

 electronics-13-01575

electronics-13-01575

Electronics 2024, 13(8), 1575; doi:10.3390/electronics13081575

Article

Design and Evaluation of Device Authentication and Secure Communication System with PQC for AIoT Environments

Yu-Jen Chen 1, Chien-Lung Hsu 2,3,4,5,6, Tzu-Wei Lin 7,8 and Jung-San Lee 1,*

1

Department of Information Engineering and Computer Science, Feng Chia University, Taichung 407, Taiwan

2

Graduate Institute of Business and Management, Chang Gung University, Taoyuan 333, Taiwan

3

Department of Information Management, Chang Gung University, Taoyuan 333, Taiwan

4

Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan

5

Department of Visual Communication Design, Ming-Chi University of Technology, New Taipei City 243, Taiwan

6

Department of Nursing, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan

7

i. School, Feng Chia University, Taichung 407, Taiwan

8

Information Security Office, Office of Information Technology, Feng Chia University, Taichung 407, Taiwan

*

Correspondence: leejs@fcu.edu.tw

Citation: Chen, Y.-J.; Hsu, C.-L.; Lin, T.-W.; Lee, J.-S. Design and Evaluation of Device Authentication and Secure Communication System with PQC for AIoT Environments. Electronics 2024, 13, 1575. https://doi.org/10.3390/electronics13081575

Academic Editors: Chuan Zhang, Xintao Huan, Heng Wang, Yan Zong and Guyue Li

Received: 15 January 2024 / Revised: 17 April 2024 / Accepted: 18 April 2024 / Published: 20 April 2024

Abstract

:

With the rapid development of Internet of Things (IoT) technology, the number of IoT users is growing year after year. IoT will become a part of our daily lives, so it is likely that the security of these devices will be an important issue in the future. Quantum computing is maturing, and the security threat associated with quantum computing will be faced in the transmissions of IoT devices, which mainly use wireless communication technologies. Therefore, to ensure the protection of transmitted data, a cryptographic algorithm that is efficient in defeating quantum computer attacks needs to be developed. In this paper, we propose a device authentication and secure communication system with post-quantum cryptography (PQC) for AIoT environments using the NTRU and Falcon signature mechanism, which can resist quantum computer attacks and be used in AIoT environments to effectively protect the confidentiality, integrity, and non-repudiation of transmitted data. We also used Raspberry Pi to simulate AIoT devices for implementation.

Keywords:

AIoT; device authentication; post-quantum cryptography; NTRU; falcon signature

1. Introduction

Artificial intelligence (AI) has the potential to have widespread impacts and applications, and its development has been rapidly growing, including the implementation of strategies, policies, and their adoption [1,2]. The energy consumption of 5G networks can be reduced while still allowing for communication among a large number of devices, such as hundreds or thousands of sensors in Internet of Things (IoT) networks [2,3]. Although the 5G-IoT environment introduces potential possibilities in developments and applications in many fields due to the convenience and quality of services, the security and privacy of transmitted data are of utmost importance because data in IoT networks are transmitted through wireless communication [4]. Because wireless networks are easily attacked compared with wire networks, serious information security events will be faced by wireless networks, such as privacy leakage, man-in-the-middle attacks, data tempering, etc. The rapid progress of AIoT has led to the discussion on security concerns due to the distinct networking structure and method of acquiring and storing data [5,6]. Continuously capturing and gathering data increases security risks because devices are always online, and adversaries have unlimited opportunities to attack AIoT systems.

Quantum computing technology has attracted researchers and famous manufacturers’ attention, such as IBM, Google, Microsoft, Hon Hai Precision Industry, Alibaba, etc., and has been developed rapidly; quantum computing technology will change people’s daily life [7]. On the other hand, the risk of traditional cryptographic mechanisms being broken by quantum computing technology via Shor’s algorithm [8] is increasing. Post-quantum cryptography (PQC) is a cryptographic solution that can prevent attacks from quantum computers using modern computers to prevent such risks before quantum computers are produced rapidly. The proposed scheme utilized one PQC mechanism called the number theory research unit (NTRU) [9] and fast-Fourier lattice-based compact signatures over the NTRU (the Falcon signature mechanism) [10] to design secure communication mechanisms.

Due to the reasons above, we designed and evaluated a device authentication and secure communication system with PQC for AIoT environments. We utilized the NTRU [9] and Falcon signature mechanisms [10] because both can resist attacks from quantum computers with better speeds of encryption, decryption, and sign mechanisms than those of traditional cryptographic mechanisms [11]. In summary, the proposed scheme can protect the security and privacy of transmitted data while resisting attacks from quantum computers. The remaining sections of the paper are outlined below. AIoT, post-quantum cryptography, the NTRU [9], and the Falcon signature [10] are introduced in Section 2. Section 3 introduces the proposed scheme, and security and performance analysis are detailed in Section 4 and Section 5, respectively. Section 6 describes system implementation. We present a discussion on the research results and limitations of this research in Section 7. Finally, the conclusion is drawn in Section 8.

2. Related Works

We introduce and review AIoT, post-quantum cryptography, the NTRU [9], and the Falcon signature [10] in this section.

2.1. AIoT

In many areas, AIoT is expected to improve the quality of services of the industry because devices in the Internet of Things have the ability to simulate human intelligence and support decision making by continuously learning from large amounts of data [5,12]. AIoT opens up possibilities for applications in all kinds of fields because of its transparency, agility, and adaptability [6,12]. The adoption of AIoT ends up on top of the to-do list of many applications, such as smart homes, smart factories, smart cities, and so on [12,13,14,15,16,17,18,19]. However, AIoT also provides opportunities for adversaries. Once an AIoT system is established, all related devices will exist in the network until the system is shut down. Adversaries can attack any device in wireless networks through various means, such as eavesdropping, the tempering of transmitted data, impersonation, etc. The proposed scheme is designed to be implemented in AIoT environments for transmitted data protection and device authentication.

2.2. Post-Quantum Cryptosystem

The development of quantum computing is expected to have a huge impact on information technology in the future. One of the applications, called quantum cryptanalysis, will be a serious threat to information security because of its ability to attack public key cryptosystems, such as RSA, the Diffie–Hellman cryptosystem, elliptic curve cryptography (ECC), etc., through Shor’s algorithm [8]. The post-quantum cryptosystem can be a solution for resisting attacks from quantum computers. The post-quantum cryptosystem has advantages, which are listed below. First, the costs of establishment and development are lower than that of a quantum cryptosystem. The post-quantum cryptosystem can be executed by modern computers and systems. Second, public key encryption and digital signature mechanisms can be applied by post-quantum cryptosystems. Post-quantum cryptosystems include lattice-based, hash-based, code-based, multivariate, and supersingular elliptic curve isogeny cryptography. As the matter of fact, post-quantum cryptosystems will replace traditional public key cryptosystems soon. The proposed scheme utilizes lattice-based cryptosystems to design a secure communication mechanism.

2.3. NTRU

The NTRU is a latticed-based public key cryptosystem including encryption and signature [9]. The security of the NTRU depends on the shortest vector problem (SVP) in the lattice. The SVP is defined as the discovery of a datum point that has the shortest distance from the base point [9]. The NTRU can resist attacks from Shor‘s algorithm [8] while maintaining attractive features, such as better encryption and decryption speed, smaller key size, and higher security compared with those of traditional cryptosystems [9]. The NTRU is proven as one of the quantum-resistant cryptographic algorithms by National Institute of Standards and Technology (NIST) [9,20]. Although the NTRU has failed to compete among the post-quantum cryptography standardization finalists, it is still widely used because of its advantages over other lattice based cryptography systems [9,20,21]. The NTRU is more efficient than traditional cryptographic mechanisms and can be implemented in devices with restricted resources, such as AIoT, embedded devices, etc. [22,23,24]. A property comparison of RSA, ECC, and NTRU [9] is presented in Table 1 [25]. Compared with RSA and ECC, all algorithms can achieve an encryption and signature mechanism, but RSA cannot achieve a key exchange mechanism. The NTRU has a faster encryption speed than RSA and ECC. RSA and the NTRU are easier to use in key distribution than ECC is. Among the three algorithms, only the NTRU is a quantum-resistant cryptographic algorithm.

ECC and the NTRU [9] can provide the same security level as RSA can with a shorter key length, so ECC and the NTRU [9] need much less storage and a much shorter transmission time. These attractive features are advantages for devices with restricted resources. Compared with RSA, ECC, and the NTRU [9], ECC has the shortest key length at the same security level. The NTRU [9] has a shorter key length than RSA does under a security level of 192 bits and 256 bits. The comparison of key lengths of RSA, ECC, and the NTRU [9] at different security levels is shown in Table 2 [26] and Figure 1 [26].

Although the NTRU [9] needs more time to generate a key, the NTRU [9] needs less time to encrypt and decrypt than ECC does at a security level of 80 bits. The NTRU [9] is faster than ECC is in key generation, encryption, and decryption at a security level of 112 bits and beyond. The execution times of ECC and the NTRU [9] at different security levels are shown in Table 3 [26]. The proposed scheme utilized the NTRU [9] for encryption and decryption mechanisms. For details of the NTRU, readers can refer to Hoffstein et al.’s work [9].

2.4. Falcon Signature Mechanism

The Falcon signature mechanism adopts a trapdoor function named fast Fourier sampling [10]. The Falcon signature mechanism is also proven by NIST to be one of the quantum-resistant cryptographic algorithms [10,20]. The security of the Falcon signature mechanism is based on the short integer solution (SIS) [10]. Features of the Falcon signature mechanism [10] are listed as below. First, the Falcon signature mechanism [10] utilizes discrete Gaussian sampling over the integers, which is able to avoid the key exposure problem while generating multiple signatures. Second, signatures generated by the Falcon signature mechanism [10] are shorter than those generated by other lattice-based signature mechanisms with the same public key length. Third, the Falcon signature mechanism [10] can generate thousands of signatures in a few seconds with a verification speed about 5 to 10 times faster than that of other signature mechanisms. Forth, the Falcon signature mechanism [10] allows the use of long-term security parameters with the same time complexity O (n log ⁡ n) under degree n. Although the Falcon signature mechanism [10] is intended to defend against quantum computer attacks, due to its high efficiency, its [10] use has become widespread. For details of the Falcon signature mechanism, readers can refer to Fouque et al.’s work [10]. The proposed scheme utilized the Falcon signature mechanism [10] for message verification.

3. Proposed Scheme

We design and evaluate a device authentication and secure communication system with PQC for AIoT environments. IoT devices in the proposed system capture and send data through wireless networks to the gateway. The gateway can be a mobile phone, an IoT gateway, a stand-alone laptop computer, etc. After receiving data from IoT devices, the gateway transmits data to the server.

3.1. System Structure

The system of the proposed scheme includes IoT devices, a gateway, a server, and a smart token. The smart token stores the private key and parameters of the gateway securely and output parameters after decryption and signing mechanisms come into effect. After that, data will be sent to server. The system structure of the proposed scheme is illustrated in Figure 2.

The proposed scheme includes four phases. In the preliminary phase, the system generates essential parameters and functions. IoT devices are registered on the server using a MAC address, and the server generates and distributes private keys, public keys, and initial values to IoT devices in the registration phase through a secure channel. In an IoT device’s gateway communication phase, it captures and encrypts data with the public key of the gateway, and then generates a signature with the private key of the IoT device itself. Then, the IoT device sends encrypted data and the signature to the gateway. The gateway verifies the signature using the public key of the IoT device and decrypts data using the private key in the smart token. In the gateway’s server communication phase, the gateway sends encrypted data and the signature to the server. After receiving encrypted data and verifying the signature, the server stores the encrypted data and signature. Notations of the proposed scheme are shown in Table 4.

3.2. Preliminary

A truncated polynomial, R, with degree N − 1 is defined as R = (a 0 + a 1 x + a 2 x 2 + … + a N − 1 x N − 1) mod (x N − 1) , where N is a positive integer and the highest degree of R. q and p are positive integers. q and p are coprime, and p is smaller than q.

3.3. IoT Devices’ Gateway Communication Phase

An IoT device captures and encrypts data with the public key of the gateway, and then generates a signature with the private key of the IoT device itself. Then, the IoT device sends the encrypted data and signature to the gateway. The gateway verifies the signature using the public key of the IoT device and decrypts data using the private key in the smart token. The gateway is a receiver in the phase. The gateway has an NTRU-based private and public key, obtaining this by randomly choosing polynomials f and g, which have to be secret. The gateway obtains the private keys (f G and f p G) and public key, h G . Detailed descriptions are given in the following and illustrated in Figure 3.

Step 1: The IoT device randomly chooses polynomial r D and computes encrypted data, e D G .

 e D G = r D ∗ h G + m (mod q)

(1)

Step 2: The IoT device randomly generates salt r s D ← 0 , 1 320 and utilizes r s D and m to generate c D G ← Hashtopoint (r s D m) . Then, the IoT device computes (t D G , z D G , s D G) via fast Fourier transforming (FFT) and fast-Fourier sampling (ffSampling) functions and checks if s D G is in bound β via s D G 2 > β 2 .

 t D G ← (FFT (c D G) , FFT (0)) ∗ B ^ D − 1

(2)

 z D G ← ffSampling n (t D G , T D)

(3)

 s D G = (t D G − z D G) B ^ D

(4)

Step 3: The IoT device utilizes s D G to generate (s 1 D G and s 2 D G) via inverse fast Fourier transforming. s 2 D G is compressed to string s D G ′ . After that, the IoT device generates signature s i g D G and sends (r s D , e D G and s i g D G) to the gateway.

 s i g D G = (r s D , s D G ′)

(5)

Step 4: After receiving (r s D , e D G and s i g D G), the gateway computes a D G . The coefficient of a D G will be between − q / 2 and q / 2 . Then, the gateway utilizes f p G to recover m.

 a D G = f G ∗ e D G (mod q)

(6)

 m = f p G ∗ a D G (mod p)

(7)

Step 5: The gateway utilizes (m , r s D , q and n) to generate c D G ← HashToPoint (r s D m , q , n) and decompress s D G ′ to s 2 D G . Then, the gateway utilizes (c D G , s 2 D G , h s D and q) to compute s 1 D G and checks if (s 1 D G and s 2 D G) is in bound β via (s 1 D G , s 2 D G) 2 ≤ β 2 or rejects verification.

 s 1 D G ← c D G − s 2 D G h s D mod q

(8)

3.4. Gateways’ Server Communication Phase

The gateway sends the encrypted data and signature to the server. Detailed descriptions are given in the following and illustrated in Figure 4.

Step 1: The gateway randomly chooses polynomial r G and computes the encrypted data, e G S .

 e G S = r G ∗ h S + m (mod q)

(9)

Step 2: The gateway randomly generates salt r s G ← 0 , 1 320 and utilizes r s G and m to generate c G S ← Hashtopoint (r s G m) . Then, the gateway computes (t G S , z G S and s G S) using FFT and ffSampling , and checks if s G S is in bound β via s G S 2 > β 2 .

 t G S ← (FFT (c G S) , FFT (0)) ∗ B ^ G − 1

(10)

 z G S ← ffSampling n (t G S , T G)

(11)

 s G S = (t G S − z G S) B ^ G

(12)

Step 3: The gateway utilizes s G S to generate (s 1 G S and s 2 G S) via inverse fast Fourier transform. s 2 G S is compressed to string s G S ′ . After that, the gateway generates signature s i g G S and sends (r s G , e G S and s i g G S) to the server.

 s i g G S = (r s G , s G S ′)

(13)

Step 4: The after receiving (r s G , e G S and s i g G S), the server computes a G S . The coefficient of a G S will be between − q / 2 and q / 2 . Then, the server utilizes f p G to recover m.

 a G S = f S ∗ e G S (mod q)

(14)

 m = f p S ∗ a G S (mod p)

(15)

Step 5: The server utilizes (m , r s G , q and n) to generate c G S ← HashToPoint (r s G m , q , n) and decompress s G S ′ to s 2 G S . Then, the server utilizes (c G S , s 2 G S , h s G and q) to compute s 1 G S and checks if (s 1 G S and s 2 G S) is in bound β via (s 1 G S , s 2 G S) 2 ≤ β 2 or rejects verification.

 s 1 G S ← c G S − s 2 G S h s G mod q

(16)

4. Security Analysis

We analyze the proposed scheme below.

4.1. Correctness

Receivers in the proposed scheme (the gateway and server) compute polynomials a D G and a G S , respectively, where coefficients in both polynomials are between − q / 2 and q / 2 . The whole computation is represented in Equation (17). After that, receivers recover message m, resulting in Equation (18). While recovering message m, because f p ∗ f = 1 , the recovery of message m will be successful.

 a = (f ∗ e) mod q ≡ (f ∗ (r ∗ h + m)) mod q ≡ ((f ∗ r ∗ p * f q ∗ g) + (f ∗ m)) mod q ≡ ((r ∗ p ∗ g) + (f ∗ m)) mod q

(17)

 m ≡ (f p ∗ a) mod p ≡ f p ∗ ((r ∗ p ∗ g) + (f ∗ m)) mod p ≡ (f p * r ∗ p ∗ g) + (f p ∗ f ∗ m) (mod p) ≡ m (mod p)

(18)

4.2. Confidentiality

If an adversary aims to recover a message through sniffing in the IoT device’s gateway communication phase, the adversary must have knowledge of the private key of gateway f p G according to Equation (7). f p G is stored in the smart token securely. Similarly, we can prove that an adversary cannot recover message m in the gateway’s server communication phase because they lack knowledge of the private key of server f p S according to Equation (15). As a result, the proposed scheme can achieve confidentiality.

4.3. Integrity

Assuming that an adversary aims to modify transmitted messages, they must forge the signature generated through the Falcon signature mechanism [10]. The adversary cannot generate a signature without knowing the private key of gateway f p G and server f p S . As a result, integrity can be achieved by verifying the signatures.

4.4. Non-Repudiation

Because of the utilization of the signature mechanism, the IoT device and gateway cannot deny sending the message. IoT devices use private key polynomial vectors for signatures (B ^ D and T D) to generate s D G as a part of signature s i g D G , and the gateway verifies s i g D G using public key polynomial vectors for the signature of IoT device h s D . Because s i g D G can only be verified using h s D , IoT devices cannot deny sending the message to the gateway. By the same token, the gateway cannot deny sending the message to the server. As a result, non-repudiation can be achieved.

5. Performance Analysis

We analyzed the performance of NTRUEncrypt [9,27] and the Falcon signature mechanisms [10,28] with different security levels utilized in the proposed scheme. We used a personal computer (PC) with an i7-7000 3.60 GHZ 8-core central processing unit (CPU, Intel Corporation, Santa Clara, US), 32 GB random-access memory (RAM, Kingston Technology Corporation, Fountain Valley, CA, USA), and Windows 10 Education as an operation system (OS, Microsoft Corporation, Washington, DC, USA). We also used a Raspberry Pi 3B module (Raspberry Pi Foundation, Cambridge, UK) with an ARM Cortex-A53 1.4 GHz 4-core CPU (Arm Holdings plc, Cambridge, UK), 1 GB RAM (Micron Technology, Inc., Boise, US), and Raspberry Pi OS (Raspberry Pi Foundation, Cambridge, UK). We executed NTRUEncrypt [9,27] and Falcon signature mechanisms [10,28] with different security levels and recorded the execution time. Results of the performance analysis of the NTRUEncrypt [9,27] and Falcon signature mechanisms [10,28] are shown in Table 5 and Table 6, respectively. As a result, the time required to execute NTRUEncrypt [9,27] on a PC is less than 2 s, while in Raspberry Pi 3B, the time required is less than 20 s. Executing the Falcon signature mechanism [10,28] on a PC takes less than 3 s, but executing Falcon-512 in Raspberry Pi 3B takes about 5 times longer than executing Falcon-256 does.

According to the results above, we can estimate the execution time of the proposed scheme with different security levels. We defined NTRU IoT as the time required for the IoT device to execute NTRUEncrypt [9,27], NTRU G W as the time the gateway requires to execute NTRUEncrypt [9,27], and NTRU S as the time the server requires to execute NTRUEncrypt [9,27]. We also defined Fal IoT as the time the IoT device takes to execute the Falcon signature mechanism [10,28]. We defined Fal G W as the time the gateway takes to execute the Falcon signature mechanism [10,28], and Fal S as the time the server takes to execute the Falcon signature mechanism [10,28]. Results of the computational complexity and performance time of the proposed scheme are shown in Table 7. In an IoT device’s gateway communication phase, the IoT device will take 24.409 s, and the gateway will take 1.5582 s with a medium level of NTRUEncrypt [9,27] and Falcon-64 [10,28]. If the highest level of NTRUEncrypt [9,27] and Falcon-512 [10,28] is applied in the IoT device’s gateway communication phase, the IoT device will take 229.74 s, and the gateway will take 4.6346 s. The execution of the IoT device’s gateway communication phase will take 25.9627 to 234.3746 s. In the gateway’s server communication phase, the gateway and server will take 1.5582 s separately with a medium level of NTRUEncrypt [9,27] and Falcon-64 [10,28]. If the highest level of NTRUEncrypt [9,27] and Falcon-512 [10,28] is applied in the gateway’s server communication phase, the gateway and server will take 4.6346 s separately. The execution of the gateway’s server communication phase will take 3.1164 to 9.2692 s. Compared with other research on similar system structures, the proposed scheme takes much more time. For examples, Shang et al.’s scheme takes at least 0.895 ms [29], and Zhang et al.’s scheme takes 0.75 s [30]. However, the proposed scheme achieves encryption, signature, and device authentication at once, so the number of execution rounds is smaller than that in Shang et al.’s [29] and Zhang et al.’s scheme [30] while maintaining security features. Moreover, the proposed scheme applies quantum-resistant cryptographic algorithms: the NTRU [9] and Falcon signature mechanism [10]. A performance analysis of the proposed scheme is shown in Table 7.

6. System Implementation

We utilized Raspberry Pi 3B with temperature and humidity sensor module DHT11 as an IoT device, a PC as a gateway, and a server. We used Python as the programing language for gathering data, NTRUEncrypt [9,27], and Falcon signature mechanisms [10,28]. The PC was connected to a smart token that stored private keys of the gateway. We installed VMWare ESXi in the server and executed a virtual machine with Ubuntu Linux as the OS, with 2 GB RAM and a 50 GB hardware capacity, and MySQL phpMyAdmin for storing the information on device registration, the cipher, and the signature. Table 8 presents specifications of the proposed system, and Figure 5 illustrates the system implementation structure of the proposed system.

Raspberry Pi was registered in the server first (Figure 6), and the server stored information on Raspberry Pi in the database utilizing the hostname and MAC address (Figure 7). We can see that Raspberry Pi’s information (Figure 6) will appear in server (Figure 7) if Raspberry Pi registered successfully.

After gathering data from DHT11, Raspberry Pi transformed data into binary (Figure 8), encrypted binary data (Figure 9), and signed binary data (Figure 10) using the scheme proposed above, and then Raspberry Pi transmitted data to the gateway through wireless communication.

After receiving data, as shown in Figure 11 and Figure 12, the gateway verified the signature and decrypted data using the private key in the smart token, as shown in Figure 13. As a result, the gateway verified the signature successfully and showed that the signature was correct in Figure 14; the gateway also decrypted data successfully, as shown in Figure 15, which shows the same results as those in Figure 8.

The gateway encrypted and signed the data using the private key in the smart token, as shown in Figure 16 and Figure 17, and the gateway sent the data to the server, as shown in Figure 18 and Figure 19.

7. Result and Discussions

We present a discussion on the research results and limitations of this research.

We proposed a device authentication and secure communication system for AIoT environments using NTRU [9] and Falcon signature mechanisms [10]. NTRU and Falcon signature mechanisms have been proven to be quantum-resistant public key cryptosystems [9,10,20]. Although the NTRU cannot be used in post-quantum cryptography standardization, it is still applied widely because of its advantages over other lattice-based schemes [9,20,21]. Moreover, the Falcon signature mechanism [10] is a lattice-based compact signature with advantages over the NTRU, so the NTRU [9] and Falcon signature mechanisms [10] can be integrated. Because of reasons above, we could design a scheme that allows the execution of encryption, authentication, and signature mechanisms at once. However, since the NTRU [9] fell short among the candidates of post-quantum cryptography standardization, other lattice-based schemes can be discussed in the future, such as CRYTSTAL-Kyber [31] or CRYSTALS-Dilithium digital signature algorithms [32].

This research has limitations. Although the proposed scheme was able to achieve security features, such as quantum resistance, it did not seem ideal in terms of execution time. The results will limit the implementation possibilities of AIoT environments. We take smart medical or telemedicine systems with AIoT as examples. Biodata are measured by wearable devices and transmitted through gateways to a server, and the server can analyze and predict each patient’s health condition or possible disease using AI algorithms. Biodata may not be transmitted every second, so the proposed scheme can be applied in this scenario. If data have to be transmitted every second, the proposed scheme is not suitable unless a redeployment of end devices better than that provided by the Raspberry Pi 3B module is carried out in the system implementation of the proposed scheme. With the rapid development of PQC, hardware circuit and system design has been discussed. For example, Xie et al. proposed a tutorial for PQC and introduced related techniques [33].

8. Conclusions

The ability to collect data in real time through sensors and analyze data using machine learning algorithms is enabling AIoT to expand its possibilities and applications into many sectors. AIoT creates value for sustainable industries by combining artificial intelligence, the Internet of Things, and big data analysis. Nevertheless, AIoT requires security measures suitable for the environment in which it operates because of its reliance on networks that are exposed to adversaries from any internet location. Due to the limited resources of devices in AIoT systems, which can lead to a loss of attractive features, traditional security measures may not be an appropriate solution. We designed and evaluated a device authentication and secure communication system with PQC for AIoT environments that utilized PQC to provide a lightweight security scheme while resisting attacks from quantum computers. We chose NTRU and Falcon signature mechanisms to design and implement secure algorithms. We analyzed the security and performance of the proposed scheme and proved that it can achieve confidentiality, integrity, and non-repudiation meanwhile also achieving efficiency.

Author Contributions

Conceptualization, Y.-J.C., C.-L.H., and T.-W.L.; methodology, Y.-J.C. and C.-L.H.; software, Y.-J.C.; validation, Y.-J.C. and T.-W.L.; formal analysis, Y.-J.C.; writing—original draft preparation, Y.-J.C.; writing—review and editing, T.-W.L., C.-L.H., and J.-S.L.; visualization, Y.-J.C. and T.-W.L.; supervision, C.-L.H. and J.-S.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The authors declare no conflicts of interest.

References

	

Murphy, K.; Di Ruggiero, E.; Upshur, R.; Willison, D.J.; Malhotra, N.; Cai, J.C.; Malhotra, N.; Lui, V.; Gibson, J. Artificial intelligence for good health: A scoping review of the ethics literature. BMC Med. Ethics 2021, 22, 14. [Google Scholar] [CrossRef] [PubMed]

	

Lin, T.-W.; Hsu, C.-L. Privacy-Preserved Hierarchical Authentication and Key Agreement for AI-Enabled Telemedicine Systems. In Proceedings of the 2021 International Conference on Security and Information Technologies with AI, Internet Computing and Big-Data Applications, Taichung City, Taiwan, 18–20 November 2021; pp. 134–142. [Google Scholar]

	

Li, S.; Xu, L.D.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [Google Scholar] [CrossRef]

	

Wong, A.M.; Hsu, C.-L.; Le, T.-V.; Hsieh, M.-C.; Lin, T.-W. Three-Factor Fast Authentication Scheme with Time Bound and User Anonymity for Multi-Server E-Health Systems in 5G-Based Wireless Sensor Networks. Sensors 2020, 20, 2511. [Google Scholar] [CrossRef] [PubMed]

	

Cheng, S.M.; Hong, B.K.; Hung, C.F. Attack Detection and Mitigation in MEC-Enabled 5G Networks for AIoT. IEEE Internet Things Mag. 2022, 5, 76–81. [Google Scholar] [CrossRef]

	

Nozari, H.; Szmelter-Jarosz, A.; Ghahremani-Nahr, J. Analysis of the Challenges of Artificial Intelligence of Things (AIoT) for the Smart Supply Chain (Case Study: FMCG Industries). Sensors 2022, 22, 2931. [Google Scholar] [CrossRef] [PubMed]

	

Dyakonov, M. When will useful quantum computers be constructed? Not in the foreseeable future, this physicist argues. Here’s why: The case against: Quantum computing. IEEE Spectr. 2019, 56, 24–29. [Google Scholar] [CrossRef]

	

Shor, P.W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 1997, 26, 1484–1509. [Google Scholar] [CrossRef]

	

Hoffstein, J.; Pipher, J.; Silverman, J.H. NTRU: A ring-based public key cryptosystem. In Proceedings of the Algorithmic Number Theory, Third International Symposium, ANTS-III, Portland, OR, USA, 21–25 June 1998; pp. 267–288. [Google Scholar]

	

Fouque, P.-A.; Hoffstein, J.; Kirchner, P.; Lyubashevsky, V.; Pornin, T.; Prest, T.; Ricosset, T.; Seiler, G.; Whyte, W.; Zhang, Z. Falcon: Fast-Fourier Lattice-Based Compact Signatures over NTRU. Available online: https://falcon-sign.info/falcon.pdf (accessed on 22 December 2023).

	

Lei, X.; Liao, X. NTRU-KE: A Lattice-based Public Key Exchange Protocol. IACR Cryptol. ePrint Arch. 2013, 2013, 718. [Google Scholar]

	

Rong, G.; Xu, Y.; Tong, X.; Fan, H. An edge-cloud collaborative computing platform for building AIoT applications efficiently. J. Cloud Comput. 2021, 10, 36. [Google Scholar] [CrossRef]

	

Ricquebourg, V.; Menga, D.; Durand, D.; Marhic, B.; Delahoche, L.; Loge, C. The Smart Home Concept: Our immediate future. In Proceedings of the 2006 1ST IEEE International Conference on e-Learning in Industrial Electronics, Hammamet, Tunisia, 18–20 December 2006; pp. 23–28. [Google Scholar]

	

Lucke, D.; Constantinescu, C.; Westkämper, E. Smart Factory—A Step towards the Next Generation of Manufacturing. In Proceedings of the Manufacturing Systems and Technologies for the New Frontier: The 41st CIRP Conference on Manufacturing Systems, Tokyo, Japan, 26–28 May 2008; pp. 115–118. [Google Scholar]

	

Schaffers, H.; Komninos, N.; Pallot, M.; Trousse, B.; Nilsson, M.; Oliveira, A. Smart Cities and the Future Internet: Towards Cooperation Frameworks for Open Innovation. In The Future Internet: Future Internet Assembly 2011: Achievements and Technological Promises; Springer: Berlin/Heidelberg, Germany, 2011; pp. 431–446. [Google Scholar]

	

Fernández-Caramés, T.M.; Fraga-Lamas, P. A Review on the Use of Blockchain for the Internet of Things. IEEE Access 2018, 6, 32979–33001. [Google Scholar] [CrossRef]

	

Panarello, A.; Tapas, N.; Merlino, G.; Longo, F.; Puliafito, A. Blockchain and IoT Integration: A Systematic Survey. Sensors 2018, 18, 2575. [Google Scholar] [CrossRef]

	

Dai, H.N.; Zheng, Z.; Zhang, Y. Blockchain for Internet of Things: A Survey. IEEE Internet Things J. 2019, 6, 8076–8094. [Google Scholar] [CrossRef]

	

Ray, P.P.; Dash, D.; De, D. Edge computing for Internet of Things: A survey, e-healthcare case study and future direction. J. Netw. Comput. Appl. 2019, 140, 1–22. [Google Scholar] [CrossRef]

	

Post-Quantum Cryptography. Available online: https://csrc.nist.gov/Projects/Post-Quantum-Cryptography (accessed on 18 March 2024).

	

Kim, J.; Park, J.H. NTRU+: Compact Construction of NTRU Using Simple Encoding Method. IEEE Trans. Inf. Forensics Secur. 2023, 18, 4760–4774. [Google Scholar] [CrossRef]

	

Perlner, R.A.; Cooper, D.A. Quantum resistant public key cryptography: A survey. In Proceedings of the 8th Symposium on Identity and Trust on the Internet, Gaithersburg, MD, USA, 14–16 April 2009; pp. 85–93. [Google Scholar]

	

Mailloux, L.O.; Lewis, C.D., II; Riggs, C.; Grimaila, M.R. Post-Quantum Cryptography: What Advancements in Quantum Computing Mean for IT Professionals. IT Prof. 2016, 18, 42–47. [Google Scholar] [CrossRef]

	

Bi, J.; Han, L. Lattice Attacks on NTRU Revisited. IEEE Access 2021, 9, 66218–66222. [Google Scholar] [CrossRef]

	

Ahmed Othman, K.; Shaimaa Khudhair, S.; Hind Jumaa, S.; Zainab Khyioon, A. Subject Review: Comparison between RSA, ECC & NTRU Algorithms. Int. J. Eng. Res. Adv. Technol. 2019, 5, 11–15. [Google Scholar] [CrossRef]

	

Loriya, H.T.; Kulshreshta, A.; Keraliya, D.R. Security analysis of various public key cryptosystems for authentication and key agreement in wireless communication network. Int. J. Adv. Res. Comput. Commun. Eng. 2017, 6, 267–274. [Google Scholar]

	

Singh, G. NTRU-Python3. Available online: https://github.com/topShotZexN/NTRU-Python3 (accessed on 22 December 2023).

	

Prest, T. falcon.py. Available online: https://github.com/tprest/falcon.py (accessed on 22 December 2023).

	

Shang, Z.; Ma, M.; Li, X. A Secure Group-Oriented Device-to-Device Authentication Protocol for 5G Wireless Networks. IEEE Trans. Wirel. Commun. 2020, 19, 7021–7032. [Google Scholar] [CrossRef]

	

Zhang, Y.; Li, B.; Wu, J.; Liu, B.; Chen, R.; Chang, J. Efficient and Privacy-Preserving Blockchain-Based Multifactor Device Authentication Protocol for Cross-Domain IIoT. IEEE Internet Things J. 2022, 9, 22501–22515. [Google Scholar] [CrossRef]

	

Schwabe, P.; Avanzi, R.; Bos, J.; Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schanck, J.M.; Seiler, G.; Stehle, D. CRYSTALS-Kyber Algorithm Specifications and Supporting Documentation (Version 3.02). 2021. Available online: https://www.pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf (accessed on 1 February 2024).

	

Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schwabe, P.; Seiler, G.; Stehlé, D. CRYSTALS-Dilithium: A Lattice-Based Digital Signature Scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 2018, 238–268. [Google Scholar] [CrossRef]

	

Xie, J.; Zhao, W.; Lee, H.; Roy, D.B.; Zhang, X. Hardware Circuits and Systems Design for Post-Quantum Cryptography—A Tutorial Brief. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 1670–1676. [Google Scholar] [CrossRef]

[image: Electronics 13 01575 g001]

Figure 1. Key length of RSA, ECC, and NTRU with different security levels [26].

Figure 1. Key length of RSA, ECC, and NTRU with different security levels [26].

[image: Electronics 13 01575 g001]

[image: Electronics 13 01575 g002]

Figure 2. System structure of proposed scheme.

Figure 2. System structure of proposed scheme.

[image: Electronics 13 01575 g002]

[image: Electronics 13 01575 g003]

Figure 3. IoT devices’ gateway communication phase.

Figure 3. IoT devices’ gateway communication phase.

[image: Electronics 13 01575 g003]

[image: Electronics 13 01575 g004]

Figure 4. Gateways’ server communication phase.

Figure 4. Gateways’ server communication phase.

[image: Electronics 13 01575 g004]

[image: Electronics 13 01575 g005]

Figure 5. System implementation structure of proposed system.

Figure 5. System implementation structure of proposed system.

[image: Electronics 13 01575 g005]

[image: Electronics 13 01575 g006]

Figure 6. Raspberry Pi’s registration request.

Figure 6. Raspberry Pi’s registration request.

[image: Electronics 13 01575 g006]

[image: Electronics 13 01575 g007]

Figure 7. Server storing information on Raspberry Pi in database.

Figure 7. Server storing information on Raspberry Pi in database.

[image: Electronics 13 01575 g007]

[image: Electronics 13 01575 g008]

Figure 8. Raspberry Pi transformed data to binary.

Figure 8. Raspberry Pi transformed data to binary.

[image: Electronics 13 01575 g008]

[image: Electronics 13 01575 g009]

Figure 9. Raspberry Pi encrypted data.

Figure 9. Raspberry Pi encrypted data.

[image: Electronics 13 01575 g009]

[image: Electronics 13 01575 g010]

Figure 10. Raspberry Pi signed data.

Figure 10. Raspberry Pi signed data.

[image: Electronics 13 01575 g010]

[image: Electronics 13 01575 g011]

Figure 11. Gateway receiving encrypted data.

Figure 11. Gateway receiving encrypted data.

[image: Electronics 13 01575 g011]

[image: Electronics 13 01575 g012]

Figure 12. Gateway receiving signed data.

Figure 12. Gateway receiving signed data.

[image: Electronics 13 01575 g012]

[image: Electronics 13 01575 g013]

Figure 13. Private key in smart token.

Figure 13. Private key in smart token.

[image: Electronics 13 01575 g013]

[image: Electronics 13 01575 g014]

Figure 14. Gateway verifying signature.

Figure 14. Gateway verifying signature.

[image: Electronics 13 01575 g014]

[image: Electronics 13 01575 g015]

Figure 15. Gateway decrypting data.

Figure 15. Gateway decrypting data.

[image: Electronics 13 01575 g015]

[image: Electronics 13 01575 g016]

Figure 16. Gateway encrypting data.

Figure 16. Gateway encrypting data.

[image: Electronics 13 01575 g016]

[image: Electronics 13 01575 g017]

Figure 17. Gateway signing data.

Figure 17. Gateway signing data.

[image: Electronics 13 01575 g017]

[image: Electronics 13 01575 g018]

Figure 18. Encrypted data being stored in server.

Figure 18. Encrypted data being stored in server.

[image: Electronics 13 01575 g018]

[image: Electronics 13 01575 g019]

Figure 19. Signed data being stored in server.

Figure 19. Signed data being stored in server.

[image: Electronics 13 01575 g019]

Table 1. Property comparison of RSA, ECC, and NTRU [25].

Table 1. Property comparison of RSA, ECC, and NTRU [25].

	
Algorithms

	
RSA

	
ECC

	
NTRU

	
Properties

	
Encryption

	
O

	
O

	
O

	
Signature

	
O

	
O

	
O

	
Key exchange

	
X

	
O

	
O

	
Encryption speed

	
Slow

	
Fast

	
Fastest

	
Key distribution

	
Easy

	
Difficult

	
Easy

	
Quantum-resistant

	
X

	
X

	
O

Table 2. Key length of RSA, ECC, and NTRU with different security levels [26].

Table 2. Key length of RSA, ECC, and NTRU with different security levels [26].

	
Algorithms

	
RSA

	
ECC

	
NTRU

	
Security Level (bits)

	
80

	
1024

	
160

	
2008

	
112

	
2048

	
224

	
3033

	
128

	
3072

	
256

	
3501

	
192

	
7680

	
384

	
5193

	
256

	
15,360

	
521

	
7690

Table 3. Execution time of ECC and NTRU with different security levels [26].

Table 3. Execution time of ECC and NTRU with different security levels [26].

	
Items

	
Security Level (bits)

	
Key Generation (ms)

	
Encryption (ms)

	
Decryption (ms)

	
Algorithms

	
NTRU-251

	
80

	
75.65

	
1.68

	
8.22

	
ECC-192

	
80

	
57.87

	
37.81

	
19.15

	
NTRU-347

	
112

	
144.16

	
3.11

	
15.70

	
ECC-224

	
112

	
234.11

	
52.52

	
26.35

	
NTRU-397

	
128

	
188.92

	
3.97

	
20.26

	
ECC-256

	
128

	
478.22

	
68.72

	
35.00

	
NTRU-587

	
192

	
412.10

	
8.42

	
44.42

	
ECC-384

	
192

	
947.43

	
182.35

	
90.61

	
NTRU-787

	
256

	
738.75

	
14.49

	
79.48

	
ECC-521

	
256

	
2055.04

	
423.25

	
211.35

Table 4. Notations of proposed scheme.

Table 4. Notations of proposed scheme.

	Notations
	Definitions

	 h D , h G , h S
	Public key polynomial vectors for encryption and decryption of IoT devices, gateway, and server respectively.

	 f D , f p D
	Private key polynomial vectors for encryption and decryption of IoT devices.

	 f G , f p G
	Private key polynomial vectors for encryption and decryption of gateway.

	 f S , f p S
	Private key polynomial vectors for encryption and decryption of server.

	 r D , r G
	Random polynomials.

	 m
	Message, which is a polynomial.

	 e D G , e G S
	Encrypted data, which are polynomials.

	 h s D , h s G , h s S
	Public key polynomial vectors for signatures of IoT devices, gateway, and server respectively.

	 (B ^ D , T D)
	Private key polynomial vectors for signatures of IoT devices.

	 (B ^ G , T G)
	Private key polynomial vectors for signatures of gateway.

	 r s D , r s G
	Random polynomials for signatures.

	 s i g D G , s i g G S
	Signatures.

	Q
	Random integer for signature.

	n
	Degree of lattice polynomial.

	 β
	Bound of vector.

Table 5. Performance analysis of NTRUEncrypt.

Table 5. Performance analysis of NTRUEncrypt.

	
Hardware

	
PC (s)

	
Raspberry Pi 3B (s)

	
Security Level

	
Medium

	
0.2812

	
4.405

	
Standard (80 bits)

	
0.5312

	
8.688

	
High (128 bits)

	
0.8118

	
11.345

	
Highest (160 bits)

	
1.8266

	
17.993

Table 6. Performance analysis of Falcon signature mechanism.

Table 6. Performance analysis of Falcon signature mechanism.

	
Hardware

	
PC (s)

	
Raspberry Pi 3B (s)

	
Security Level

	
Falcon-64

	
1.277

	
20.004

	
Falcon-128

	
1.273

	
20.820

	
Falcon-256

	
1.334

	
39.242

	
Falcon-512

	
2.808

	
211.747

Table 7. Performance analysis of proposed scheme.

Table 7. Performance analysis of proposed scheme.

	
Phase

	
IoT Devices-Gateways Communication Phase

	
Gateways-Server Communication Phase

	
Role

	
IoT Device

	
 NTRU IoT + Fal IoT = (4.405 + 20.004) ~ (17.993 + 211.747) s = 24.409 ~ 229.74 s

	
N/A

	
Gateway

	
 NTRU G W + Fal G W = (0.2812 + 1.277) ~ (1.8266 + 2.808) s = 1.5582 ~ 4.6346 s

	
 NTRU G W + Fal G W = (0.2812 + 1.277) ~ (1.8266 + 2.808) s = 1.5582 ~ 4.6346 s

	
Server

	
N/A

	
 NTRU S + Fal S = (0.2812 + 1.277) ~ (1.8266 + 2.808) s = 1.5582 ~ 4.6346 s

	
Total

	
 NTRU IoT + Fal IoT + NTRU G W + Fal G W = 25.9672 ~ 234.3746 s

	
 NTRU G W + Fal G W + NTRU S + Fal S = 3.1164 ~ 9.2692 s

Table 8. Specifications of proposed system.

Table 8. Specifications of proposed system.

	
Devices

	
IoT Device

	
Gateway

	
Server

	
Specification

	
Module

	
Raspberry Pi 3B

	
PC

	
Server

	
CPU

	
ARM Cortex-A53 1.4 GHz 4-core

	
i7-7000 3.60 GHZ 8-core

	
E5-2620v3 6-core

	
RAM

	
1 GB

	
32 GB

	
32 GB

	
OS

	
Raspberry Pi

	
Windows 10 Education

	
VMWare ESXi-6.7.0

	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Check ACS Ref Order

Check Foot Note Order

Check CrossRef

media/file13.jpg
id date username name. mac

10 2021-07-08 15:37:01 nike913058 ntruserver-virtual-machine C29DCE4BS

13 2021-07-09 14:17:42 M0844009

media/file4.png
Gateway Server
Smart Token

Raspberry Pi

media/file30.png
b'320 31 36 31 2P 36 31 31 31 21 38 21°
repalce::: 308313083130308313131313631
j2. 3; 6, -1, -1, 1)

Temperate Decrypted Message : [1, @, 8, 8, 1]
Humidity Decrypted Message : [1, @, 1, @, 8, 1]

media/file18.png
Temperate Encrypted Message : [117, 94, 91, 35, 78, 126, 37, 109, 59, 27, 121, 1o, 95, 122, 110, 2
s 10y 0, S8, 39, 96, 73, 92,113, ‘37, 52,80, 86, ‘126, 117, 125, T, 22, 94, 49,111,126, ‘123, 711,
117, 21, 47, 18, 49, 30, 14, 6, 55, 68, 50, 125, 120, 71, 36, 31, 35; BO, 44, 114, 98, 119, 87, 81,
22, 86, 91, 53, 162, 53, 5, 59, 43, 41, 98, 127, 26, 70, 114, 69, 28, 2, 111, O, 89, 124, 113, 121,
92, 56, 54, 46, 109, 37, 7, 94, 6, 57, 71,86, X1, &7, 117, 101, 127, 26, 17, 94, ‘86, B6, 127, 36, 4
2, 85, 120, 8r, 4, 31, 91, 8, 68, 509, 18, 95, 15, 113, 78, 14, 19, 29, 7B, 5, 29, 59, 123, 89, 122,
31, 122, 94, 98, 61, 124, 74, 119, 965, 41, 28, 113, 33, 68, 32, 86, 39, 37, 13, 71, 38, 110, 65, 31
v ol 8. 23 14T, AT 78,]

Humidity Encrypt Message : [117, 94, 92, 35, 77, 127, 37, 189, 59, 27, 121, 18, 95, 122, 110, 2, 17
1; .00, 58, 39, 9, 13, 92,113, 1T; 52, 80, :86, 126, 117,125, T, 22,94, 49,111, 126, ‘123, 71, ‘11
Ty 21, AF,; 18, 49, 30, 14, 6, 55, 68, 50, 125, 120, 71, 36; 31, 35, 89, 44, 114, 98, 119, 87, 81, 2
2, 86, 91, 53, 162, 53, 5, 59, 43, 41, 98, 127, 26, 79, 114, 65, 28, 2, 111, O, 89, 124, 113, 121,
92, 56, 54, 46, 169, 37, 7, 94, 6, 57, 7, 86, 11, 47, 117, 101, 127, 26, 11, 94, ‘B6, 86, 127/, 36, 4
2, 85, 120, 87, 4, 21, 91, 8, 68, 50, 18, 95, 15, 113, 78, 14, 19,6 29, 7B, 5, 29, 59, 123, 89, 122,
31, 122, 94, 98, €1, 124, 74, 119, 96, 41, 28, 113, 33, 68, 32, 86, 20, 37, 13, 71, 38, 110, 65, 31
46, 91, 23, 117, 117, 79, 98]

media/file35.jpg
Columa e Funcion S
B i

wwo moumo < Zoeror15 150940 |
tomperaure varcha(z000) 5
oy sarchrz000) v

media/file21.jpg
R

SR

media/file26.png
Data container: Oxc900
Label: NTEU
Sppinfo: Private
Did: Eey
NTROD % 0O Frivate Eev?0
Data type: Private
Value: 30 31 30 31 30 30 31 31 31 31 30 31

media/file39.png

media/file27.jpg
=>> pk.,verify(b"17*C", sig)
True
==> pk.verify(b"41%", siqg)

True

media/file3.jpg
L~
: .

Raspberry Pi
i

Gateway

‘Smart Token

media/file22.png
d: |4

Date: |2021-07-15 13:06:04

Temperature:

Humidity:

[117, 94, 91, 35, 78, 126, 37, 109, 59, 27, 121, 10, 95, 122, 110, 2, 77, 60, 58, 39, 96, 73, 92, 113, 17, 52, 80, 86, 126, 117, 125, 7, 22, 94, 49, 111, 126, 123, 71, 117, 21, 47, 18, 49, 30, 14, 6, 55, 68, 50, 125, 120, 71, 36, 31, 35, 80, 44, 114, 98, 119, 87,
81, 22, 86, 91, 53, 102, 53, 5, 59, 43, 41, 98, 127, 25, 70, 114, 69, 28, 2, 111, 0, 89, 124, 113, 121, 92, 56, 54, 46, 109, 37, 7, 94, &, 57, 7, 86, 11, 47, 117, 101, 127, 25, 17, 94, 86, 86, 127, 35, 42, 85, 120, 87, 4, 31, 91, 8, 68, 50, 18, 95, 15, 113, 78, 14,
19, 29, 78, 5, 29, 59, 123, 89, 122, 31, 122, 94, 98, 61, 124, 74, 119, 96, 41, 28, 113, 33, 68, 32, 86, 30, 37, 13, 71, 38, 110, 65, 31, 46, 91, 23, 117, 117, 79, 98]

[117, 94, 92, 35, 77, 127, 37, 109, 58, 27, 121, 10, 95, 122, 110, 2, 77, 60, 58, 39, 96, 73, 92, 113, 17, 52, 80, 85, 126, 117, 125, 7, 22, 94, 49, 111, 125, 123, 71, 117, 21, 47, 18, 49, 30, 14, 6, 55, 68, 50, 125, 120, 71, 35, 31, 35, 80, 44, 114, 98, 119, 87,
81, 22, 86, 91, 53, 102, 53, 5, 59, 43, 41, 98, 127, 26, 70, 114, 69, 28, 2, 111, 0, 89, 124, 113, 121, 92, 56, 54, 46, 109, 37, 7, 94, 6, 57, 7, 86, 11, 47, 117, 101, 127, 26, 17, 94, 86, 86, 127, 36, 42, 85, 120, 87, 4, 31, 91, 8, 68, 50, 18, 95, 15, 113, 78, 14,
1929785295912389122311229498611247411996412811333,683286303?137138110,6531469123117117?998]

media/file19.jpg
2 sigeak.aign(biazict)
b‘1\xw\xuwh\xazMu\mmf\.xfs\xbz\x:nm&m\»mxmmesmmmw

1ax\XbOKF3\xFO\xFe-\xOF\n\xF Fp\x0B\xfc: c0y ﬂﬁmﬁg@\mu‘mwﬁu
ed\xee; 5\x1cg=\xb6 \xfd\xa6\xad\xa
\x92\xe2i \xag\xfe\xc3_ \xa7z\xfd§\&;,ﬂ0\)\iv&g, @c- G’\

o \KEBS 300\ 1oV RSSO a\cab e Vede\ody ise

X00\x00'
>>> liq-lr sign(b"41%")
n-7;:z\igun\xv¢v\mmmxmm\.m:\xwmn@ywmmmnm \xad=\xe6\x13

\s F\xd5¢ "\ FAXTF "\
e P P N DT e

mcm \xbd\xb7\x93
\ ' 1A\XOB\XF 2% \ 96\ xa6\

media/file7.jpg
Gateway

Randomly choose ¢
egs= ¢ -+ (mod)
Randomly Salt ..« (0, 1}
cgs<Hashtopoint(r,.| 1m)
tos<(FFT(cgs), FFTO)BG
=5 ffSmpling, (ts, To)
sas = (tgs - 265)Ba

While |Isgs! 1%>[8?]

(S1css S20) < in0FFT(s65)

10. 5'gs<-Compress(ss;,)

11 Return sige =(rg, s'cs)

0 e NS D e

12

(i s Siges)

19. ags =, *egs (mod)

20, m=f, *ags (mod)

21, cgs=Hashiopoint(r,, | Im, g, n)
2. 53« Decompress(s'cs)

2. s165+cas = $ag5higmod g
24, sy 5o 1s]8%]

media/file28.png
>»> pk.verify(b"17*Cc", sig)
True
=>> pk.verify(b"41%", sig)
True

media/file10.png
OS: VMWare ESXi
VM: Ubuntu 18.04.4 LTS
Language: Python

Raspberry Pi 3B. OS: Windows 10
OS: Raspberry P1 OS Database: MySQL
Language: Python Language: Python

media/file33.jpg
>>»> sig = sk.sign(b"17°¢")

555 sig

"7 JulKFL\XIB\xdb\xb9\xbaZ\ X9 \X3\XCB\GI\ KB \XGB\XI1\xFF\X183E\K0B\K9G\xa2\x98 \xeorx
BC\XB3\xacy\cO\xbO D\ \x D \XEB\OA\ OB\ A2\ 0206\ FB\XeS \xc i e \xadacehabel
XeATUCO\Kd\XBF\X99\KF\XES \xeb?T\x93\x18\c1d\x043 \x1F%: \xla \xbe\xb2\x1bEO\x90mdz\xa6
P2\XCB]\XdFV\XDFa\Ka5\04Y-\x9a\X2WV\xbB=\X1TOVKE\XB2\ FFxeS\abe a9 {\ 1 \82-\xF 4\
IV XG8\xFO\xbd e\ \xB \xBo\xd5(\xdFy \xd\ G0 racH\xe9\ 139 \xET\xe2\xd5d\x96\xaSL, {
\xbaR\xDe\x169R\x99\xe0\xclo\xbe\xd\x10 \xcOh0\xaba\xd \F2\xdbS\x08\xac_\xf9\x9az\xBa\
AB3XCO\XCC\xdaa\x 8\ XbIUNKEI\XTFI\KF FE\X00\0B1001XBO \X0O\XOO\X00K0"

55> sigesk. sign(b"41%")

> sig
b"7\x1a\XLFN\FPX"YC\X8a0/ \xaT \XOF \xdd\ X890\ xea\XBT\XESN \xdl7 [\xed\x1d\ 9T \xed\xd2\xo
V1748V 00 \KIb-H\XOF\xaT\x1F\xeB\XES }m\xBBL\KcT\xbeNC \x1d\x Fd1\x9aa): \xaT\xee\xce~1\x6
EIXI8\XACZ\XOAXEDOAKFE\KFD\Xb1; \xb5+\xac\ 1€ \xdO\XBO\XbTO\Xe3DS™ \KDEAKFE\XAT\XCbZ\XeOE -
Pe\xbb-\x10\xa9CP\xBe9\ xaag\x8A\EBLY\xObUI\XBIXCS\ a3 \xd4NKOT a7\ e T\XBA\KF 2p\xch\
XFhy\xbb. @1 \xFa\x PR \xce\eT\F (\x1207\ a7\ xeaQ\re 4\ kBbUMKB2\HOFY\XBISAS\xC2 \xadS\
XBOF\XaUA X939\ X127C\ xaa \xed, M98 <\CDAKIE S A Te\xd 1 \XBEKe2\ X872\ xBeH\Xb A\ xbe
J\X00\X00\X00\x00\x00"

media/file32.png
Temperature Original Message: [1, O,
Humidity Original Message: [1, ©, 1,
Temperate Encrypted Message : [91, ©, 1, 57, 44, 127, 56, 40, 76, 64, 33, 27, 73, 76, 48, 19, 10
3, 76, 43, 31, 1, 15, 111, 6, 187, 18, 84, 46, 73, 50, 62, 191, 104, 63, 50, 93, 101, 36, 44, 100
A2, 35, 13, 55, 80, 84, 9, 53, 56, 85, 21, 79,9, 41, 102, /93, 6, 0, 26, 99, 70, 18, 47, 96, E1
102, 91, 39, 48, 64, 92, 32, 41, 67, 121, 116, 88, 59, 111, 100, 59, 23, 1, 47, 63, 30, 123, 11
4, 60, 30, 49, 2, 102, 45, 104, 79, 66, 109, 29, 12, 84, 116, 72, 123, 65, 39, 40, 76, 33, 109, 9
6, 101, 93, 79, 9, 89, 110, 13, 6, 56, 196, 59, 118, 38, 71, O, 97, 22, 11, 15, 184, 88, 44, B4,
113, 43, 185, 28, 64, 99, 119, 124, 11, 15, 1, 15, 15, 118, 11, 18, 180, 14, 25, 82, 14, 53, 4D,
3, 82,125, 21, 52, 124, 68. 8, 19, 121}
Humidity Encrypt Message : [91, ©, 2, 57, 43, 0, 56, 40, 76, 64, 33, 27, 73, 76, 48, 19, 103, 76
- 43, 31, 1,15, 111, 6, 107, 18, 84, 46, 73, 58, 62, 101, 184, 63, 58, 93, 101, 36, 44, 100, 72,
3as, 73, 55, Be, 84, 9, 53, 56, 85, 21, 79, 9, 41, 102, 93, 6, 0, 26, 99,6 ‘7@, T8, 47, 96, Bi, 102,
91, 39; 48, B4, 92, 32, 41, 87, 121, 116, 88, 59, 111, 1e8, B9, 23, 1, 47, B3, 38, 123, 114, B8,
30, 49, 2, 102, 45, 104, 79, B6, 1609, 29, 12, 84, 116, 72, 123, 65, 39, 40, 76, 323, 189, 96, 101,
93, 79, 9, 89, 118, 13, 6, 56, 186, 59, 118, 38, T1,L ©, 97, 22, 11, 15, 1804, 88, 44, 64, 113, 43,
1605, 28, 64, 99, 119, 124, 11, 15, 1, 15, 15, 118, 11, 18, 168, 14, 25,6 82, 14, 53, 40, 31, 82,1
25, 21, 52, 124, 68, '8, 19, 111]

8, 8, 1]
g, 0. 1]

media/file14.png
id date username name mac

10 2021-07-08 15:37:01 nike913058 ntruserver-virtual-machine C29DCE4B5

13 2021-07-09 14:17:42 M0844009 | raspberrypi B827EB48EOBT1

media/file11.jpg
Please input your Usalab NTRU Website Username:M0844009

media/file6.png
[oT Device

Gateway

Randomly choose 1p

epc =1p * hg+m (mod q)

Randomly Salt 7, < {0, 1}32°

cpg<—Hashtopoint(r,, | 1m)
~-1

tDGe(PPT(CDG), FPT(O))BD

zpg<ffSampling (tpc, Tp)

spc = (tpg - ZDG))ED .

While | Ispg!1=>|p7]

(S1per S2pe) < tEFI(spc)

ATl

o 0N R

10. s'pg<—Compress(s,,,.)
11. Return sig, -=(rsp, s'pc)

12.

(*sps €Dy SigDG) o

13.
14.

15.
16.
17.
18.

apc = [* epc (mod q)
m= fp * apg (mod g)

G
cpc<—Hashtopoint(r,, | Im, g, n)
82, <~ Decompress(s'pg)
S1pe<CDG — Sapchs, mod g

2 |22
81,0, 82501 S[[S]

media/file36.png
Column Type Function Null Value
id int(11) S ’ 15
Co S v | 2021-07-15 13:08:40 | (]

temperature varchar(2000)

0, 1, 57, 56, 40, 64, 33, 27,

(91,
9
107,
101,
56,
78,
67,
30,
109,
109,
59,
64,
15,
31,

76,
19;
36,

85,

47,

123,

123,
29,
96,

118,

113,

15,

82,

48,

21,
96,

84,
44,

116,
114,
12,
101,
38,
43,
118,
125,

19,

79,
81,

44,

46,
100,

88,

60,
84,

93,
71,
105,
11,
21,

127,

9,
102,

103,

73,
72,

59,
30,
116,
79,
0,
28
18,
52,

76,
50,

41,
91,

97,

35,

111,
49,
72,
9,

64,
100,
124,

43,
62,

102,
39,

73,
93,

100,
2,
123,

33,

101,
55,

48,

102,

76,
1,

6,

59,

65,

64,

45,

15,

104,
80,

0,
23,

39,

84,
26,
92,

111,

63,

1,

104,

40,

9,
99,
32,

6,
50,

47,
79,
76,

53,
70,
a1,

93,

63,
66,
33,

22,

89,

99,
14,
68,

11,

110,

15,

13,

6,

104,

56,
88,

106,
44,

119,
25,

124,

11,

15,

1,

82,

14,

8,

19,

121)

53,

40,

0,
48,
84,
44,
21,
96,

29,
96,
118,
113,
15,
82,

2,
46,

79,
81,
116,
114,

19,

100,

88,

60,
12,
101,
38,
43,
118,
125,

57,
103,
73,

9,
102,

72,

59,

30,
84,

93,
71,
105,
1
21,

43,
50,

41,

0,
76,

35,
91,

49,
116,
79,
0,
28,
18,
52,

43,
62,

93"
102,
39,
111,

97,

56,

2,
72;
9,

64,
100,
124,

3,
101,

55,
93,

48,
100,
102,

89,
22,

40,

6,

123,

99,
14,
68,

1,
104,
80,

64,
59,

76,

0,

45,
65,

110,
11,

119,
25,
8,

15,
84,

92,
23,

15,

64,

63,
9,
26,

1,

104,
39,

53,

124,

33,
111,
50,

99,
32,

6,
104,

6,

53,

47,
79,
40,

11,

27,
93,

70,
41

56,
88,

56,

r

63,
66,
76,

15,

78,

r

30,

33,

106,
44,

1,

19,

82,

14,

121]

53,

40,

media/file15.jpg
Temp=17*C humidity=41%
Temperature_Binary:10001 Humidity_ binary:101001
NTRU Temperature Message= [1, 0, @, 0, 1]

NTRU Humidity Messag 1,083, 8,0, 3]

media/file37.jpg
Commn T e N v
W e

E—

tomparatur varcha(1000)

R e T

nav.xhtml

 electronics-13-01575

 		
 electronics-13-01575

media/file16.png
Temp=17*C humidity=41%
Temperature_Binary:100601 Humidity binary:101001
NTRU Temperature Message= [1, 0@, 0, 0, 1]

NTRU Humidity Message= [1, @, 1, 0, 0, 1]

media/file2.png
18,000
16,000
14,000
12,000
10,000
8,000
6,000
4,000
2,000
0

==thp=eRSA e - ECC e——fp— NTRU

256

media/file20.png
>>> sig=sk.sign(b"17*C")

>>> si
b'7\x13\x84\xfb\x82?\xeb\x0e\xaf\xf5\xb2\xc1\xd6\x8a\xb6=\xd3t\xde\x92 | 0#\xbbG\x
lax\xbO\xf3+\xfo\xfe+\x9f\n\xffp\x08\xfc\xa7e\xe0\xd54\x83\xc3\xf3\xc7*t\xb6\x88
\xea=\x9cT)&\x7f\x12E\xclr |p\xed\xcc\x16F\xb2@w\xf5\x1cg=\xb6\xfd\xa6\xad\xa7 '@\
xf5{\xa3\xf4\xa5c\x92\xe21\xa9\xfe\xc3_\xa7z\xfd\\\x19\x0e }\xfc\xf5u\x0c-\xd2\xa
1\x1d\xb3\x10(\x0fJ\x9c\x89%\x93e9\x1e\x7fR\x95\x0f\x18}q\xa9\xfc7W \xd8\x9d\x8c
\x14U\xfcmO\xe2P\xcd$U\xed\xcd\xed\xd9r\xa6.\x86m\x19 | \x0c\x1b\xd2\xcfhsjN1vixc6
4D\xda\x8c\xd0\xd450\xeeeB<6L) \xe2\xaf\xdb\xdc\xccj\x8c\xe7\xed\x10\x00\x00\x00\
x00\x00'

>>> sig=sk.sign(b"41%")

>>> sig
b'7je\xbe\x9cv\x9e\xea\xb7\xec\x9f>\x82"\xcdZ@y\xc1\x89K\xc43!\xbc-\xad=\xe6\x13
\x8a\x96\x89\xbf\xd5f\x16y\x85\x98\xf8\x1le\x8c*\xeeK\x7f\x7f "\xcdd\xc2B\xd9\xf8\
xed\xd0\xd4_5\rV:\xca\xec\x0e\r)GrM\x0bQ@\x8e\xa8\xf4\xa2\x1d*\xb0\xd9\x98\xf2\x
be\xde\nS\x8b\xeb\x84\xb9K\x05bEk\xc1l e\x9a\xc1l\xc8W\xab\xbd\xb7\x9a\x85\x02\x85
\x0c\x8b<\xd8\x1f\xf8\xa5\x12P\x86_/f)\x19\xef\'1A\x08\xf2%I\x96\xa6\x8f55\x178\
xdao\xd4\x94\xc2D\xcF\x15\xf1Xu\xfc\x87S\xbfQ<*U\xa0\xad4G\xel\xdf1\x9b\xc8fj\xb4
\xdd*\xc0\x8f\xa5; \xa6Z\xf4\xe7!\xceJ1\xabB\xb91R\x18\x9a\x91\x86a\x00\x00\x00\x
00\x00'

media/file23.jpg
»E

media/file5.jpg
ToT Device

Gateway

CEPENg EwN -

=5

Randomly choose rp
epe=rp* g+ m (mod q)

Randomly Salt r,, = {0, 1=

cpg<Hashtopoint(r,, | | m)
toc(FFT(cpo), FFTO)Bp'
2o fiSampling, (toc, To)
s = (tpg - z0c)Bp.
While |lspg!I*>[6*]
(S1per S2pe) = n0FFT(spg)

). 5'pg<Compress(szy,)

. Return sig;;=(rips 5'pG)

=, * apg (mod g)

5. cpgHashiopaint(r.y | 1m, g, n)
. S2pg < Decompress(s'p)

" Sipg 06— Sapgltyy mod

. i, sapc ! 15|87

media/file24.png
Temperature:

Humidity:

s

|2021—07—15 13:07:47

T D2 bbb a2 = 210 WG A5 e T e BT eSS T s 8 e = ST e pbed e 2B e cg=o ey
b (a3 ne2a el a7zl 19 e fcheFsuloe-xd2ixat e ideb3) WLehTR WSS HOFX 18}k syl Ul 4dor ot B6m b 191 Oc b
wed2\wcthsiN vl eda B xd0'd450 BL) e 2\xafixdbxdcxe x8cxe7\xed x 10100 \x00 %00 x001x00"

b'7jexbe w9cv x9e\xea kb 7\xecf: ‘V\CZ'\KCCIZ@'V\W wB3KY 3'\)(bc \3@4 \)(55\’(13\)(83\)(96\’(39\’fbf\’(d5ﬂx A ‘r B ¥ Fix7f" xedd e 2B xd9 \xf8 \xed xd0 \xd4_5V: \xcaxec\x0e'\y)GrM\x0bQ @\x8e \xa8 xf4\xa2\x 1d*

b 0'\wd 958 \wf2\wbe xde \ns) b \wcle'xSa b<) \xw\xa:\xwuoo_;u\x e V1A W08 W29 w96 \wab B 55 w178 wdao wd 4 w94 e 2D wefip 15w iU fc w8 75 \wbfQ < U
a0 wa4G e 1wdfiebweafi b4 wdd el \wafixas; “.(l‘\nul » \» bBxb MWQE\XQI\XBSEVUU\XUU\XUU\XUUWU

media/file29.jpg
b'36:32 36 31 36- 36 31,3133 31 36 3F*
repalce::: 303130313030313131313031
13, % ‘0, <% -1 1)

Temperate Decrypted Message : [1, 0, 0, 0, 1]
Humidity Decrypted Message : [1, 0, 1, 6, 0, 1]

media/file1.jpg
18000
16,000
14,000
12,000
10,000
8,000
6,000
4,000
2,000

e

- RSA

—= . ECC —#— NTRU

256

media/file31.jpg
Temperature Original Message: [1, 0, 9, 0, 1)

Humidity Original Message: [1, 0, 1, 0, 0, 1]

Temporate Encrypted Message : [81, 0, 1, 57, 44, 127, 56, 40, 76, 64, 33, 27, 73, 76, 48, 19, 10
3,76, 43, 31,1, 15, 111, 6, 107, 18, 83, 46, 73, 59, 62, 101, 164, 63, 50, 93, 101,38, 44, 100
'12,/35,'73, 55, 80, 84,9, 53, 56, 85, 2, 79, 9, 41, 102, 93, 6, 0, 26, 99, 70, 78, 47, %, 81
| 102,53, '3, 48, 63, 92, 32, 41, 67, 121, 16, 85, 59, 111, 100, 59, 23, 1, 47, 63,39, 123, 11
4,760, 30, 49, 2,202, 45, 108, 79, 65, 105, 29, 12, 84, 116, 72,123, 65, 3, 46, 76, 33, 108, 8
©, 101,93, 79,5, 89, 110, 13, 6,58, 108, 59, 118, 38, 71,0, 91, 22, 11, 15, 104, B, 84, 3,
13, 43, 205, 38, 64,99, 119, 124, 11, 15, 1,15, 35, 118, 11, 18, 106, 14, 25, 82, 14, 53, 4o,
31's2,/125, 21, 52, 124, 88,5, 19, 121]

Homsdity Encrypt Wossage': [91, 0,2, 57, 43, 0, 56, 40, 76, 64, 33, 27, 73, 76, 48, 19, 103, 76
143, 31, 1, 15, 111, 8, 107, 15, 84, 46,73, 50, 62, 101, 164, 63, 50, 83, 1oL, 36, 34, 106, 72,
35,73, 55,80, 84, 9, 53, 56, 85, 21, 75, 9, 41, 102, 93, &, 6, 26, 9%, 70, 78, 4T, 96, 81,

91, 39, 4, o4, 92, 32, 41, 67, 121, 118, 'ss, 59, 111, 106, 59,23, 1, 47, 63, 30, 123, 114, s
30, 19, 2,102, 45, 104, 79, 66, 109, 29, 12, B4, 116, 72, 123, 85, 30, 40, 76, 33, 103, 96, 101,
93, 79, 9, 89,110, 13, s, 56, 108, 59, 118, 38, 71, 0, 97, 22, 11, 15, 103, 8, 44, 64, 113, 43,
105,28, 64, 99, 110, 124, 11, 15, 1, 15, 15, 118, 11, 18, 106, 14, 25, 82, 14, 83, 40, 31, 82, 1
25,21, 52, 124, 68, 8, 19, 121]

media/file25.jpg
PData container: Oxc900
Label: NTRU
Jippinfo: Private

0 Private Key?0

media/file12.png
Please 1nout our UsaLab NTRU Website Username:M0844009

username:M0844009

media/file9.jpg
0S: VAIWare ESXi
VM: Ubuntu 18044 LTS
Language: Python,

o= -

Raspbery Pi 38 0S: Windows 10
0S: Raspberry Pi 05, Database: MySQL
Language: Python

LiaaghPyiia

media/file0.png

media/file38.png
Column Type
id int(11)
date timestamp

temperature varchar(1000)

humidity varchar(1000)

Function

Null

Value

7 |

2021-07-15 13:09:30 ' =

b"7" Ju\xf1l\x18\xdb\xb9\xbaZ\x94\xd3\xc8\xd3\x8f\x98\x1
1\ xFF\x183E\x86\x9d\xa2\x96 \xfco\x8c\x83\xacy\xc9\xb9\
XFb\xbdy\xfb\x98\x94\x@e\xcb6Z\xe208G\xfo\xe5\xcfw: \xdd[
:\xa3\xce\xbc\xed4T\xc9\xda\xb8F\ x99\ xf8\xc5\xeb?
7\x93\x18\x1d\x94 7\ x1f%:\xla. \xbc\xb2\x1b&9\x90méz\xab
P2\xc8]\xdfv\xbfa\xa5\x84v-
A\X%a\x92WV\xb8=\x170\x88\x82\xff\xe9\xbe\xd9{\x11\x82~
\xF4\x11\\\x08\xf9\xbd\xce\xd1\x9¢c\x8e\xd5 (\xdfy\xd4\x
@3D\xacM\xe9\x13J\xc7\xe2\xd5d\x96\xa%1,
{\xbaR\x9e\x169R\ x99\ xed\xde\xbe\xd4%\x10\xc2h0\xaba\x
dc[\xf2\xdb%$\x0@8\xac_\xf9\x%az\x8a\xb3\xc@\xcc\xdaa\xf
8\xb9U\xe3\x7fJ\xff@\xOO\x@G\xBO\xﬂO\xﬂﬂ\xOO\xOG\xOO'/4

b'7\xda\x1fn\rrX*yC\x8a0/\xa7\x8f\xdd\x89\x84\xea\x9 =~
7Axc5\ " \xd7[\xed\x1d\x91\xed4\xd2\x0b\x174B6\x@@\x1b~H
AXxX9f\xal\x1f\xe8\x85}m\xb8L\xc7\xbeNc\x1d\xfd1l\x9aHa
)Q:\xa7\xee\xce~!\x86\x18\xacZ\x04\xebo\xf6\xfb\xbl;
\xb5+\xac\x1le\xdd\x80\xb70\xe3Ds" \xbe\xf5\xd7\xcbz\x
e9E-
Pc\xbb~k\x10\xa9CP\x8e9\xaag\x8d\x86bY\x%bul\x83\xc5
\xa31i\xd4\x01\xa7\xel7\x84\xf2p\xcb\xflwy\xbb.\x91\x
fa\xff®
<\xce\xel\x8f(\x12Uz\xa7\xeaQ\xed\x8bU\x82\x@fY\x83%
m$\xc2

\xa4%\x89F \xa9U\x93\x92\x127C\xaa\xed,m\x96e<\xcb\x1
c\xd5"\xc7e\xd1\x88\xe2\x87z\x8eH\xbdJ\xbcI\x@8\x20\

X8\ x28'\x00" V7

media/file8.png
Gateway

Server

Randomly choose 7

egs =Tg * hS +m (mod Q)
Randomly Salt r, < {0, 1}3%
cgs < Hashtopoint(r, | 1m)

-1
tes<(FFT(cgs), FFT(0))Bg
zGSeﬁ‘Sanzplingn(tGS, 1)
sgs = (fgs - ZGS)?G .

While I ISGS' |_>|-ﬁ-l
(S106r S2gg) < 1MOFFI(s5s)

W XN D=

10. s’gs<—Compress(sy)

11. Return sngS=(1‘SG, $'Gs)

12.

(TSGI eGSl Slg GS)

—h
r

19.
20.

21.
22.
23.
24.

ags =/, s egs (mod q)
m= fp *ags (mod q)

s
cgs<Hashtopoint(r | 1m, g, n)
$2.s <~ Decompress(s’)
S1ae<CGS — Sagehs; mod g

|| | 1%<| 82
°lgs’ 2as —lﬁj

media/file34.png
>>> sig = sk.sign(b"17*C")

>>> sig

b"7' Ju\xf1\x18\xdb\xb9\xbaZ\x94\xd3\xc8\xd3\x8f\x98\x11\xff\x183E\x06\x9d\xa2\x96\xfco\x
8c\x83\xacy\xc9\xb9\xfb\xbdy\xfb\x98\x94\x0e\xc6Z\xe206\xf6\xe5\xcfw:\xdd[: \xa3\xce\xbc\
xed4T\xc9\xda\xb8F\x99\xf8\xc5\xeb?7\x93\x18\x1d\x94)\x1f%: \x1a. \xbc\xb2\x1b&9\x90m4z\xa6
P2\xc8]\xdfv\xbfa\xa5\x04v-\x9a\x92wWV\xb8=\x170\x88\x82\xff\xe9\xbe\xd9{\x11\x82~\xf4\x1
1\\\x08\xf9\xbd\xce\xd1\x9c\x8e\xd5(\xdfy\xd4\x03D\xacM\xe9\x13J\xc7\xe2\xd5d\x96\xa91, {
\xbaR\x9e\x169R\x99\xe0\xde\xbe\xd4%\x10\xc9h0\xab6a\xdc[\xf2\xdb$\x08\xac_\xf9\x9az\x8a\
xb3\xcO\xcc\xdaa\xf8\xb9U\xe3\x7fI\xff@\x00\x00\x00\x00\x00\x00\x00\x00"

>>> sig=sk.sign(b"41%")

>>> sig
b'7\x1a\x1fn\rrX*yC\x8a0/\xa7\x0f\xdd\x89\x04\xea\x07\xc5\ " \xd7 [\xed\x1d\x91\xed\xd2\x0b
\x174B\x00\x1b~H\x9f\xal\x1f\xe8\x85}m\xb8L\xc7\xbeNc\x1d\xfd1l\x9aHa)Q:\xa7\xee\xce~!\x8
6\x18\xacZ\x04\xebo\xf6\xfb\xb1l; \xb5+\xac\x1le\xd0\x80\xb70\xe3Ds" \xbe\xf5\xd7\xcbz\xe9E-
Pc\xbb~W\x10\xa9CP\x8e9\xaag\x8d\x86bY\x9bul\x83\xc5\xa31\xd4\x01\xa7\xel7\x84\xf2p\xcb\
xFlwy\xbb.\x91\xfa\xff%<\xce\xel\x8f(\x12Uz\xa7\xeaQ\xed4\x8bU\x82\x0fY\x83m\xc2 \xad$\
x89F\xa9U\x93\x92\x127C\xaa\xed, m\x96e<\xcb\x1lc\xd5"\xc7e\xd1\x88\xe2\x87z\x8eH\xbdJ\xbc
J\x00\x00\x00\x00\x00'

media/file17.jpg
Temparate Encrypted Message : [117, 94, 91, 35, 78, 126, 37, 109, S9, 27, 121, 10, 95, 122, 116, 2
LT 60, 55, 39, 96, 75, 02, 113, 17, 52, 80, 86, 128, 117, 128, 7, 22, 54, 4, 1%L, 126, 123, 71,
iar, 21, 47,38, 49,30, 14, 6, 55, 68, 50, 135, 120, 71, 3, 31, 35, 8, 43, 1ie, %8, 115, &7, B,
22,56, 91,53, 102, 53, 5,59, 43, 41, 98, 127, 28, 70, 114, &9, 26, 2. 111, 0, 69, 123, 113, 121,
92, 56, 54 6, 109, 37, 7. o4, 6, 57, 7, 86, 11, 47, 117, 161, 17, 26, 17, 04, 88, 8, 127, 3, 4
2,85, 120, 87, 4, 51, 91,°9, 68, 50, 18, 95, 15, 113, 78, 14, 19, 29, 78, 5, 29, 55, 123, 89, 122,
31, 322, 98, %, 61, 124, 74, 119, 9, 41, 28, 113, 35, 68, 32, 88, 3, 37, 13, 71, 38, 110, 65, 31
+de, 94, 2, 247, a7, 79, 98]

fumsity Encrypt Message : [117, 04, 92, 36, 77, 127, 37, 109, 59, 27, 121, 10, 95, 122, 110, 2, 7
7,760, %8, 39, 96, 13,92, 13, i1, 52, 80, 86, iz6, 117,'125,7, 32, 94, 46, 11, ize, 123, 71, 11
7,21, &7, 18, 45, 30, 14,