family characterizations for Dirichlet, GD and BL distributions.

MODEL Zt tk(x) θk µt,k

Dirichlet ∏k Γ(αk)
Γ(∑k αk)

log(x1), . . . , log(xk+1) αk Ψ0(αk)− Ψ(∑k(αk))

GD Γ(ai)Γ(bi)
Γ(ai+bi)

log(x1), . . . , log(1 − ∑D
t=1 xt) −

log(1 − ∑D−1
t=1 xt)

ak, bk

(
Ψ(ai) − Ψ(ai + bi) +

∑i−1
m=1(Ψ(bm) − Ψ(am +

bm)

)

BL Γ(∑D
d=1 αd)Γ(α+β)
Γ(α)Γ(β)

log(x1) − log(∑D
d=1 xd)

. . . log xD log(∑D
d=1 xd)

αk, α, β Ψ(α) − Ψ(α + β) +
Ψ(αd)− Ψ(∑d αd)

Appendix A.1. The Generalized Dirichlet Distribution Exponential Form

Since the GD distribution belongs to the exponential family of distributions, it can be
represented in general as follows:

P(θ|ξ) = Zt(θ)× exp[
2d

∑
l=1

Gl(θ)Tl(θ)] (A4)

where

Zt(θ) =
d

∏
l=1

Γ(αl + βl)

Γ(αl) + Γ(βl)

Gl(ξ) = αl , (l : 1, . . . , d)

Gl(ξ) = βl−d − αl−d+1 − βl−d+1, (l : d + 1, . . . 2d − 1)

Gl(ξ) = βl(l : 2d)

Tl(θ) = log(θl), (l : 1, . . . d)

Tl(θ) = log(1 −
d−1

∑
t=1

θt), (l : d + 1, . . . 2d)

(A5)

In the formulation provided, Z(θ) represents the normalization factor, G(θ) is the nat-
ural parameter, and T(θ) denotes the sufficient statistics of the distribution. It is established
that within the framework of the exponential family of distributions, the derivative of the
logarithm of the normalization factor Z(θ) with respect to the natural parameters G(θ) is
equal to the expected value of the sufficient statistics T(θ). This relationship underscores
the fundamental connection between these components in statistical modeling within the
exponential family. Therefore, we have

E[log(θl)] = ψ(αl + βl)− ψ(α − l)− ψ(βl), l = 1, . . . , d

E[log(1 −
l

∑
t=1

θt)] = ψ(βl)− ψ(αl + βl), l = 1, . . . , d
(A6)

Appendix B. Parameters for GDMPCA

In breaking down the L parameter for GDMPCA, we have the following.
By factorizing log p(w|ξ, Ω) ≥ Eq[(θ, z, w)|ξ, Ω]− Eq[log q(z, θ)], we have
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L(γ, Φ; ξ, Ω) = Eq[log p(m|ξ)] + Eq[log p(c|m)] + Eq[log p(w|c, Ω)]

− Eq[log q(m)]− Eq[log q(c)]
(A7)

In the following, we derive each of the five factors of the above equation:

Eq[log p(θ|ξ)] =
d

∑
l=1

[log Γ(αl + βl)− log Γ(αl)− log Γ(βl)]

+
d

∑
l=1

[αl(Ψ(γl)− Ψ(γl + δl))

+ (Ψ(δl)− Ψ(γl + δl))(βl − αl+1 − βl+1)]

(A8)

Eq[log p(z|θ)] =
N

∑
n=1

d

∑
l=1

ϕnl(Ψ(γl)− Ψ(γl + δl)) +
N

∑
n=1

ϕn(d+1)(Ψ(δd)− Ψ(δd + γd)) (A9)

Eq[log p(w|z, Ω)] =
N

∑
n=1

d+1

∑
l=1

v

∑
j=1

ϕnlw
j
n log(Ω(l j)) (A10)

We should mention that Ω(l j) = p(wj
n = 1|zl = 1):

Eq[log q(θ)] =
d

∑
l=1

(log Γ(γl + δl) log Γ(γl)− log Γ(δl))

+
d

∑
l=1

[γl(Ψ(γl)− Ψ(γl + δl)) + (Ψ(δl)− Ψ(δl + γl))

(δl − γl+1 − δl+1)]

(A11)

Eq[log q(z)] =
N

∑
n=1

D+1

∑
l=1

ϕnl log(ϕnl) (A12)

Subsequently, we will elaborate on Equation (A7) by expanding it with respect to both
the model parameters and the variational parameters.

L(γ, Φ; ξ, Ω) =
d

∑
l=1

[log Γ(al + bl)− log Γ(al)− log Γ(bl)]

+
d

∑
l=1

[al(Ψ(γl)− Ψ(γl + Φ))

+ (Ψ(Φ)− Ψ(γl + Φ))(al − al+1 − bl+1)]

+
N

∑
n=1

d

∑
l=1

mnl(Ψ(γl)− Ψ(γl + Φ))+

N

∑
n=1

mn(d+1)(Ψ(Φ)− Ψ(Φ + γd))

+
N

∑
n=1

d+1

∑
l=1

v

∑
j=1

mnlw
j
n log(Ωij)

−
d

∑
l=1

(log Γ(γl + Φ) log Γ(γl)− log Γ(Φ))

−
d

∑
l=1

[γl(Ψ(γl)− Ψ(γl + Φ)) + (Ψ(Φ)− Ψ(Φ + γl))

(Φ − γl+1 − Φl+1)]

(A13)
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Appendix B.1. Variational Generalized Dirichlet

To derive the update equations for the variational parameters in the generalized
Dirichlet model, you start by isolating the terms in Equation (A7) that contain the variational
parameters of the generalized Dirichlet. This involves examining the equation to identify
which parts specifically involve these parameters and then focus on manipulating these
parts to derive expressions for updating the parameters during the variational inference
process. This method allows for the iterative refinement of the parameters, enhancing
model accuracy with respect to the data being analyzed.

L[ξq] =
d

∑
l=1

[αl(Ψ(γl)− Ψ(γl + δl)) + (Ψ(γl)− Ψ(γl + δl))(βl − αl+1 − βl+1)]

+
N

∑
n=1

ϕnl(Ψ(γl)− Ψ(γl + δl) +
N

∑
n=1

ϕn(d+1)(Ψ(γd)− Ψ(γd + δd))

−
d

∑
l=1

(log Γ(γl + δl)− log Γ(γl)− log Γ(δl)) +
d

∑
l=1

(Ψ(γl)− γl(Ψ(γl + δl))

+ (Ψ(δl)− Ψ(δl + γl))(δl − γl+1 − δl+1)))

(A14)

Setting the derivative of the above equation to zero leads to the following
updated parameters:

γl = αl +
N

∑
n=1

ϕnl (A15)

γl = βl +
N

∑
n=1

d+1

∑
ll=l+1

ϕn(ll) (A16)

Appendix B.1.1. Topic-Based Model

To derive the update equations for βw, maximize Equation (A7) with respect to βw.
This involves setting the derivatives to zero, mirroring the optimization process used in
MPCA, resulting in similar equations.

L[βw] =
M

∑
d=1

Ns

∑
n=1

K+1

∑
l=1

V

∑
j=1

ϕdnlw
j
dn log βw(l j) +

K+1

∑
l=1

λl
( V

∑
j=1

βw(ij)
)

(A17)

Taking the derivative with respect to βw(l j) and setting it to zero yields

βw(l j) ∝
M

∑
d=1

Nd

∑
n=1

ϕdnlw
j
dn (A18)

In this scenario, because there are hidden variables present in the primary objec-
tive function, the situation is not fully addressed by Equations (33) and (34). However,
the probability distribution q(w|γ, r, m) can be accurately modeled using multinomials,
which ensures that the minimum Kullback–Leibler (KL) divergence reaches zero. Conse-
quently, the iterative updates will converge towars a local extremum of the log probability
log p(Ω, m|r).

γl =
Γ(ai + bi)

Γ(ai)Γ(bi)
Ωmnl (A19)

mnl =
Γ(ai + bi)

Γ(ai)Γ(bi)
Ωlve(λn−1)e(Ψ(γl)−Ψ(γl+Φ)) (A20)

Ωij =
Γ(ai + bi)

Γ(ai)Γ(bi)
(2 f j + (∑

n
e(λn−1)e(Ψ(γl)−Ψ(γl+Φ))) (A21)
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eλn−1 =
1

∑d
l=1 mnle(Ψ(γl)−Ψ(γl+Φl)) + m(d+1)ne(Ψ(Φd)−Ψ(Φd+γd))

(A22)

Appendix B.1.2. Generalized Dirichlet Parameter

We select the components of Equation (A7) that involve the generalized Dirichlet
parameters ξ.

L[ξ] =
M

∑
m=1

(log(Γ(αl + βl))− log Γ(αl))− log(Γ(βl)))

+
M

∑
m=1

(αl(Ψ(γml − Ψ(γml + δml)) + βl(Ψ(δml)− Ψ(δml − γml)))

(A23)

Taking the derivative of the mentioned equation with respect to the generalized
Dirichlet parameters yields

∂L[ξ]
∂αl

= M(Ψ(αl + βl)− Ψ(αl)) +
M

∑
m=1

(Ψ(γml)− Ψ(γml + δml)) (A24)

and
∂L[ξ]
∂βl

= M(Ψ(αl + βl)− Ψ(βl)) +
M

∑
m=1

(Ψ(δml)− Ψ(γml + δml)) (A25)

When applying the Newton–Raphson method to solve for the parameters, it is crucial
to obtain the Hessian matrix with respect to the parameter space. The Hessian matrix of the
likelihood function in this case assumes a particularly interesting form, as detailed below:

∂2L[ξ]
∂α2

l
= M[Ψ

′
(αl + βl)− Ψ

′
(αl)] (A26)

∂2L[ξ]
∂β2

l
= M[Ψ

′
(αl + βl)− Ψ

′
(βl)] (A27)

∂2L[ξ]
∂αl βl

= M[Ψ
′
(αl + βl)] (A28)

The non-diagonal entries of the Hessian matrix are zero, which imparts a block diag-
onal structure to the matrix. This configuration simplifies the calculation of the inverse
Hessian matrix, as it reduces to inverting the matrices along the diagonal. This simplifica-
tion allows for an easier derivation of the inverse.

Appendix C. Variational BLMPCA

To derive the parameter ϕ, which represents the probability that the n-th word is
generated by the l-th hidden topic, we maximize the relevant function with respect to ϕ.
This involves adjusting ϕ to optimize the likelihood of the observed data given the model’s
assumptions about topic distributions:

L[ϕnl ] = ϕni(Ψ(γi)− Ψ(
D

∑
l=1

γl)) + ϕni log βw(iv) − ϕni log ϕni + λn(
D

∑
l=1

ϕn(l) − 1) (A29)

and

L[ϕn(D+1)] = ϕn(D+1)(Ψ(βγ − Ψ(αγ + βγ))) + ϕn(D+1) log β(D+1)v

− ϕn(D+1) log ϕn(D+1) + λn(
D

∑
i=1

ϕn(i) − 1)
(A30)
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and therefore we have

∂L
∂ϕnl

= (Ψ(γd)− Ψ(
D

∑
l=1

γl)) + log βw(iv) − log ϕni − 1 + λn (A31)

and
∂L

∂ϕn(D+1)
= (Ψ(βγ)− Ψ(αγ + βγ)) (A32)

Setting the above equation to zero leads to

ϕnl = βlve(λn−1)e(Ψ(γi)−Ψ(∑D
ii=1 γii)) (A33)

ϕn(D+1) = β(D+1)ve(λn−1)e(Ψ(βγ)−Ψ(αγ+βγ)) (A34)

Considering that ∑D+1
d=1 ϕn(d) = 1 for the normalization factor, we have

eλn−1 =
1

β(D+1)ve(λn−1)e(Ψ(βγ)−Ψ(αγ+βγ)) + βlve(λn−1)e(Ψ(γi)−Ψ(∑D
ii=1 γii))

(A35)

Appendix C.1. Variational Beta-Liouville

The updates mentioned were designed to converge to a local maximum of a lower
bound of log p(Ω, Υ|r), which is optimal for all product approximations such as q(m)q(w)
for the joint probability p(m, w|Ω, Υ, r). This approach ensures that the variational pa-
rameters are fine-tuned to best approximate the true posterior distributions within the
constraints of the model.

Φl =
Γ(α)Γ(β)

Γ(∑D
d=1 αd)Γ(α + β)

mnl(λn − 1)(Ψ(γl)− Ψ(
D

∑
l=1

γl) (A36)

γl = αl +
N

∑
n=1

mnl (A37)

Ω(l j) =
Γ(α)Γ(β)

Γ(∑D
d=1 αd)Γ(α + β)

(2 f
M

∑
d=1

Nd

∑
n=1

mdnlw
j
dn) (A38)

In this case, variable Ω vanishes because m is defined in terms of the KL approximation.
In the second step, the algorithm now optimizes for m. Since q(w|γ, r, m) can be precisely
modeled with multinomials, the minimum KL divergence is zero. As a result, the updates
that follow converge to a local threshold of log p(Ω, m|r):

γl =
Γ(α)Γ(β)

Γ(∑D
d=1 αd)Γ(α + β)

Ωmnl (A39)

mnl =
Γ(α)Γ(β)

Γ(∑D
d=1 αd)Γ(α + β)

Ωlve(λn−1)e(Ψ(γi)−Ψ(∑D
ii=1 γii) (A40)

Ωij =
Γ(α)Γ(β)

Γ(∑D
d=1 αd)Γ(α + β)

(2 f + (∑
n

e(λn−1)e(Ψ(γi)−Ψ(∑D
ii=1 γii)) (A41)

Considering that ∑D+1
d=1 ϕn(d) = 1 for the normalization factor, we have

eλn−1 =
1

m(D+1)ve(λn−1)e(Ψ(βγ)−Ψ(αγ+βγ)) + mlve(λn−1)e(Ψ(γi)−Ψ(∑D
ii=1 γii))

(A42)
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