ﬁl?é electronics

Article

High-Speed CNN Accelerator SoC Design Based on a Flexible
Diagonal Cyclic Array

Dong-Yeong Lee !, Hayotjon Aliev !, Muhammad Junaid (¥, Sang-Bo Park !, Hyung-Won Kim ?,

Keon-Myung Lee 2

check for
updates

Citation: Lee, D.-Y,; Aliev, H.; Junaid,
M.; Park, S.-B.; Kim, H.-W.; Lee, K.-M.;
Sim, S.-H. High-Speed CNN
Accelerator SoC Design Based on a
Flexible Diagonal Cyclic Array.
Electronics 2024, 13, 1564. https://
doi.org/10.3390/ electronics13081564

Academic Editors: Antonio Vincenzo

Radogna and Stefano D’ Amico

Received: 20 March 2024
Revised: 17 April 2024
Accepted: 17 April 2024
Published: 19 April 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Sang-Hoon Sim 1+*

Department of Electronics Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea;
dongyeonglee@chungbuk.ac.kr (D.-Y.L.); hayotjon@chungbuk.ac.kr (H.A.); junaid@chungbuk.ac kr (M.].);
sangbopark@chungbuk.ac.kr (S.-B.P.); hwkim@chungbuk.ac.kr (H.-W.K.)

Department of Computer Science, Chungbuk National University, Cheongju 28644, Republic of Korea;
kmlee@cbnu.ac.kr

* Correspondence: shsim@chungbuk.ac.kr

Abstract: The latest convolutional neural network (CNN) models for object detection include complex
layered connections to process inference data. Each layer utilizes different types of kernel modes, so
the hardware needs to support all kernel modes at an optimized speed. In this paper, we propose a
high-speed and optimized CNN accelerator with flexible diagonal cyclic arrays (FDCA) that supports
the acceleration of CNN networks with various kernel sizes and significantly reduces the time
required for inference processing. The accelerator uses four FDCAs to simultaneously calculate
16 input channels and 8 output channels. Each FDCA features a 4 x 8 systolic array that contains a
3 x 3 processing element (PE) array and is designed to handle the most commonly used kernel sizes.
To evaluate the proposed CNN accelerator, we mapped the widely used YOLOv5 CNN model and
evaluated the performance of its implementation on the Zynq UltraScale+ MPSoC ZCU102 FPGA.
The design consumes 249,357 logic cells, 2304 DSP blocks, and only 567 KB BRAM. In our evaluation,
the YOLOv5n model achieves an accuracy of 43.1% (mAP@0.5). A prototype accelerator has been
implemented using Samsung’s 14 nm CMOS technology. It achieves 1.075 TOPS, a peak performance
with a 400 MHz clock frequency.

Keywords: convolution neural network accelerator; flexible diagonal cyclic array; field-programmable
gate arrays; YOLOv5n

1. Introduction

Convolutional neural networks are widely used in a wide range of applications for
image recognition and object detection. Compared to other computer vision algorithms,
CNN:ss offer a significant improvement in accuracy for object recognition, target detection,
and video tracking. As a result, CNN models have become popular and have played
a crucial role in the rapid advancement of computer vision applications. Meanwhile,
CNN models are becoming more complex, using different kernel sizes and applying
more depth and scale of CNN networks to achieve higher prediction accuracy. These
advancements and changes in CNN models have a significant impact on the performance
of the storage and processing capabilities of current hardware accelerators. Thus, new
acceleration architectures for object detection CNN models are necessary, applying efficient
data streaming, storing, and processing methods [1].

Most CNN models comprise a series of multiple convolutional layers, and each layer is
convolved with different sized kernels. For example, our target CNN model is the YOLOv5
object detector, which is made up of 99% convolutional computations with various kernel
sizes [2]. Accelerating YOLO-like CNN networks on hardware devices can significantly
improve their inference speed, enabling faster execution compared to traditional CPU or
GPU implementations. Furthermore, it is essential to optimize the computations in the

Electronics 2024, 13, 1564. https:/ /doi.org/10.3390/ electronics13081564

https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13081564
https://doi.org/10.3390/electronics13081564
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0500-904X
https://orcid.org/0000-0003-0132-0260
https://doi.org/10.3390/electronics13081564
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13081564?type=check_update&version=2

Electronics 2024, 13, 1564

20f 18

convolution operation to support various kernel sizes when designing a new high-speed
CNN accelerator. These kernel-based optimizations of convolution operation blocks help
to map any CNN models to the hardware accelerator.

Most of the CNN accelerator architectures use parallel processing element (PE) units,
which consist of a multiplier and accumulator (MAC), as shown in Figure 1. A systolic
array is a special PE array structure built for the fast and efficient operation of regular array
algorithms and to reduce their computation time. The systolic arrays are also effective at
reducing memory access by reusing data that have already been passed through other PEs.
Therefore, many research works have proposed systolic array architectures to maximize
the speed of iterative convolution computations [3-14].

Pre_PE
Accum_in 0

v 3

Weight i 2to1 Pre_PE_refresh
eight_in mux
| Pass g
g 1 ixel_pass
REG

Pixel_in

Weight_pass refresh

Figure 1. Processing element architecture.

In many CNN models, the convolutional layer uses a stride of 2 to convolve the input
data with a 3 x 3 kernel, which is faster than using a stride of 1. A convolutional layer
with a stride of 2 is advantageous in that it requires less computation. The filter moves
two pixels at a time over the input feature map, which results in faster down-sampling of
the input. However, most research on CNN accelerators shows that the time consumption
for stride 2 is the same as for the stride 1 mode. The reason for this is that the feature
map data are supplied to the PE in the same way as the 3 x 3 stride 1 kernel mode, and
it produces relatively low PE utilization. This indicates that the stride 2 mode is not as
efficiently implemented as the stride 1 mode on CNN accelerators [15].

In this paper, we propose a hardware architecture for a CNN inference accelerator,
using a novel systolic array architecture called the flexible diagonal cyclic array (FDCA)
to accelerate the convolution operation and support various kernel sizes, including the
3 x 3 kernel with stride 2. This paper introduces the following new methods to minimize
repeated memory accesses, optimize hardware resources for various kernel modes, and
enable the mapping of diverse CNN models onto a wide range of FPGA devices.

e Flexible Diagonal Cyclic Array (FDCA) for kernel modes: The FDCA is a novel
systolic array structure designed to maximize data reuse and speed up computation by
efficiently performing convolutions. In the FDCA, PEs are arranged in a 3 x 3 systolic
array. Multiplication and accumulation operations are performed to calculate a partial
sum, which is then forwarded to the diagonal PEs to accumulate the output result. In
this study, we optimized a DCA systolic array for the convolution operation using a
3 x 3 kernel with strides of 1 and 2, which are commonly used in CNN accelerators.

Electronics 2024, 13, 1564

30f18

e Input Zero Padding: The CNN accelerator supports adding zero-padding data to the
around the input feature map. When the CNN accelerator reads the input feature map
from DDR, it decides to add input zero padding at the corresponding position. This
function provides several advantages, such as reducing DDR access and effectively
utilizing on-chip memory, instead of writing padding data for the output feature map.
To implement input padding, we designed the input zero padding circuit, which
utilizes a 2-bit register to indicate the status required for each situation and a wire to
control the global input buffer read enable signal.

e Reconfigurable Input FIFO and FIFO Output Cache Memory: The reconfigurable
input FIFO consists of three SRAM FIFOs and one register connected in a predefined
sequence. When we define the kernel mode for a convolutional operation using a
specific stride and kernel size, the reconfigurable input FIFOs are interconnected
according to the kernel mode to efficiently reuse the data. The data that are read from
the first FIFO will flow to another FIFO and systolic array processing, respectively.
The FIFO output cache memory is a register that supplies a large amount of data to
the PE. It can transfer two different data to the PE depending on the kernel mode. By
using the address for this register, it enables the activation of the “read enable” for the
reconfigurable input FIFO connected to the register and generating a “write enable”
signal for the register, allowing data to be read sequentially whenever needed.

o Weight Parameter Quantization: Quantization is a method for reducing model size by
converting model weights, biases, and activations from high-precision floating-point
representation to low-precision floating-point (FP) or integer (INT) representations,
such as 16-bit or 8-bit. By converting the weights of a model from high-precision
floating-point representation to lower precision, the model size and inference speed
can significantly improve without sacrificing too much accuracy. Additionally, quanti-
zation improves the model performance by reducing memory bandwidth requirements
and increasing resource utilization [16].

In this work, we used 32-bit floating point parameters for training and then quantized
them to 8-bit integers to enable high-speed lightweight CNN inference. By applying a
low-bit quantization, we can utilize small-size on-chip memory, multipliers, and adders.

The rest of this paper is organized as follows: In Section 2, the background of the
overall architecture of the CNN Accelerator is described. A detailed explanation of the
proposed flexible PE array architecture is given in Section 3. In Section 4, we outlined the
advantages of using the proposed architecture. Section 5 includes the verification process
and the results obtained. Section 6 concludes the paper with future research plans.

2. Related Work and Motivation

Many researchers have studied lightweight object detectors and proposed hardware
accelerators to accomplish real-time object detection on edge devices. The acceleration of
CNN model inference for object detection is discussed in more detail, with a focus on FPGA-
based implementations. Thus, various hardware architecture approaches and optimization
methods are explored to examine their impact on throughput and accuracy [17-26].

Since its initial release [27] in 2016, several versions of YOLO have been developed
and accelerated for improving the processing efficiency. The problem is that designing a
new dedicated accelerator for a new version of YOLO is a time-consuming process.

Most of the studies analyze the acceleration of the YOLOv2 algorithm to improve
development speed, power efficiency, and computing performance. Many analyses provide
developers with new insights for choosing hardware and architectures to optimize the
YOLOV2 algorithm [14,28,29].

The lightweight YOLO versions, including Tinier-YOLO, Tiny-YOLOvV3, and Tiny-
YOLOV4, have fewer parameters and require fewer computations compared to the full
versions. However, they also exhibit some reduction in accuracy. They are deployed on
FPGA-based embedded computing platforms and have achieved better real-time detection
results, utilizing architectures with high performance and low energy consumption [30-32].

Electronics 2024, 13, 1564

40f18

The accelerators have been configured to run Tiny-YOLOvV3 [30] and Tiny-YOLOv4 [32] in
real time, achieving performance of over 8.3 and 30 frames per second.

Other studies [13,25,26,33,34] have investigated the implementation of the entire CNN-
based object detection networks on FPGA devices by building customized computation
units and data flows into their accelerator designs. As a result, the impact of data commu-
nication bottlenecks is minimized and the overall performance is enhanced. However, the
accelerator designs proposed in these works are tailored to specific versions of the YOLO
network and lack the versatility to target more recent object detection models.

This paper introduces a novel architecture that enables the deployment of the next
generation of models from the YOLO family on a variety of FPGA devices. Our proposed
toolflow is designed to efficiently process YOLOvV5 and the latest YOLO models, offering
high performance and reconfigurability to accommodate new changes and architecture
updates. To achieve efficient implementation of YOLOv5-based algorithms, we conducted
research on various customized hardware accelerators and proposed new methods to
optimize them.

3. Overall Hardware Architecture

Figure 2 illustrates the overall architecture of the proposed CNN accelerator. The
architecture consists of the following hardware block components: PE arrays block with
four FDCAs, 5 x 5 max-pooling, element-wise adder, upsampling, global in/output buffer,
AXI4 data bus, and CNN controller blocks.

Microcode
DRAM Decoder
AXI4 Master 4P CNN
Controller
Custom IP with
AXI14 peripheral J 4 FDCA
PE Array
AXl4 Lite SI HELL TDE
Funy | (TOPBlock)
» EW Adder
RISC-V
| Max
i ~ | Pooling
Host computer
(PC, single-board «—>»{Upsample
computer)

Figure 2. Proposed CNN accelerator architecture with RISC-V processor.

In this study, we introduce a new systolic array (SA) structure called the flexible
diagonal cyclic array (FDCA) that also supports the stride 2 kernel mode. The SA structure
is designed in the form of an array of 3 x 3 PEs, called a kernel unit (KU), to optimize the
convolution operation using a 3 x 3 kernel with stride 1. In general, each PE computes a
partial sum of the convolution and sends it to other PEs to generate a single convolution
result using an accumulator. If the CNN model includes a layer with N x N filters, the
proposed PE array can be easily configured to support the required kernel size and stride.
The FDCA consists of 4 x 8 KUs, with each KU with 9 PEs, and it can simultaneously
process four input channels and eight output channels.

3.1. Four FDCA for Convolution Acceleration

To accelerate the convolution operation, we employ four FDCAs to calculate 16 input
data channels simultaneously. The relevant processing architecture is illustrated in Figure 3.

Electronics 2024, 13, 1564

50f18

The convolutional result generated by a single filter using FDCA is stored in a convolutional
memory (Conv_mem). After calculating the convolutional outputs for all input channels,
the final result is produced by accumulating them and storing the result in the Conv_mem
as the final output.

FDCA

[Input_Buff1 ‘

3x3 PE Array

FDCA FDCA FDCA ey, s

‘ Input_IBuffZ | \ Input_IBuﬁS | Input_Buff4 B-A-S

s T

L T I 1 I I T 1 T T

T

lauuey) IndinQ g

T
16 Input Channel
Figure 3. Four-FDCA processing architecture block diagram.

In addition, the four-FDCA architecture is specially designed to maximize data reuse
and speed up the processing of the convolutional layer. Therefore, optimized data reuse
on KUs of the architecture provides a higher utilization ratio in any 3 x 3 or 6 x 6 kernel
modes compared to previous studies.

3.2. Max Pooling

The max pooling operation compares 25 input feature maps and produces the largest
value from them. For the max pooling operation, we designed a 5 x 5 max pooling
hardware block that is composed of 128 comparators. The max pooling block includes 16
in/out flip-flop memories and a (de)channeling controller that is used to reorder and write
data back to DDR.

3.3. Element-Wise Adder

The element-wise adder is a hardware architecture designed to perform element-wise
addition of data from two different feature maps with equal size. The hardware block
consists of parallel adders and input/output buffers. The concept of element-wise addition
operation is derived from the latest YOLO models, which merge data from two streams.

3.4. Upsampling (Resize)

Upsampling is a novel hardware sub-circuit used to increase the size of the input
feature map. For an input feature map with a size of n x n, the upsampling layer increases
the output feature map size to 2n x 2n by making an exact copy of each input feature map
and placing it at the bottom, right, and bottom-right diagonal pixel positions.

3.5. Global Input/Output Buffers and AXI4 Data Bus

In the proposed architecture, the global input/output buffers are used for send-
ing/receiving data to/from DDR via the 256-bit AXI4 data bus. The proposed architecture
includes an additional input buffer called “Instruction Memory”, which is used for writ-

Electronics 2024, 13, 1564

6 of 18

ing the instruction microcode from the RISC-V CPU core through the 32-bit AXI4-Lite
bus protocol.

3.6. CNN Controller

The CNN controller hardware block controls the processing of functional hardware
blocks in the proposed design, such as the four FDCAs for convolution acceleration, 5 x 5
max pooling, element-wise adder, and upsampling. The CNN controller uses microcode
information to manage all data processing operations, from reading input data to the
processing hardware block from a predefined address to writing output data to DDR
DRAM using AXI4 transactions.

4. The Proposed CNN Accelerator
4.1. Stride in Convolutional Operation

The stride defines the number of moving steps of the filter through the input feature
map to generate an output value. If the stride is bigger than one (>1), the output feature
map size decreases compared to the input.

Equation (1) defines the output feature map size (o) for a given stride (s), where i is
the input feature map size, k is the kernel size, and p is the padding added to the input
feature map.

0= Roundoff(i_ks—'—zp) +1 1)

Most CNN accelerators only use a stride of 1 when shifting a kernel over an input. In
this article, we introduce a new method for implementing stride 2 convolution on hardware.

4.2. Convolution Using Kernel 3 x 3 with Stride 1 in Kernel Unit

The convolution operation using a 3 x 3 kernel with a stride of 1 is a basic kernel
mode that utilizes the entire 3 x 3 PE array structure, known as the KU. In this work,
the filter convolves the input feature map in a direction from up to down; the kernel is
shifted vertically over the input feature map with a stride of 1. In the KU, pixel data moves
horizontally from left to right and is reused for one clock cycle in each PE. The weights
move vertically, from up to down. The weights will be reused in every clock cycle in the
KU. In each clock cycle, FIFOs supply three pixels and weight data values to the KU. Each
PE transfers its accumulated value to the bottom-right diagonal PE over KU, during the
processing. As shown in Figure 4, PE6 and PE7 do not have bottom-right diagonal PEs.
Therefore, these PEs transfer accumulated values to PE1 and PE2, respectively.

Weight 1 Weight 2 Weight 3

| } |

Pixel 1— PEO » PE1 > PE2
0
A 4 Y A 4
Pixel 2—{ PE3 » PE4 » PE5 conv_result
v v v conv_select
Pixel 3— PE6 —| PE7 — PES8

Figure 4. Kernel unit for convolution 3 x 3 stride 1.

The PE2, PE5, and PE8 perform convolution operations for one input channel by
accumulating nine data, including six data accumulated by the Pes of the previous two

Electronics 2024, 13, 1564

7 of 18

vertical lines. The last vertical line produces one convolution result in every clock cycle
after the first result is produced. Since only one final result is produced in KU for each
clock, the conv_select signal is reused to select the results sequentially. The color of each PE
and arrow indicates the path of partial sums used to compute one convolution result. The
convolution results are repeatedly calculated in the order of red, blue, and green.

4.3. Convolution Using Kernel 3 x 3 with Stride 2 in Kernel Unit

The convolution operation with a 3 x 3 kernel and a stride of 2 uses the same PE array
architecture, known as the KU, as that used for a stride of 1. However, in the stride 2 mode,
data sharing between PEs differs; the data accumulated in each PE will be transferred
horizontally to the next PE, not diagonally. To perform a convolution operation with a
stride of n (n > 1), six pixels of data must be loaded into the KU at the same time. We used
a FIFO output cache memory between the reconfigurable input FIFO and KU to prepare
data for further processing in PEs. Using this cache memory, we can read two pixels of data
from the input FIFO at the same time.

As illustrated in Figure 5, the first three pixels of data will be sent to the PEs in the first
column, as seen in the stride 1 mode. The next three pixels of data from the cache register
will be simultaneously sent to the second-column PEs. After completing clock calculations
in PEs, we have to pass the pixel values from the first-column PEs to the last-column PEs.
In this order, we maintain the convolution operation with stride 2, efficiently reusing the
data from the first-column PEs. Pixel data values from the first column PEs of the KU will
be transferred to the diagonally downward PEs in the last column. This means that data
reuse only occurs in the first and third columns of the KU, specifically in the stride 2 mode.
In addition, weights are reused in every clock cycle by vertically rotating them from top
to bottom.

Weight 1 Weight 2 Weight 3

Pixel 1— PEO ----]T:_ PE1 4 PE2

1 Pixel 4 1 l 0
Pixel2—| PE3 }--"1= | PE4 . 4 PE5 conv_result

1 Pixel 5 l o l

5 utt N o conv_select
Pixel 3—» PE6 [--"T— PET7 “»| PE8
Pixel 6

Figure 5. Kernel unit for convolution 3 x 3 stride 2.

Figure 6b illustrates an example of a convolution operation with stride 2, representing
motion of the filter over the input feature data.

14

12 7 8

17

19

~| s R

w| v | w

©
=
Y
~
@
©
=
| -
N
&
@
Sle| ol w

19 | 20 16 | 17 | 18 | 19 | 20 16 | 17 | 18 | 19 17 |18 | 19 | 20 16 | 17 | 18 | 19 | 20

22

24

w| w| m| <~

3
8
3 14 | 15 11 7 8 9 15 7 k-3 9 14
6
k]

N7 [S BT -
o of w|ow|w
=
&

G
o | .

IS
&
I
N
o

24 | 25 21| 22|23 | 24|25 21| 22| 23| 24 2 3 24 | 25 21| 22|23 | 24|35

27

23

wlowl| m| w] =]
Gla|@|ls|n|a|lw

27

wlwl| wl m|]
Glo| @] S| w| o

32

32

35 31 (3233|3435 3132|3334 35 3132|3334

31 |32|33 |34 35 8 9 34 | 35 31 (32|33 |34 35

Figure 6. Example of filter shifting over the input feature map: (a) 3 x 3 stride 1; (b) 3 x 3 stride 2.

Electronics 2024, 13, 1564

8 of 18

4.4. Convolution Using Kernel 1 x 1 with Stride 1 in Kernel Unit

Using the proposed 3 x 3 PEs array of KU, we can run the convolution operation
using a 1 x 1 kernel size with a stride of 1. For the 1 x 1 convolution operation, we have
designed an accelerator circuit that exclusively utilizes the first horizontal line of PEs in the
KU unit. In this mode, the upper left PE receives only one datum in every clock cycle, while
the upper right PE generates the output of the operation. After the initial output result is
calculated in the proposed circuit, each clock cycle produces a result of the convolution
output, similar to convolution with a 3 x 3 kernel mode.

4.5. Convolution Using Kernel 6 x 6 in Kernel Unit

The convolution operation with a 6 x 6 kernel is performed by executing the convo-
lution operation with a 3 x 3 kernel on the KU. Figure 7 illustrates the segmentation of a
convolution operation using a 6 x 6 kernel into four 3 x 3 kernels for processing with the
proposed design. In this mode, the input feature data for each convolution operation with
a3 x 3 kernel process a dedicated part of the whole input data, with overlapped contents.
To calculate the final output of the convolution operation with a 6 x 6 kernel, we use a
two-stage adder tree after finishing convolutions in the FDCAs.

3x3 | 3x3
b6x6

3x3 | 3x3

Figure 7. Applying 3 x 3 kernel mode for convolution operation with a 6 x 6 kernel.

4.6. Reconfigurable Input FIFO

Figure 8 shows the block diagram of the reconfigurable input FIFO. For each kernel
mode, we utilize a portion of the reconfigurable input FIFO. Each FIFO stores one column
of data for the input slice. Since each address of the FIFO contains four feature map data,
the depth of the FIFO is equal to the slice size/4.

0
Lf\ PEO = PF1 —;D- PE2
| 1 ‘»‘" g 1

- \
PE3 ‘—l_:D« PE4 T:D* PES
T’_:D— P£7~.—;[?-— PES

Figure 8. Reconfigurable input FIFO (red frame) with kernel unit.

PE6

The following configurations of the reconfigurable input FIFO are used for different
operation modes:

Electronics 2024, 13, 1564

9of 18

e The convolution operation with a 3 x 3 kernel and a stride of 1 requires the use of
two SRAM-FIFOs and a register. While the KU reads data from the SRAM-FIFO or
register, the data not only go to the KU but also to another SRAM-FIFO containing the
previous data from the left column in the feature map.

e The convolution operation with a 3 x 3 kernel and a stride of 2 uses three SRAM-
FIFOs. When the PEs array loads data from the FIFO address that stores the data
for the last column, it also sends the data to another FIFO for reuse in the next first
column, bypassing the middle column. This indicates that the stride 2 mode requires
the KU to reuse only the data from the last column as the first column next time.

e The convolution operation with a 1 x 1 kernel and a stride of 1 only utilizes one
SRAM-FIFO. In this mode, the output data only come from PE2.

4.7. FIFO Output Cache Memory

We used FIFO output cache memories to share feature map data between the input
FIFO and KU. Each address in the input FIFO contains four feature map data at a moment.
Therefore, the FIFO output cache memory block receives four data from FIFO at once,
queues them in order, and transfers them to the KU, respectively. Each cache memory
consists of eight 16-bit registers and enables the loading of one or two feature map data
to the KU. We divided eight 16-bit registers into two parts, named Area0 and Areal, each
consisting of four 16-bit registers.

In our design, we used a cache memory with depth = 8, which is twice the size of the
data read from the FIFO. By using cache memory with eight registers, we will be able to
read two data from the cache without waiting for the next four data from FIFO. In the case
of using cache memory with depth = 4, it will not be possible to read and send two data to
the KU at the same time.

For example, if we use cache memory with depth = 4, after reading three data from the
cache memory, we would not be able to read another two data from it. We face a memory
limitation problem in our circuit. If we read only one datum, which is left in the cache
memory, then we must wait for the next four data readings from FIFO. This problem causes
circuit insufficiency and produces incorrect output.

Figure 9 shows that the “finish” signal becomes active when reading data from a
specific location in AreaQ and Areal. For example, if the address is 2, then finish[0] goes
high when reading two data in Area0. The “finish” signal acts as the read enable signal for
the input FIFO and generates the write enable signal for the FIFO output cache memory via
a register. When data are initially stored in the FIFO output cache memory, the finish signal
cannot be activated until the data are read from the FIFO output cache memory. Therefore,
the cache memory must read data from the FIFO using the init_rd_en signal generated by
the controller.

FIFO [«

[1:0] Finish
(FIFO_rd_en)

Cache|Register PE array
Area0 | Areal Controller

i i [2:0] Rd_Addr
Rd_en

ua pd Ul

[y

Figure 9. FIFO output cache memory.

Electronics 2024, 13, 1564

10 of 18

4.8. Slice and Iteration

Modern CNN models are becoming increasingly complex by using large image sizes
for input data and increasing the depth and scale of neural networks to achieve high
prediction accuracy. Due to these changes in CNN models, there is a need to develop new
hardware accelerator models with high processing capabilities and reconfigurability. This
work introduces the concept of slicing, which involves uniformly cutting a whole input
feature map into specific-sized parts. The concept of slicing is not only used for defining
the height and width of each slice but also the depth of the input channel, which is divided
into slices based on the number of input channels.

After applying the slicing of the input data, each slice must be processed separately
with filters. It is determined by the number of iterations required to process the entire input
data. In our design, we introduced and used new-iteration ideas, such as input, slice, and
output iteration, to process the input data efficiently and quickly.

By applying the concept of slicing, we reduce the amount of input data needed for
processing in the CNN accelerator at once. As a result, the size of the on-chip memory and
computational circuits is effectively reduced. To achieve the aforementioned improvements,
this study not only introduced the concept of slicing but also implemented the idea for
a limited number of kernels. Figure 10 illustrates how the iteration is defined in our
architecture based on the feature map size and slice. When using the concept of slicing
in convolution, there is an overlap between two slices. Figure 10a shows that the overlap
between slices occurs when using 3 x 3 kernels. Figure 10b,c represent an example of
input/output iteration. In this study, because 16 input channels and 8 filters can be used for
calculation simultaneously, the number of channels used for one input iteration becomes 16,
contrary to what is shown in the figure. Similarly, eight (8) filters are used for convolution
processing in each output iteration.

s Input
Iteration 1
/\ Filter 1 Filter 2 Filter 3 Filter 4
: Input

Channel 1
Output
Iteration 1

Filter 5 Filter 6 Filter 7 Filter 8

Output
Iteration 2
(c)

Figure 10. Concept of slice and iteration: (a) slice iteration and overlap (the color indicates the area of
each slice, and the number indicates the overlap size.); (b) input iteration; (c) output iteration.

4.9. Input Padding

To add padding to the input feature map, most CNN accelerators use a software-based
approach before loading the data to the DDR DRAM. In this work, we designed the circuit
to add zero padding around the input feature map, a concept known as input padding in
the circuit. Using input padding is more effective than using output padding. Figure 11
presents the ratio of input padding storage pixels to output padding based on the size of the
input feature map. The figure shows that as the feature map size decreases, the proportion
of storage pixels also decreases by up to 82.6%.

Electronics 2024, 13, 1564

11 0f 18

7000 +

6000

5000

4000

3000 H

In/OutPadding (N)

2000 —

1000

—s=—InputPadding |
—=—OutputPadding
—=—[nOutRatio

96
o4
o2

90

(%) onedinou|

88

86

82

20 3

4 50 60

FmapSize (NxN)

70

80

Figure 11. Input padding vs. output padding.

The input padding circuit includes the register and control signal. The first component
is the 2-bit padding state register, known as the “FIFO write selection”, which varies
depending on the current/total slice iteration and kernel mode (Figure 12). Table 1 and
Figure 13, along with the description below, explain the adding-zero-padding method for

each case.

— I I
3 & Total Current
c 2 Slice Iter Slice lIter

SI InB_flag
E _‘—b Decode for Padding
Read_timing_en FIFO_write_select
PE CNT, i
Control
1 FDCA

Figure 12. Padding circuit structure.

Table 1. FIFO write selection signal states.

FIFO Write Select Reg0 Regl Reg2 Reg3 Reg4

(1 ZEROZERO 0 0 0 0 0
@ READZERO InBuf[0] InBuf[1] InBuf[2] InBuf[3] 0
(® ZEROREAD 0 InBuf[0] InBuf[1] InBuf[2] InBuf[3]
® SHIFTREAD Reg4 InBuf[0] InBuf[1] InBuf[2] InBuf[3]

o O O O

Figure 13. The use cases of a FIFO write select signal (number) depending on the padding position
(red frame).

Electronics 2024, 13, 1564

12 of 18

ZEROZERO: When all data entering the reconfigurable FIFO is zero, only zeros are
needed for padding.

READZERO: All data from the global input buffer are loaded into the FIFO when the
slice iteration does not require any padding.

ZEROREAD: All data in the global input buffer are loaded, and a single zero is
inserted in front of the data as padding. It is used to load a part of the zero padding at
the top slice of the input feature map.

SHIFTREAD: When importing new data, the last pixel of the previously imported
data is concatenated with the newly read data. The function exists to use the most
recently imported data in the ZEROREAD scenario.

The 1-bit wire, InB_flag, generates a read enable signal for the global input buffer by

entering a two-input AND gate with a read enable signal asserted by the controller in the
KU. If the “FIFO write selection” is ZEROZERO, then the wire has a value of 0, and the KU
receives only a “zero” value for the padding. Therefore, KU receives “zero” data without

accessing the global input buffer.

The kernel mode also affects padding. The 3 x 3 convolution operation with a stride
of 1 requires adding zeros around all sides of the input feature map. For a stride of 2,
additional zeros are only required for the upper and left sides of the input. Padding is not

appliedina 1 x 1 convolution operation.

4.10. Bias—Activation—Scaling Pipeline Architecture

In this study, we targeted the YOLOv5n model and quantized the model to an integer
representation. Thus, we designed an extra circuit to calculate bias, activation, and scaling
parameters for converting the final convolution result into the feature map for the next
layer. Figure 14 illustrates the bias-activation—scaling (BAS) pipeline architecture used
in the proposed SoC hardware. All parameters, bias, activation, and scaling parameters
are represented as 16-bit integers, allowing for a fast and low-cost area architecture. The
pipeline process consists of six stages and requires seven cycles to process one piece of data.

I T |
I I Fi Z
Slope Sc_ale_ I Dequantization I map Zero
5 Quantization Denominator Point
Bias Denominator | |
L |
® | =l
REG |
| I |
[1b1 =3 I I
I|:*:|I |
[ReG] RG] [REG] [REG] | rREa——IREG
Cycle 1 Cycle 2,3 Cycle 4 | Cycle 5 |Cycle 6Cycle 7
(a) (b) (o)

Figure 14. Bias-activation—scaling pipeline architecture: (a) bias; (b) activation (Leaky ReLU);

(c) scaling.

The bias is seen as a part of batch normalization (BN). BN is usually used to train CNN

models. In YOLOV5 training, the BN for CNN layers is calculated using Equation (2):

o Xeono — E(X)

T e re PP

()

Here, the X;ono is the output of convolutional filter, E(X) represents the mean, Var(X)
means the variance, epsilon (€) is added for numerical stability, p is the batch normal-
ization scaling factor, and B is the shift factor (bias). These parameters are determined

Electronics 2024, 13, 1564

13 of 18

during the training process, and they remain constant within each layer during the
inference [14,28,29,31].
The convolution operation with bias can be represented by the following equation:

Y =Y (w1 * Xpmar) + Briass)

where w; represents weight, Xrp4p is input feature map, and f;;,; means the constant
number called “bias”. We simplify the addition in Equation (2) as Equation (3). This
simplification reduces hardware costs without sacrificing accuracy. In addition, we used
techniques like rounding and truncation in the BAS circuit.

The 36-bit dividers are used in the Leaky ReLU activation circuit, and they require
two clock cycles to prevent setup-time violations at a high frequency of 400 MHz. The
scaling process consists of four stages and operates for four cycles. The process involves
multiplication, division, rounding, addition, truncation, and subtraction, in that order. The
scaling applies the parameters generated by quantization.

5. Advantage of the Proposed Architecture

The YOLOv5n model requires numerous computations for each layer, with almost 99%
of them involving the convolution operation. Therefore, we developed a reconfigurable
and optimized hardware accelerator for convolution operations. The proposed computing
method in the CNN accelerator supports stride 1 and stride 2 convolution operations with
various kernel sizes. It enhances computational efficiency by using slicing and iterations,
thereby accelerating image processing in hardware. Our design efficiently utilizes hardware
resources to perform fast convolution operations, offering numerous structural advantages.
In this section, we will discuss the improvements in the proposed architecture.

5.1. High PE Array Utilization with Flexibility

Most CNN accelerator architectures demonstrate good resource utilization, reaching
up to 90% in commonly used kernel modes [3,28]. Due to CNN models becoming more
complex by increasing the depth and scale of deep neural networks (DNNs) and using
different kernel sizes and striding for image processing, they cannot perform all necessary
convolution operations. Traditional CNN accelerators typically only operate with a kernel
size of 3 x 3 and a stride of 1 or they may support a stride of 2 with less than 25%
utilization. Therefore, we designed a new CNN accelerator architecture with FDCA to
efficiently perform convolution operations using newly introduced kernel modes. Our
proposed architecture demonstrates that PE resource utilization exceeds 95%, even for
convolutions with kernel sizes of 3 x 3 or 6 x 6 at a stride of 2. Table 2 presents the PE
utilization ratio for various kernel modes with a slice size of 160.

Table 2. Clock cycle and utilization according to kernel mode.

Architecture Kenel Mode Clock Cycle (N) Utilization (%)
Previ 3 x 3 Stride 1 26,224 99.86
A r}f,‘”ous 3 x 3 Stride 2 26,224 24.96
rchitecture 1 x 1 Stride 1 25,609 11.11
4 3 x 3 Stride 1 26,015 99.98
APr}‘:POSG 3 x 3 Stride 2 6848 96.4
rchitecture 1 x 1 Stride 1 25,611 11.11
Future Work 6 X 6 Stride 2 6848 96.4

5.2. Convolution Operation 3 x 3 Stride 2 Speed Optimization

Table 3 presents a comparison of the clock cycles required for 3 x 3 convolution with a
stride of 2 in the previous and proposed architectures for processing the YOLOv5n model.
The proposed architecture consumes about 9.4-times-fewer clock cycles. The proposed

Electronics 2024, 13, 1564

14 of 18

architecture provided more data in the same time frame for the speed optimization of
convolution operation with 3 x 3 stride 2.

Table 3. Comparison of stride-2-mode clock cycle.

Layer Previous (1DCA) [28] Proposed (4FDCA)
Layer0 3,841,024 475,136
Layerl 1,920,512 237,568
Layer3 1,868,032 185,088
Layer5 1,841,792 158,848
Layer7 1,828,687 145,728
Layer18 920,896 79,424
Layer21 914,336 72,864

Total 13,135,264 1,354,656

Clock Cycle Ratio 9.39 1

5.3. Area Efficiency

In general, the optimized architecture for the specific kernel (size) mode demonstrates
high PE utilization. However, designing individual sub-circuits for each kernel mode
requires a significant amount of hardware resources. Therefore, in our proposed CNN
accelerator, we have designed it so that more than 90% of the KU area is shared among all
kernel modes. The multiplexer (Mux) is used to configure the connection between the PEs
of the KU for the required kernel mode.

Table 4 presents the total number of logic gates for the proposed CNN architecture
and previous architectures in different kernel modes. It shows that the proposed archi-
tecture’s area is 2.14 times smaller than the total area of the previous architecture. The
area was reduced to 2.14 times instead of 3 times due to the convolution operation with a
1 x 1 kernel mode, which utilizes only one PE, but the total area of KU is still 9 times larger.

Table 4. Comparison of area using gate count number.

Architecture Kernel Mode Gate Count Number
3 x 3 Stride 1 10,100,000
Application Using Previous 3 x 3 Stride 2 10,100,000
Architecture [28] 1 x 1Stride 1 2,700,000
Merge 22,900,000
3 x 3 Stride 1
Proposed Architecture 3 x 3 Stride 2 10,697,551
1 x 1Stride 1
Expanded Architecture 6 X 6stride 1,2 +200,000

Although the proposed architecture supports two additional kernel modes, the total
chip area increases by only 6% compared to using the predicted 3 x 3 stride 1 mode
separately. If we expand the proposed CNN accelerator architecture to support 6 x 6
convolution operations with stride 1 and stride 2 modes in the future, the expected chip
area will increase by 6% compared to the current area.

5.4. Data Load Optimization

The proposed design significantly improves data loading speed, performing nine
times faster than a GPU. In our design, we efficiently utilized the following components to
achieve faster data loading on the circuit:

e We used reconfigurable input FIFOs to organize, transfer, and reuse data on the KU.
FIFOs manage all data feeding and reusing procedures on the vertical and horizontal
lines of the KU unit during convolution operations. Our design allows for the use of
up to three FIFOs, depending on the configuration of the KU (PEs array). Because of

Electronics 2024, 13, 1564

15 of 18

these three reconfigurable input FIFOs, the KU can reuse feature map data, reducing
the number of data loads by up to one-third.

o The KU reuses data by sharing them among connected PEs. Typically, the GPU reads
each pixel of input data from DDR memory three times. In our design, the KU reuses
the same pixel data three times by passing it to other PEs. This mechanism reduces
the number of memory accesses by three times.

5.5. Small On-Chip Memory Size

Each of the four FDCAs consists of 32 KUs. Each FDCA is designed to simultaneously
compute four input and eight output channels. The overall design supports the computing
of 16 parallel input channels by employing four FDCAs in a parallel architecture. This
allows for the simultaneous processing of data from 16 (sixteen) input feature map channels.

Modern CNN models, such as the YOLOv5n used in this study, require the processing
of more than sixteen input and output data channels during convolutional layer computa-
tion. Simultaneously processing all corresponding channels in parallel requires multiple
connected PE arrays and on-chip memories, which increases the hardware costs of the CNN
accelerator by occupying a large amount of hardware resources. Therefore, we applied the
slicing and iteration concepts to efficiently process the input data. As a result, we were able
to optimize power consumption and chip area utilization.

By using the concept of slicing, we convolve a part of the input feature map with given
filters to generate the sliced output result. In this scenario, only the essential slice data will
be copied from DDR memory for processing in the FDCA block. Therefore, the proposed
architecture stores partial input feature map data corresponding to a single slice, and it uses
a smaller on-chip memory size in the design compared to storing the entire feature map.
Utilizing small on-chip memories helps to minimize the number of accesses to the DDR
memory, reduce data loading time, and maximize data reuse in slice rotating operations,
which involve reusing the same data for different filter weights.

6. Hardware Implementation Results

In order to evaluate the hardware cost of the proposed CNN accelerator, we imple-
mented it on the Xilinx Zynq UltraScale+ MPSoC ZCU102 FPGA platform. For hardware
synthesis, Vivado 2022.2 is used. Our implementation occupies 249,357 LUTs, 2304 DSPs,
and 567 KB of BRAMs in FPGA resource utilization. The CNN accelerator operates at
400 MHz, and the reference image inference speed is 47.17 frames per second (FPS). Table 5
shows the implementation results on FPGA.

Table 5. FPGA implementation result.

[14] [29] [31] Proposed Architecture
FPGA VC707 ZCU102 Zyng-7020 ZCU102
LUT 86k 95k 30.1k 249k
DSP 168 609 149 2304
BRAM (kB) 2308 2160 4731 567
GOPs 464.7 85.8 - 1075.2
Parameter Variable bit fixed point 16-bit fixed point 16-bit fixed point 16-bit integer
Model YOLOv2-tiny YOLOv2-tiny YOLOv4-tiny YOLOv5n
CMOS chip SRAM (kB) - - - 275.75

To test the performance of the proposed CNN accelerator, we accelerated a quantized
YOLOv5n model for inference. For this purpose, we have developed a microcode-based
CNN controller circuit that allows for the programmability of any CNN model. Our modi-
fied YOLOV5n is an object detection model pre-trained on the COCO dataset. All model
parameters, including weights, bias values, and input feature map data, were quantized to
8-bit integers. The model’s object detection performance was evaluated using mean average
precision (mAP). We set our threshold at 0.5 (mAP@0.5) and achieved a detection mAP of

Electronics 2024, 13, 1564

16 of 18

43.1% on the FPGA. The results demonstrate that the proposed architecture implementation
significantly improves inference throughput while maintaining high accuracy, similar to
the software model.

Furthermore, the proposed CNN accelerator was implemented as a system on chip
(SoC) using a Samsung 14 nm CMOS process. The die consists of a shared LPDDR,
RISC-V core, and CNN accelerator with FDCA, which are utilized in collaboration with
partner companies. The area allocated for the CNN accelerator architecture is 10.96 mm?
(3943 um x 2780 um). The chip operates at a frequency of 400 MHz, with a timing constraint
set at 2.5 ns. The total power consumption of the chip is 18.52 mW. The implementation
uses on-chip SRAM with a size of 275.75 KB. Figure 15 shows the overall chip layout of the
proposed CNN accelerator SoC.

~With FDCA

Figure 15. Full chip layout implemented in 14 nm CMOS process.

7. Conclusions

In this paper, we proposed a high-speed CNN accelerator architecture based on a
flexible diagonal cyclic array (FDCA). The proposed four-FDCA architecture comprises
1152 PEs that can process the data for sixteen input channels and eight output channels
simultaneously. The proposed architecture enables the execution of convolution operations
with different kernel modes and strides to accelerate the latest CNN models. In the
proposed design, we introduced new optimization techniques that improved chip area
efficiency by 6% and reduced total chip area utilization by 2.14 times compared to individual
block designs for each kernel mode. We also minimized the number of DRAM accesses by
using data reuse methods.

The CNN accelerator was synthesized and verified on the Xilinx ZCU102 FPGA and
implemented in SoC silicon using 14 nm CMOS process technology. The results demonstrate
that the proposed CNN accelerator can perform convolution operations 3.8 times faster,
using the proposed new PE array structure, compared to previous CNN accelerators.

Author Contributions: Conceptualization, D.-Y.L., H.A. and H.-W.K.; Designing, D.-Y.L. and H.A;
verification, M.J.; validation, S.-B.P. and M.].; formal analysis H.A. and D.-Y.L.; writing—original
draft preparation D.-Y.L.; writing—review and editing, H.A. and S.-B.P; funding, S.-H.S. and K.-M.L.
All authors have read and agreed to the published version of the manuscript.

Electronics 2024, 13, 1564 17 of 18

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant for
RLRC funded by the Korea government (MSIT) (No. 2022R1A5A8026986, RLRC, 25%), and was also
supported by the Institute of Information and communications Technology Planning and Evaluation
(IITP) grant funded by the Korea government (MSIT) (No. 2020-0-01304, Development of Self-
Learnable Mobile Recursive Neural Network Processor Technology, 25%). It was partly supported by
Innovative Human Resource Development for Local Intellectualization program through the Institute
of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (II'TP-2024-2020-0-01462, 25%). The National R&D Program supported
this research through the National Research Foundation of Korea (NRF) funded by the Ministry of
Science and ICT (No. 2020M3H2A1076786, System Semiconductor specialist nurturing, 25%).

Data Availability Statement: Data are contained within the article.

Acknowledgments: We thank Thaising Thaing (thaisingtaing@chungbuk.ac.kr) for his invaluable
contributions to this work.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Akkad, G.; Mansour, A.; Inaty, E. Embedded Deep Learning Accelerators: A Survey on Recent Advances. IEEE Trans. Artif. Intell.
2023, early access.

2. Jocher, G.; Stoken, A.; Chaurasia, A.; Borovec, J.; Xie, T.; Kwon, Y.; Michael, K.; Changyu, L.; Fang, J. Yolov5. NanoCode012.
v6.0—Models. 2021. Available online: https://github.com /ultralytics/yolov5 (accessed on 12 October 2021).

3. Huang, W,; Wu, H.; Chen, Q.; Luo, C.; Zeng, S.; Li, T.; Huang, Y. FPGA-Based High-Throughput CNN Hardware Accelerator
with High Computing Resource Utilization Ratio. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 4069-4083. [CrossRef] [PubMed]

4. Yang,].; Fu, W,; Cheng, X,; Ye, X.; Dai, P.; Zhao, W. 52 Engine: A Novel Systolic Architecture for Sparse Convolutional Neural
Networks. IEEE Trans. Comput. 2022, 71, 1440-1452.

5. Wei, X;; Yu, CH.; Zhang, P; Chen, Y.; Wang, Y.; Hu, H.; Liang, Y.; Cong,]. Automated systolic array architecture synthesis for
high throughput CNN inference on FPGAs. In Proceedings of the 2017 54th ACM/EDAC/IEEE Design Automation Conference
(DAC), Austin, TX, USA, 18-22 June 2017; pp. 1-6.

6. Andri, R.; Cavigelli, L.; Rossi, D.; Benini, L. Hyperdrive: A Multi-Chip Systolically Scalable Binary-Weight CNN Inference Engine.
IEEE]. Emerg. Sel. Top. Circuits Syst. 2019, 9, 309-322. [CrossRef]

7. Sedukhin, S.; Tomioka, Y.; Yamamoto, K. In search of the performance-and energy-efficient CNN accelerators. IEICE Trans.
Electron. 2022, 105, 209-221. [CrossRef]

8. Liu, C.-N,; Lai, Y.-A.; Kuo, C.-H.; Zhan, S.-A. Design of 2D Systolic Array Accelerator for Quantized Convolutional Neural
Networks. In Proceedings of the 2021 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu,
Taiwan, 19-22 April 2021; pp. 1-4.

9. Jouppi, N.P; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.; Borchers, A.; et al.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), Toronto, ON, Canada, 24-28 June 2017; pp. 1-12.

10. Wang, Y.; Wang, Y,; Shi, C.; Cheng, L.; Li, H.; Li, X. An Edge 3D CNN Accelerator for Low-Power Activity Recognition. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 2021, 40, 918-930. [CrossRef]

11. Parmar, Y,; Sridharan, K. A Resource-Efficient Multiplierless Systolic Array Architecture for Convolutions in Deep Networks.
IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 370-374. [CrossRef]

12. Chen, Y.-H.; Krishna, T.; Emer,].S.; Sze, V. Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional
Neural Networks. IEEE |. Solid-State Circuits 2017, 52, 127-138. [CrossRef]

13. Lu, Y.C; Chen, CW,; Pu, C.C; Lin, Y.T,; Jhan,] K,; Liang, S.P. Live Demo: An 176.3 GOPs Object Detection CNN Accelerator
Emulated in a 28 nm CMOS Technology. In Proceedings of the 2021 IEEE 3rd International Conference on Artificial Intelligence
Circuits and Systems (AICAS), Washington, DC, USA, 6-9 June 2021; pp. 1-4.

14. Nguyen, D.T.; Nguyen, T.N.; Kim, H.; Lee, H.J. A High-Throughput and Power-Efficient FPGA Implementation of YOLO CNN
for Object Detection. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 1861-1873. [CrossRef]

15. Yepez,].; Ko, S.-B. Stride 2 1-D, 2-D, and 3-D Winograd for Convolutional Neural Networks. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 2020, 28, 853-863. [CrossRef]

16. Li, Y;Luy,S,; Luo,].; Pang, W.; Liu, H. High-performance Convolutional Neural Network Accelerator Based on Systolic Arrays
and Quantization. In Proceedings of the 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP), Wuxi,
China, 19-21 July 2019; pp. 335-339.

17. Yang, G.; Lei, J.; Xie, W,; Fang, Z.; Li, Y.; Wang, J.; Zhang, X. Algorithm /Hardware Codesign for Real-Time On-Satellite CNN-Based
Ship Detection in SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5226018. [CrossRef]

18. Ansari, A.; Ogunfunmi, T. Hardware Acceleration of a Generalized Fast2-D Convolution Method for Deep Neural Networks.

IEEE Access 2022, 10, 16843-16858. [CrossRef]

https://github.com/ultralytics/yolov5
https://doi.org/10.1109/TNNLS.2021.3055814
https://www.ncbi.nlm.nih.gov/pubmed/33587711
https://doi.org/10.1109/JETCAS.2019.2905654
https://doi.org/10.1587/transele.2021LHP0003
https://doi.org/10.1109/TCAD.2020.3011042
https://doi.org/10.1109/TCSII.2019.2907974
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/TVLSI.2019.2905242
https://doi.org/10.1109/TVLSI.2019.2961602
https://doi.org/10.1109/TGRS.2022.3161499
https://doi.org/10.1109/ACCESS.2022.3149505

Electronics 2024, 13, 1564 18 of 18

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Yan, T.; Zhang, N.; Li, J.; Liu, W.; Chen, H. Automatic Deployment of Convolutional Neural Networks on FPGA for Spaceborne
Remote Sensing Application. Remote Sens. 2022, 14, 3130. [CrossRef]

Ardakani, A.; Condo, C.; Ahmadi, M.; Gross, W.J. An Architecture to Accelerate Convolution in Deep Neural Networks. IEEE
Trans. Circuits Syst. I Regul. Pap. 2018, 65, 1349-1362. [CrossRef]

Wang, J.; Yuan, Z; Liu, R.; Feng, X.; Du, L.; Yang, H.; Liu, Y. GAAS: An Efficient Group Associated Architecture and Scheduler
Module for Sparse CNN Accelerators. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2020, 39, 5170-5182. [CrossRef]
Wang, J.; Park, S.; Park, C.S. Spatial Data Dependence Graph Based Pre-RTL Simulator for Convolutional Neural Network
Dataflows. IEEE Access 2022, 10, 11382-11403. [CrossRef]

Li, J.; Un, K-E; Yu, W.-H.; Mak, P-I.; Martins, R.P. An FPGA-Based Energy-Efficient Reconfigurable Convolutional Neural
Network Accelerator for Object Recognition Applications. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 3143-3147. [CrossRef]
Qiu, J.; Wang, J.; Yao, S.; Guo, K; Li, B.; Zhou, E. Going deeper with embedded fpga platform for convolutional neural network.
In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA,
21-23 February 2016.

Huan, Y.;; Xu, J.; Zheng, L.; Tenhunen, H.; Zou, Z. A 3D Tiled Low Power Accelerator for Convolutional Neural Network. In
Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27-30 May 2018; pp. 1-5.
Tu, E; Yin, S.; Ouyang, P; Tang, S.; Liu, L.; Wei, S. Deep Convolutional Neural Network Architecture with Reconfigurable
Computation Patterns. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017, 25, 2220-2233. [CrossRef]

Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016; pp. 779-788.
Son, H.; Na, Y.; Kim, T.; Al-Hamid, A.A.; Kim, H. CNN Accelerator with Minimal On-Chip Memory Based on Hierarchical Array.
In Proceedings of the 2021 18th International SoC Design Conference (ISOCC), Jeju Island, Republic of Korea, 6-9 October 2021;
pp. 411-412.

Zhang, S.; Cao, J.; Zhang, Q.; Zhang, Q.; Zhang, Y.; Wang, Y. An FPGA-Based Reconfigurable CNN Accelerator for YOLO. In
Proceedings of the 2020 IEEE 3rd International Conference on Electronics Technology (ICET), Chengdu, China, 8-12 May 2020;
pp- 74-78.

Adiono, T.; Putra, A.; Sutisna, N.; Syafalni, I.; Mulyawan, R. Low Latency YOLOv3-Tiny Accelerator for Low-Cost FPGA Using
General Matrix Multiplication Principle. IEEE Access 2021, 9, 141890-141913. [CrossRef]

Li, P; Che, C. Mapping YOLOv4-Tiny on FPGA-Based DNN Accelerator by Using Dynamic Fixed-Point Method. In Proceedings
of the 2021 12th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP), Xi’an, China, 10-12
December 2021; pp. 125-129.

Babu, P; Parthasarathy, E. Hardware acceleration for object detection using YOLOv4 algorithm on Xilinx Zynq platform.
J. Real-Time Image Process. 2022, 19, 931-940. [CrossRef]

Ma, Y.; Cao, Y.; Vrudhula, S.; Seo, J.-S. Optimizing the Convolution Operation to Accelerate Deep Neural Networks on FPGA.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 1354-1367. [CrossRef]

Zhang, C; Sun, G.; Fang, Z.; Zhou, P; Pan, P.; Cong, J. Caffeine: Toward Uniformed Representation and Acceleration for Deep
Convolutional Neural Networks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2019, 38, 2072-2085. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs14133130
https://doi.org/10.1109/TCSI.2017.2757036
https://doi.org/10.1109/TCAD.2020.2966451
https://doi.org/10.1109/ACCESS.2022.3146413
https://doi.org/10.1109/TCSII.2021.3095283
https://doi.org/10.1109/TVLSI.2017.2688340
https://doi.org/10.1109/ACCESS.2021.3120629
https://doi.org/10.1007/s11554-022-01234-y
https://doi.org/10.1109/TVLSI.2018.2815603
https://doi.org/10.1109/TCAD.2017.2785257

	Introduction
	Related Work and Motivation
	Overall Hardware Architecture
	Four FDCA for Convolution Acceleration
	Max Pooling
	Element-Wise Adder
	Upsampling (Resize)
	Global Input/Output Buffers and AXI4 Data Bus
	CNN Controller

	The Proposed CNN Accelerator
	Stride in Convolutional Operation
	Convolution Using Kernel 3 3 with Stride 1 in Kernel Unit
	Convolution Using Kernel 3 3 with Stride 2 in Kernel Unit
	Convolution Using Kernel 1 1 with Stride 1 in Kernel Unit
	Convolution Using Kernel 6 6 in Kernel Unit
	Reconfigurable Input FIFO
	FIFO Output Cache Memory
	Slice and Iteration
	Input Padding
	Bias–Activation–Scaling Pipeline Architecture

	Advantage of the Proposed Architecture
	High PE Array Utilization with Flexibility
	Convolution Operation 3 3 Stride 2 Speed Optimization
	Area Efficiency
	Data Load Optimization
	Small On-Chip Memory Size

	Hardware Implementation Results
	Conclusions
	References

