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Abstract: Routing security is a crucial aspect of internet security. The main issues involved in
routing security include Border Gateway Protocol (BGP) route leak and prefix hijacking. Currently,
numerous solutions have been proposed for these issues, and significant breakthroughs have been
achieved. However, these methods focus on visible data on the internet, overlooking the limited
coverage of vantage points (VPs). Existing research indicates that attackers can cleverly design route
announcements to evade detection by route collectors, thus executing routing attacks. Furthermore,
many current methods for detecting route leaks rely on traditional business relationships between
Autonomous Systems (AS), but the modeling of traditional AS business relationships is increasingly
challenging to comprehensively cover business interactions between ASs. Therefore, we have
developed Hidden-SAGE. A framework that extends AS-level internet topology and extracts complex
business relationships between ASs from limited routing information. Hidden-SAGE utilizes graph
neural networks to discover hidden AS links and employs random forests to infer complex business
relationships between links. It successfully reduces visual bias caused by uneven VP distribution
and constructs a more comprehensive AS-level internet rich-text topology. Compared to advanced
inference algorithms, Hidden-SAGE performs better across various metrics and imposes fewer
restrictions on the inference target.

Keywords: AS link; hidden AS link; BGP; AS relationship; complex AS relationship; GNN; GraphSAGE;
random forest

1. Introduction

The Internet comprises tens of thousands of Autonomous Systems (AS). As of 2023,
the total number of AS in the entire Internet exceeded 70,000. An Autonomous System (AS)
is a network unit internally comprising multiple routers that share a common intra-domain
routing policy. AS can autonomously determine the intra-domain routing policy. Each AS
is affiliated with an organization, which may be an Internet service provider, university, or
company. The exchange of information among ASs is facilitated by the Border Gateway
Protocol (BGP). Analysis and modeling of Internet AS topology play crucial roles in pre-
dicting and debugging routing paths. Estimates of AS-level topology have been employed
in various research endeavors, encompassing the analysis of Internet topology attributes,
inference of Internet hierarchy, construction of network topology generators for simulation,
and assessment of the effectiveness and enhancements of new protocols [1]. There are
many organizations that collect and make raw BGP data publicly available [2–4]. Presently,
the construction of Internet AS topology primarily depends on the ASpath attribute in BGP
raw data, thereby overlooking numerous links not observable in BGP raw data. Several
studies [5–7] indicate that around 40% of AS links on the Internet are disregarded. These
hidden AS links not only introduce incompleteness to the Internet’s AS-level topology
but also pose significant risks to routing security. Milolidakis [8] discovered through
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research that attackers can exploit these hidden links by intricately designing route an-
nouncements to evade the observation of route collectors, thereby executing attacks such as
path spoofing [9] and prefix hijacking [10]. Additionally, the business relationship between
the two ends of these hidden links remains unclear since the links cannot be observed in
BGP routing data. AS business relationships are a critical factor in safeguarding against
routing attacks such as route leak [11]. In the absence of certainty regarding AS business
relationships, even if hidden AS links are discovered, it is challenging to ascertain whether
a route containing hidden links poses a threat to routing security. Therefore, to mitigate
carefully crafted routing attacks that exploit hidden links, it is imperative to unveil hidden
AS links and infer the business relationships between them. This research is pivotal for
enhancing the overall routing security of the Internet.

In conclusion, this paper aims to address two issues: (1) Inferring hidden AS links that
are not observable by route collectors to expand the AS topology. (2) Inferring complex
business relationships between hidden links. Regarding the inference of hidden links,
only a limited number of researchers have attempted to develop algorithms. In 2014,
Gregori et al. [12]. proposed the MSC algorithm; however, significant challenges exist
in applying this method to real network environments and achieving widespread adop-
tion. This is attributed to the excessively high deployment cost of this method. In 2020,
Jin [13] developed Toposcope, utilizing a decision-tree-based approach to infer hidden AS
links. However, there is still room for further improvement in terms of its accuracy and
recall rates.

Due to AS typically being unwilling to disclose their private business data, such as the
internal network topology within an AS or a list of customers purchasing transit services on
their network [14], obtaining accurate AS business relationships through publicly available
datasets is impossible. Consequently, researchers have been prompted to model business
relationships and develop algorithms for inferring them. To simplify heuristic reasoning
development, Gao initially abstracted business relationships into three types [14]: p2c
(provider-to-customer), p2p (peer-to-peer), and s2s (sibling-to-sibling). These three types of
AS business relationships are commonly referred to as traditional AS business relationships.
Over the past 20 years, numerous inference algorithms have been proposed for modeling
traditional AS business relationships. Some advanced algorithms, such as ASRank [15],
problink [16], Toposcope [13], AS-GCN [17], have demonstrated high accuracy and recall
rates. However, in 2014, Giotsas [18] pointed out that modeling traditional business rela-
tionships overlooks more complex relationships, potentially introducing numerous issues
in the study of inter-domain routing. Additionally, he presented a heuristic algorithm
for inferring complex business relationships. Concurrently, Kastanakis pointed out in his
research that relying solely on traditional business relationships is no longer sufficient for
accurately inferring inter-domain routing policies. However, Giotsas’s inference algorithm
for complex business relationships cannot infer complex business relationships between
hidden AS links.

We have decided to incorporate global Internet topology features to overcome the
limitations of features. Thus, we integrate the graph neural network method into in-
ferring hidden AS links. Graph neural network methods excel at processing complex
graph-structured data and have shown outstanding performance in tasks such as node clas-
sification, link prediction, and image clustering [19]. Among various graph neural network
models, we opt for the GraphSAGE [20] model. This model efficiently learns to generate
node embeddings for previously unseen data by sampling and aggregating features from
the local neighborhoods of nodes. It exhibits excellent performance in handling large-scale
tasks such as image processing. In this article, building upon Giotsas’s classification model
for complex AS business relationships, we concentrate on full transit, partial transit, and
peering links. We introduce novel features and develop a new graph-sampling network
framework. This framework comprehensively captures relevant feature information from
the training set to the test set. Utilizing the inference framework proposed in this article,
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we can infer more complex business relationship links. The primary contributions of this
study are summarized as follows.

(1) We address hidden AS links by constructing an experimental dataset that ensures
consistency between existence and observability. Simultaneously, we design a series
of features, and these datasets and features are integrated into the graph sampling
network framework. Inference is conducted on hidden AS links in datasets from 2014
and 2023. To our knowledge, this study is the first to utilize GraphSAGE to address
the challenge of inferring hidden AS links.

(2) In addressing complex business relationship issues, we introduce a series of empir-
ically effective and self-proposed essential features. We utilize the random forest
algorithm to infer p2c, p2p, and partial transit business relationships.

(3) We developed a framework called Hidden-SAGE. This framework aims to infer
hidden AS links and the intricate business relationships between them. We named this
framework Hidden-SAGE because it focuses on “hidden” AS links that are overlooked
by the route collector, and it utilizes GraphSAGE. We conducted comprehensive
experiments to compare the methods proposed in this article with existing state-of-
the-art methods.

The remainder of this paper is structured as follows: Section 2 presents the current state
of research in the areas of hidden AS link inference and AS business relationship inference.
Section 3 presents the details of our proposed Hidden-SAGE framework. Section 4 outlines
the experiments conducted, along with the analysis and interpretation of the results. Finally,
in Section 5, we summarize the entire paper and discuss future directions.

2. Related Work

In the realm of inferring hidden AS links, in 2014, Gregori et al. [12] proposed the
MSC algorithm to find the optimal and minimal VP positions to observe all AS links.
However, the actual deployment cost was prohibitively high. In 2020, Jin developed the
Toposcope [13] framework, utilizing a decision tree to infer hidden AS links, and identified
30,000 possible hidden links. Nevertheless, its accuracy and recall rates were only 83% and
72%, respectively, indicating room for improvement.

In the domain of AS business relationship inference, in 2001, Gao Lixin [14] pioneered
the modeling of AS business relationships. The model classifies AS business relationships
into three types: (1) Provider-Customer (p2c), (2) Peer-to-Peer (p2p), and (3) Sibling-to-
Sibling (s2s). Additionally, Gao proposed the hypothesis that BGP routing paths should
follow the valley-free path principle. This implies that an AS path is composed of zero or
more c2p or s2s links, followed by zero or one p2p link, and then followed by zero or more
p2c or s2s links. The shape of this path consists of an uphill path, a downhill path, or a
combination of both. We refer to Gao’s modeling of AS business as traditional AS business
relationships. This modeling played a crucial role in subsequent algorithms for business
relationship inference.

In 2013, Luckie [15], without relying on the valley-free path principle, proposed new
hypotheses for the inter-domain structure of the Internet: (1) AS establishes provider
relationships to achieve global reachability; (2) there exist peer groups of AS at the top of
the hierarchy; and (3) there are no loops in p2c links. Based on these hypotheses, Luckie
proposed a new inference algorithm for traditional AS business relationships called ASrank,
achieving high accuracy. Additionally, Luckie introduced the concept of the customer cone
to assess the significance of a specific AS in the Internet.

In 2019, Yuchen Jin [16] and other researchers addressed the challenging issue of infer-
ring business relationships in hard links, including non-valley routing, limited visibility,
and unconventional peering practices. They proposed the ProbLink inference algorithm.
ProbLink revealed critical AS interconnection features originating from random infor-
mation signals. Compared to AS-Rank, ProbLink reduced the error rate for all links by
1.6 times. For various types of hard links, the error rate was reduced by 6.1 times.
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In 2020, Zitong Jin [13] and other researchers developed the Toposcope algorithm. This
method addresses the issues of limited coverage and biased concentration of vantage points
(VPs). It utilizes ensemble learning and Bayesian networks to alleviate observation bias.
Compared to ASRank, Toposcope reduces inference errors by 2.7–4 times. It discovered
relationships for approximately 30,000 upper-level hidden AS links. Moreover, it remains
more accurate and stable even under more incomplete or biased observations.

In 2022, for the inference of S2S and X2X relationships, PENG [17] introduced graph
neural network technology into AS business relationship inference, achieving an accuracy
rate of over 90%.

Currently, methods for inferring traditional business relationships have achieved
considerable success. However, with the development of the Internet, the traditional
classification of business relationships cannot fully describe the routing policies between
ASs. Giotsas proposed in 2014 [18] that oversimplified business relationship modeling
introduces many issues into inter-domain routing policy research, a viewpoint confirmed
by the work of many other Internet researchers [21–27]. Therefore, Giotsas proposed a
classification model for complex business relationships in 2014, including four types of
business relationships: (Full) transit [28]: an AS provides access to its peers, customers,
and providers to another AS. Peering [28]: two ASs mutually provide access to their
customer routes. Partial transit [29]: an AS provides access to its peers and customer
routes to another AS but does not provide access to providers. Hybrid: an AS provides a
combination of full transit, partial transit, or peering based on interconnection locations
to another AS. Additionally, a heuristic algorithm was proposed for inferring complex
business relationships, with positive predictive values of 92.9% and 97.0% for partial transit
and hybrid relationships, respectively. Although this method has high accuracy, it still has
certain limitations. The method relies on data flow and can only infer complex business
relationships of visible links in BGP raw data.

In 2023, Kastanakis attempted to replicate the work of Wang and Gao from 2003 to
discover the impact of Internet topology changes over the past 20 years on routing policies.
The study also aimed to assess the validity of the research results of Wang and Gao in
today’s Internet [30]. Kastanakis made two significant findings in the research. Firstly,
Kastanakis observed that, during route import, ASs no longer exhibit strong consistency in
setting locpref values [31] based on their business relationships. Locpref is a non-transitive
numerical BGP attribute that denotes the preference of a certain route. Additionally, there
is a notable occurrence of setting multiple locpref values for the same neighbor. Kastanakis
provided two explanations for this phenomenon: the absence or lack of popularity of
certain business agreements in the early stages and the existence of complex business
relationships between ASs. Secondly, Kastanakis discovered a considerable portion of
selective announcement prefixes in the current Internet. These selective announcement
prefixes persist for an extended period and are prevalent in both exports to provider ASs
and exports to peer ASs. These findings indicate that relying solely on traditional business
relationships is insufficient for accurately inferring inter-domain routing policies.

3. Hidden-SAGE

In this section, we will provide detailed descriptions of our two tasks: inference
of hidden AS links and inference of complex business relationships. In the hidden AS
links inference part, we devised an inference framework based on graph neural networks,
utilizing existing features to infer hidden links. Specifically, we employed a graph sampling
network model as the graph neural network layer, and we will explain the rationale behind
this choice shortly. Additionally, we incorporated nine node features as inputs to the graph
neural network model, some of which were previously used by other researchers, and
some were designed by us. The reasons for selecting these features will be elucidated in
the following. The workflow of the entire framework involves (1) extracting node features,
(2) training the model with both graph structure and feature data, and (3) minimizing loss
to obtain accurate link classification results. In the part concerning the inference of complex
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business relationships, we utilized the random forest algorithm, leveraging node features
designed by other researchers and ourselves to infer these relationships.

3.1. Inference of Hidden AS Links
3.1.1. Training Dataset

According to Jin’s definition, formally, if a pair of consecutive links <ℓAC,ℓCB> can be
observed in any path, we refer to <ℓAC,ℓCB> as a detour pair. This represents a two-hop
detour path from A to B. On the other hand, if a link ℓAB exists but can only be observed
by a single vantage point (VP), we refer to it as a singleton link. A and B are also referred to
as endpoints of <ℓAC,ℓCB>, or ℓAB.

In the process of constructing positive and negative samples, randomly selecting a
detour pair <ℓAC,ℓCB> and checking if ℓAB can be observed (only one VP) is unreliable.
This is because when ℓAB is not discovered, we cannot conclusively determine whether it
is due to the non-existence of ℓAB on the Internet or its unobservability. Here, we refer to
Jin’s assumption: VPs will report all their neighboring ASs. Therefore, when constructing
training samples, we restrict the scope to detour pairs that start or end with a full VP to
ensure that the existence and observability of the link are consistent.

For training data used to infer hidden links, we construct two sets of training data.
In the first set, we follow the Toposcope approach and find all detour triplets with a full
VP as endpoints. For each such detour triplet, <A,C,B>, if the link AB is observed as a
singleton link and <A,C,B> is observed by different VPs, we add (<A,B>, 1) as a positive
sample to our training set. If AB is not observed as a singleton link, we use (<A,B>, 0) as a
negative training sample. This allows us to compare with the Toposcope method. In the
second set, we directly consider singleton links as positive samples and links with full VPs
as endpoints but not present in the AS path as negative samples. This allows us to evaluate
our method after removing the constraint of one-hop detour paths with full VP endpoints.
After determining positive and negative samples, we remove the positive samples from the
graph data to prevent information leakage.

3.1.2. Feature Selection

In the subsequent feature selection process, for node attribute features, we selected
some features that have been chosen and proven effective by network researchers [13],
and we also proposed some features ourselves. In addition to this, we leveraged the
self-learning characteristics of graph neural networks to obtain high-dimensional graph
structure features, achieving the best inference results by combining them with node at-
tribute features.

For the node features of hidden links, we removed features related to triplets based on
the features used to infer hidden links in Toposcope [13], as our training set is based on
links and is unrelated to triplets. Toposcope has utilized features including AS Degree, AS
Transit Degree, AS Hierarchy, AS Pagerank, and Number of High-Hierarchy Neighbors,
demonstrating their effectiveness in inferring hidden links. We will employ these features.
In addition to these features, this paper introduces attributes such as AS type, AS geograph-
ical location, and AS customer cone size into the node attribute features. The introduced
features are shown in Table 1. Ablation experiments were designed to demonstrate the
validity of these features, elaborated upon in detail in Section 4.5.

Table 1. Features for inferring hidden links.

Features Description

AS Degree Number of Neighbors for AS

AS Transit Degree
Extract triplets centered around AS i and

determine the count of AS i’s unique neighbors
in the transmission path.
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Table 1. Cont.

Features Description

AS Hierarchy Hierarchy of AS in the Internet

AS Pagerank

A link analysis algorithm that assigns
numerical weights to each element in a

hyperlinked document set with the goal of
“measuring” its relative importance within that

collection.

AS Organizational Type
The organizational types of AS, with three

common types: Transit/Access AS, Content AS,
and Enterprise AS.

AS Customer Cone Size Metrics proposed by CAIDA to measure the
importance of AS

AS Geographic Location Country of AS registry

Number of High-Hierarchy Neighbors Number of neighboring AS in the core and
high layers

3.1.3. Model Framework

In this section, we introduce our design of the graph neural network model. The
reasons for using a graph neural network for hidden link inference are as follows: (1) Graph
neural networks excel in handling link prediction tasks; (2) We aim to leverage the graph
neural network to generate higher-dimensional features to assist in our predictions.

The model we use is illustrated in Figure 1. In contrast to traditional methods for
inferring hidden AS links (e.g., Toposcope), we introduce a graph neural network model
to address this problem. To our knowledge, our approach is the first to employ a graph
neural network for hidden AS link inference. In the subsequent task processing, we draw
inspiration from the work of Peng, wherein specific node vectors are concatenated to
represent corresponding links following the acquisition of node vector representations.
Subsequently, the obtained vector representation of the link undergoes processing through
a fully connected layer and utilizes the sigmoid function to obtain the classification re-
sult of that link. Both the graph neural network model and the fully connected model
utilized in our framework are founded on prior research. Our model mainly consists of the
following components:

Figure 1. Hidden link inference model framework.

• Input Layer
In the input layer, we input the raw data and preprocess them to generate graph
data and data for downstream feature statistics. The graph data are represented as
an undirected graph G = (V, E), where V is the set of ASs, and E ∈ V × V is the
set of edges. vi represents an AS, and eij = (vi, vj) is an edge with AS vi and vj as
endpoints. In graph neural networks, graph data are input in the form of an adjacency
matrix. The adjacency matrix A is an n × n matrix, where Aij = 1 if eij ∈ E, and
Aij = 0 if eij /∈ E. For the hidden link prediction task, we use all detour paths as
the graph data for information propagation. In this problem, E ∈ V ×V represents
the remaining edges after removing all positive samples. This ensures that the edges
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used for training and testing do not appear in the graph used for message passing.
Otherwise, there would be a situation where the predicted edges are already known
to exist, rendering the prediction meaningless. This also simulates the observation
bias in the Internet due to the lack of VPs.

• Feature Layer
In the feature layer, we employ the data from the input layer to statistically analyze
and summarize the original features. We construct node feature vectors, which consist
of the crucial features mentioned in Section 3.1.2. Rnxd represents the feature matrix,
where each node in the graph has attributes X ∈ Rnxd. xv ∈ Rd represents the feature
vector of node v.

• GraphSAGE Layer
In the previous sections, we introduced the idea of using the GraphSage [20] model.
GraphSAGE is a general inductive framework that efficiently generates node em-
beddings for previously unseen data using node feature information, such as text
attributes. GraphSAGE does not train a separate embedding for each node but learns
a function to generate embeddings by sampling and aggregating features from a
node’s local neighborhood. Additionally, we referred to the work of Jin [32], which
indicated that stacking two layers of graph neural network models results in rela-
tively better overall performance. Hence, we stacked 2 layers of GraphSAGE models.
The pseudocode for generating node embeddings using GraphSAGE is presented
in Algorithm 1. First, each node v ∈ V aggregates its representations of neighboring
nodes

{
hk−1

u , ∀u ∈ N(v)
}

into a vector. After aggregating neighbor feature vectors,

GraphSAGE aggregates the current hk−1
v node and neighbor vector hk−1

N(v). Subse-
quently, this concatenated vector is transformed into a vector for downstream tasks (i.e.,
hk

v,∀v ∈ V) through a fully connected layer with a non-linear activation function σ.

Algorithm 1 GraphSAGE embedding generation algorithm.

Input: Graph G(V, E); input features xv, ∀v ∈ V; depth K; weight matrices Wk,∀k ∈
{1, . . . , K}; non-linearity σ; differentiable aggregator functions AGGREGATEk,∀k ∈
{1, . . . , K}; neighborhood function N : v→ 2V

Output: Vector representations zv for all v ∈ V
1: h0

v ← xv, ∀v ∈ V
2: for k = {1. . . K} do
3: for v ∈ V do
4: hk

N(v) ← AGGREGATEk(
{

hk−1
u , ∀u ∈ N(v)

}
)

5: hk
v ← Σ(Wk × CONCAT(hk−1

v , hk
N(v)))

6: end for
7: hk

v ← hk
v/||hk

v||2, ∀v ∈ V
8: end for
9: zv ← hk

v, ∀v ∈ V

• MLP Layer
The MLP layer serves as the “classifier” in the entire model. We stack two layers
of fully connected layers, where the first layer transforms node embeddings into
edge tensors, and the second layer is responsible for classifying edges based on the
edge tensors. When inferring hidden link issues, we employ the sigmoid function
because it exhibits good performance in handling binary classification. Let Z represent
the output of the GraphSAGE layer. For binary classification problems, we use the
following expression:

Yij = sigmoid(Linner(Zi, Zj)) (1)

In this context, Zi and Zj are the respective vectors output by the GraphSAGE layer for
the two end nodes of the edge eij. Yij is a probability vector used for the classification
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of the corresponding edge labels.
For semi-supervised binary classification, we employ binary cross-entropy loss as the
objective function, represented as

LBCE(Y, Y
′
) = − 1

n

n

∑
i=1

yi log(yi
′
) + (1− yi) log(1− y

′
i) (2)

Here, LBCE(Y, Y
′
) represents the binary cross-entropy loss across the entire dataset,

where n is the number of samples, yi is the actual label of the i-th sample, and y
′
i is the

probability predicted by the model for the i-th sample.
• Output

In reporting the results, we uniformly set the epoch to 200, conducting 10 experiments
and averaging the results to compile various metrics.

3.2. Inference of Complex Business Relationships
3.2.1. Basic Ideas

In the task of inferring complex business relationships, we focus on the classification
of complex business relationships based on Giotsas [18], specifically emphasizing the
categories of p2c, p2p, and partial transit. We do not focus on hybrid relationships, and
our reasons for this are as follows: Firstly, inferring hybrid relationships requires the
introduction of more granular data. Since hybrid relationships constitute a small portion of
the Internet, this would make the model more complex and potentially affect the inference
accuracy. Secondly, for hidden links, it is highly probable that obtaining granular data flows
is not feasible. Therefore, inference can only be performed at the Autonomous System (AS)
level. Thirdly, Jin pointed out that in hidden links, the majority of business relationships are
p2p, with a smaller portion being p2c. However, based on Giotsas’ definition, we believe
that a portion of hidden links is likely to be partial transit. Therefore, we specifically focus
on p2c, p2p, and partial transit. Therefore, our emphasis is on the categories of p2c, p2p,
and partial transit.

3.2.2. Features of Complex Business Relationships

For link features associated with complex business relationships, to demonstrate the
effectiveness of these features in solving the inference problem related to complex business
relationships, we adopt the effectiveness exploration method proposed by Peng [17]. This
involves analyzing the effectiveness of features by calculating the difference in feature
values between the source Autonomous System (AS) and the target AS. The expression is
given below.

∆ = | fAS1 − fAS2| (3)

In this context, fAS1 and fAS2 represent the feature values of the left and right end-
points, respectively, and ∆ is the difference in endpoint feature values. A departure from
Peng’s feature processing approach, our feature selection directly serves as the features of
the link, while Peng’s features are designed for nodes and are subsequently aggregated
into link features in downstream tasks.

When compiling features for complex business relationships, we utilized the list of
complex business relationships published by Giotsas [18] in 2014. The BGP raw data
employed were the data used to infer this list of relationships.

• Degree and Transit Degree
Degree is one of the fundamental metrics in graph theory. In the undirected topology
of the Internet, the degree of a node refers to the number of neighboring nodes
directly connected to that node. A higher degree value indicates greater importance
of the node in the graph. Transit degree, introduced by Luckie [15] in 2013, is an
indicator reflecting the service scale of an Autonomous System (AS) and the degree of
collaboration with other ASs. By extracting triplets with AS i as the center, the transit
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degree of AS i is obtained by counting the unique neighbors of AS i in the transit paths.
For example, given triplets (AS1, AS2, AS3), (AS1, AS2, AS4), (AS5, AS2, AS6), where
AS2 is in the middle position, and its unique neighbors are AS1, AS3, AS4, AS5, and
AS6, the transit degree of AS2 is 5. ASs such as AS1, AS3, AS4, AS5, and AS6, with
a transit degree of 0 as they are not observed in the middle positions of triplets, are
referred to as stub ASs located at the outermost layer of the Internet. Both degree and
transit degree effectively reflect the importance of a specific AS on the Internet and are
crucial graph features for subsequent algorithm design.

• Distance to Clique AS
Clique AS refers to a cluster of Autonomous Systems (ASs) situated at the top level of
the Internet hierarchy. Within the Clique AS cluster, ASs mutually exchange traffic free
of charge, without any associated fees (akin to a P2P relationship). Clique AS is often
regarded as the center of the Internet, as researchers widely agree on an assumption:
ASs at the topmost level of the Internet hierarchy have numerous customers among
them, making these high-level ASs more likely to engage in peer-to-peer relationships,
fostering mutual benefits. Conversely, for lower-level ASs, forming customer-to-
provider (C2P) relationships with higher-level ASs to achieve global accessibility is
considered a more optimal access strategy. Acquiring the distance feature from a
specific AS to Clique AS is essentially aimed at measuring the distance of that AS to
the Internet’s center.
Initially, we obtain the list of Clique AS using the method proposed by Luckie [15].
Next, we extract the AS path attributes from the BGP raw data to construct an undi-
rected graph. Subsequently, we calculate the shortest path distance from each AS in
the undirected graph to every member AS in Clique AS, taking the average as the
distance feature from that AS to Clique AS. We employ Equation (1) to assess the
effectiveness of this feature, using the 2014 validation dataset to evaluate the three
types of AS links. The distribution of distances to the Clique AS, as shown in Figure 2,
significantly highlights the differences in the types of relationships: full transit, peer-
ing, and partial transit. The distinction between peering and p2c, and partial transit is
quite evident. While the distributions of p2c and partial transit are closer, they can still
be clearly differentiated. This occurs because, according to Giotsas’s definition [18],
partial transit is considered a special case of p2c, leading to a tendency for similarity
in feature distribution, yet with discernible differences.

Figure 2. Probability distribution of distances to Clique AS.

• AS Organizational Types
The organizational type of an AS determines its function and influences its relation-
ships with neighbors. Common AS organizational types include three categories:
Transit/Access AS, Content AS, and Enterprise AS. Transit/Access AS serves as a
provider of transit and/or access services. Content AS provides content hosting and
distribution services. Enterprise AS encompasses various organizations, universi-
ties, and companies. Typically, Transit/Access AS provides transit/access services



Electronics 2024, 13, 1617 10 of 18

to Content AS and Enterprise AS, reflecting well-established business relationships
among ASs. We obtained the AS organizational type dataset publicly available from
CAIDA [33] and conducted a statistical analysis of the AS organizational types in-
cluded in the three categories of business relationships. The experimental results are
presented in Figure 3, where Transit/Access AS is labeled as 0, Content AS as 1, and
Enterprise AS as 2.

Figure 3. Bar chart of AS organizational type distribution.

• AS Hierarchy
Carmi [34] proposed in 2007 that the Internet follows a certain hierarchical structure.
For different AS links, we focus on which hierarchy each AS at the end of the link
belongs to and calculate the proportion based on business relationships. Yang [35]
once proposed a model that divides the Internet into four levels: (1) Core Layer: All
ASs in the Clique AS form the core layer. Because these ASs have the highest transit
degree, we label them as 1. We use the Clique AS list inferred from CAIDA. (2) High
Layer: ASs that are direct customers of the core layer and have a neighbor degree
greater than 100. (3) Stub Layer: ASs that are non-direct customers of the core layer
and have no customers, i.e., ASs with a transit degree of 0. (4) Low Layer: ASs other
than the above four categories. As shown in Figure 4, we can observe that p2c and
partial relationships predominantly occur between ASs in the 3rd and 4th layers, while
p2p relationships primarily occur between ASs in the 2nd and 3rd layers.

• Number of High-Hierarchy Neighbors
ASs located at higher levels often occupy the core of the Internet. Here, we refer to
ASs situated in the first and second layers as high-level ASs. For an AS, the number
of high-level neighbors indirectly indicates the magnitude of traffic it transmits on
the Internet. Hence, we calculate the difference in the number of high-level neighbors
between the two end nodes in three types of business relationship links. The statistical
results are shown in Figure 5, indicating that this feature can distinctly differentiate
between p2c and p2p relationships.
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Figure 4. Bar chart of AS node hierarchy distribution.

Figure 5. Probability distribution of numbers of high-hierarchy heighbors.

• AS Pagerank
Pagerank is a link analysis algorithm that assigns numerical weights to each element in a
hyperlinked document set (such as the World Wide Web), with the aim of “measuring”
its relative importance in that set. The algorithm can be applied to any collection of
entities with mutual references and citations. The numerical weight assigned to any given
element E is called the Pagerank of E, denoted as PR(E) [36]. We calculated the Pagerank
differences between nodes in three types of business relationships, and the statistical
results are shown in Figure 6. From the graph, we can observe that the Pagerank feature
can distinctly differentiate between partial transit links and p2c links.

• AS Geographic Location
ASs have geographical locations in the real world, as proposed by Li [37]. For con-
venience, ASs typically purchase access services from ASs in the same location when
connecting to the Internet. Subsequently, the access service ASs purchase transit services
from ASs in another location to achieve global Internet connectivity. Therefore, we believe
that geographical location can reflect business relationships between ASs to some extent.
This feature is also applied for the first time in relationship inference. We obtained the AS
geographic location dataset publicly available from CAIDA [38]. We conducted a statistical
analysis of the geographic locations of nodes in each AS link, and the experimental results
are shown in the graph. We observed that, for p2c links, the proportion of nodes at both
ends with the same geographic location is 77.9%, for p2p links, it is 30.8%, and for partial
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transit links, it is 71.2%. From the data, we can see that p2c and p2p links exhibit significant
differences in the geographic location feature.

Figure 6. Probability distribution of AS pagerank values.

3.2.3. Training Samples and Inference Method

All our training samples are derived from the inference results of complex business
relationships by Giotsas in 2014, published by CAIDA, and the traditional business rela-
tionship inference results in 2014. We first remove partial transit and Hybrid links from all
p2c links to obtain purely transit p2c relationships. Subsequently, we select p2c, p2p, and
partial transit links. We use all partial transit links and randomly select p2c and p2p links
to ensure a 1:1:1 ratio in the sample quantities for the three relationship types. We split the
dataset into a training set and a testing set in a 7:3 ratio. After constructing the training
samples, we train a random forest model with the training set and then test the training
results using the testing set.

4. Experiments
4.1. Datasets

These files underwent preprocessing by CAIDA, including discarding paths containing
sets of ASs, compressing path padding (i.e., converting AS paths from “A B B C” to “A
B C”), discarding poisoned paths (i.e., paths in which an ASN occurs more than once
and is separated from it by at least one other ASN, or paths in which Clique ASs are
separated), discarding paths containing unassigned ASs, and discarding paths containing
ASNs belonging to IXPs. We scan these paths and extract all paths containing IPv4 prefixes,
discarding those containing IPv6 prefixes based on the prefix attribute in ASpath. As of
now, our access is limited to the inference results of AS complex business relationships
from CAIDA in 2014. Simultaneously, for the purpose of comparing changes in hidden AS
link characteristics between 2014, a decade ago, and 2023, the present year. We selected
files from March 2014 and March 2023.

Validation Data

In the case of hidden AS link inference, we utilize AS links observed by only one VP
as the ground truth dataset for validation. In the case of complex business relationship
inference, we rely on the list of AS complex business relationships inferred using Giotsas’s
method, as published by CAIDA, and validate it as a ground truth dataset.

4.2. Inference of Hidden AS Links

We applied our method to the datasets of 2014 and 2023, conducting experiments
using two types of samples. We removed all observable positive samples’ AS paths. If
an AS path from the remaining paths did not include the ASs in the sample, we added
the AS path back to the original data and removed the link from the positive samples.
The processed AS path data were then applied to both Toposcope and our method. The
experimental results for hidden link inference are shown in Figure 7.
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Figure 7. (a) Inferred results with more constraints. (b) Inferred results with less constraints.

From the experimental results, we can observe that our method outperforms Topo-
scope in various metrics. Additionally, even with a smaller sample size, our method
maintains a high level of accuracy. For different sample restrictions, in 2014, our method
performed better in samples with more restrictions, while in 2023, our method excelled
in samples with fewer restrictions. According to Kastanakis [30], the Internet hierarchy
tends to flatten over the years. Our experimental results indicate that the features selected
in our method align better with samples that have more restrictions in the past. As the
Internet evolves, the features proposed in our method become more suitable for inferring
the existence of modern Internet links, with broader coverage.

4.3. Inference of Complex AS Business Relationships

To validate our ability to infer the business relationships of hidden links more accu-
rately, we extracted links with p2p, p2c, and partial transit relationships in 2014 at a 1:1:1
ratio, totaling 8985 links. We iterate through all the AS paths, and if an AS path contains
any of these 8985 links, we remove that AS path from our dataset. If an AS path does not
contain any of these 8985 links, we keep the AS path. Subsequently, we used Toposcope
and our method separately to infer the existence and business relationships of these links.
The experimental results are shown in Figure 8.

Figure 8. Results for inference of complex AS business relationships.

Our algorithm inferred 7736 links out of 8985 samples. When inferring complex
business relationships, we removed the portion of these links that existed in our training set
for complex business relationships. This prevents information leakage; then, we proceeded
to infer complex business relationships for the remaining links. Our overall accuracy for
inferring complex business relationships is 85%. For p2c inference, the accuracy, recall, and
F1 Score are 81%, 82%, and 81% respectively. For p2p inference, the three metrics are 92%,
94%, and 93%. For partial transit inference, the three metrics are 82%, 80%, and 81%.

Toposcope only inferred 45 links among these, and 42 of these links had business
relationships consistent with the training set. In addition to these links, Toposcope inferred
2594 hidden links between upper-layer Ass with a business relationship accuracy of 93.90%.

Jin believes the reasons for the insufficient number of inferences by Toposcope are as
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follows: (1) Upper-layer links are more likely to be observed. (2) The impact of upper-layer
links on Internet routing is higher than that of lower-layer links. (3) Due to data sparsity,
finding a bypass pair corresponding to a singleton link in the lower layer is challenging.
(4) Learning from (or inferring) more bypass couples would increase costs and might result
in a more complex but less accurate classification model (or inference results). Therefore, Jin
used the K-means algorithm to cluster some ASs with similar features, all belonging to the
upper-layer ASs defined by Jin and exhibiting behavior similar to complete VP. Toposcope
only infers hidden links and business relationships between these ASs. However, most ASs
in the links in our samples are not within this range, leading to their omission by Toposcope.

Our experimental results indicate that Toposcope has limited coverage in inferring
hidden links, while our method can infer hidden links between ASs without being restricted
by AS hierarchy. Additionally, in terms of inferring business relationships, while Toposcope
can only infer traditional business relationships for a limited number of hidden AS links,
our method extensively infers complex business relationships among the most hidden AS
links. This highlights our superiority over Toposcope in two aspects: (1) Our method can
infer a greater number of business relationships between hidden AS links, demonstrating its
generalizability. (2) Our method can infer various types of business relationships, specifically
complex ones, among hidden AS links. This suggests that our method can precisely define
the types of business relationships between hidden AS links. Improving the accuracy of the
types of business relationships between ASs can be very helpful in solving route leaks.

4.4. Replacement Experiment

To demonstrate that our model selection achieves optimal results, we internally re-
placed the original model in our method framework with other state-of-the-art models and
then recorded various prediction metrics.

4.4.1. Inference of Hidden AS Links

In the replacement experiment for hidden link inference, we used the 2023 dataset
with unrestricted links. We describe this dataset in detail in Section 3.1.1. We performed
metric statistics for three of the most popular graph neural network models: GCN, GraphSAGE,
and GAT. We chose these three traditional graph neural network models as components in
our framework for comparison because the more advanced graph neural network algorithms
currently available tend to impose greater restrictions on the dataset and have more parameters.
We aim for our approach to perform effectively on less restrictive datasets that closely resemble
real network environments. Therefore, we only compare these three traditional and popular
graph neural network models to observe which one achieves the best results when integrated
into our framework. The experimental steps were similar to the ones mentioned earlier, with
each model trained for 200 epochs, and the results were averaged over 10 experiments. The
experimental results are shown in Figure 9. From the results, we can see that GraphSAGE
outperforms the other two models in terms of accuracy and F1 score. This demonstrates the
excellent performance of GraphSAGE in handling large graphs.

Figure 9. Replacement Experiment Results for hidden link inference.
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4.4.2. Inference of complex AS business relationships

In the replacement experiment for inferring complex AS business relationships, we
used the 2014 dataset. Five currently popular machine learning methods were selected,
and the experimental results are shown in Figure 10. Our rationale for comparing the
effects of these general machine learning methods here aligns with the reasons stated in
Section 4.4.1. We aim to avoid imposing additional restrictions on the dataset and compli-
cating the problem by increasing the number of parameters. Furthermore, in the domain
of AS business relationship inference, researchers are still exploring how to optimize the
utilization of machine learning methods. This challenge arises from the confidentiality and
complexity of AS business relationships, which prevents comprehensive coverage of all
relationships between ASs, thereby complicating feature design. Presently, only Problink
and Toposcope utilize machine learning methods for inferring AS business relationships.
Additionally, these two algorithms only infer conventional business relationships. In this
paper, we pioneer the application of machine learning methods to infer complex business
relationships, investigating the feasibility of such inference. The experimental data demon-
strate that inferring complex AS business relationships using common machine learning
methods can yield respectable results. Moving forward, we can concentrate on feature
design to enhance the accuracy of the inference algorithm and other metrics. Based on the
experimental results, it is evident that both random forest and XGBoost perform similarly
and outperform other machine learning methods. However, XGBoost only marginally
outperforms random forest in terms of accuracy and F1 score for inferring p2p types. In all
other aspects, random forest outperforms XGBoost; therefore, we select random forest.

Figure 10. Replacement Experiment Results for inference of complex AS business relationships.

4.5. Ablation Experiment

To explore the importance of features in inferring the two problems, we conducted
ablation experiments specifically on the features for both problems. For hidden AS link
inference and complex AS business relationship inference, we employ the same procedure
during ablation experiments. Initially, we maintain the model and dataset unchanged.
Subsequently, we individually remove one feature and observe the resultant change in
method accuracy. For hidden link inference, we used a dataset with fewer samples from
2023 for ablation experiments. For complex business relationship inference, we conducted
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ablation experiments using the 2014 dataset which we mentioned in Section 4.3. Accuracy
changes were recorded in the experiments.

4.5.1. Hidden Link Features

The results of the ablation experiment for hidden link inference are shown in Table 2.
We can observe from the experimental results that the features designed for hidden link
inference have a significant impact on the accuracy of the inference. The table reveals
that among the selected features, the accuracy of inferring hidden links declines most
notably upon removal of the number of high-level neighbors while retaining other features,
resulting in a 7.15% decrease in inference accuracy. Removal of the AS geographic location
leads to the least decline in accuracy, albeit still resulting in a 2.01% decrease in inference
accuracy. In general, removing any feature leads to a decrease in method accuracy ranging
from 2% to 7%, indicating the effectiveness of both features validated by Toposcope [13]
and the newly added features in inferring hidden AS links.

Table 2. Hidden link feature ablation experiment results.

Removed Features Accuracy Variation

AS Degree −5.88%
AS Transit Degree −3.11%

AS Hierarchy −2.42%
AS Pagerank −6.04%

AS Organizational Type −2.21%
AS Customer Cone Size −4.10%
AS Geographic Location −2.01%

Number of High-Hierarchy Neighbors −7.15%

4.5.2. Complex Business Relationships Features

The results of ablation experiments on the inference of complex AS business relation-
ships are presented in Table 3. The experimental results indicate that the features designed
for hidden link inference significantly impact the accuracy of the inference. The table illus-
trates that the accuracy of our method remains relatively stable when removing individual
features while keeping others, potentially attributed to the interplay of multiple features
in inferring complex business relationships. Nonetheless, the removal of a single feature
results in a decrease in inference accuracy, suggesting the continued positive contribution
of these features in inferring complex AS business relationships.

Table 3. Ablation experiment results for complex AS business relationship inference features.

Removed Features Accuracy Variation

AS Degree −0.52%
AS Transit Degree −0.14%

Distance to Clique AS −1.11%
AS Organizational Type −0.22%

AS Hierarchy −0.99%
Number of High-Hierarchy Neighbors −1.33%

AS Pagerank −0.18%
AS Geographic Location −0.92%

5. Conclusions

Through the analysis of contemporary internet behavior and inspiration drawn from
previous work by internet researchers, we propose Hidden-SAGE, a meticulously designed
framework capable of discovering hidden links between Autonomous Systems (AS) and
inferring complex business relationships among AS. In comparison with the state-of-the-art
algorithm Toposcope, which is capable of discovering hidden links and inferring their
business relationships, we find that Hidden-SAGE exhibits better accuracy and fewer
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restrictions in discovering hidden links. Additionally, it can infer a greater variety of
business relationships. Simultaneously, we conducted ablation experiments on the carefully
designed features, obtaining insights into the significance of each feature for our model’s
performance. Our work indicates that utilizing Hidden-SAGE allows for a more effective
expansion of the internet topology, thereby constructing a richer and more comprehensive
rich-text internet topology. For future work, our initial priority should be refining our
feature design to enhance the accuracy of inferring complex AS business relationships.
It is worth noting that our study, as discussed in Section 3.2.1, ignores hybrid types of
business relationships when inferring complex business relationships due to the limited
availability of training samples. Hence, there is potential for enhancing our methodology to
infer hybrid types of business relationships in future endeavors. Additionally, our research
has resulted in an enriched topology map of the AS-level Internet and a more detailed
delineation of AS business relationships and resources that can be subsequently leveraged
to address the route leak problem.

Author Contributions: Conceptualization, H.G., N.L. and Y.X.; Methodology, H.G., N.L. and Y.X.;
Software, H.G.; Validation, H.G., N.L. and Y.X.; Formal analysis, H.G. and Y.X.; Investigation, H.G.;
Resources, N.L.; Data curation, H.G.; Writing—original draft, H.G.; Writing—review & editing, N.L.
and Y.X.; Visualization, H.G.; Supervision, N.L. and Y.X.; Project administration, N.L. and Y.X.; Fund-
ing acquisition, N.L. All authors have read and agreed to the published version of the manuscript.

Funding: The research leading to the presented results has been undertaken within the National
Natural Science Foundation of China (Youth Project) under Grant No. 62101159, the Natural Science
Foundation of Shandong (General Program) under Grant No. ZR2021MF055.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://github.com/GlobalRouteData/Hidden-SAGE (accessed on 10 April 2024).

Conflicts of Interest: There are no conflicts of interest.

References
1. Zhang, B.; Liu, R.; Massey, D.; Zhang, L. Collecting the Internet AS-level topology. ACM SIGCOMM Comput. Commun. Rev. 2023,

35, 53–61. [CrossRef]
2. University of Oregon Route Views Project. Available online: http://www.routeviews.org/routeviews/ (accessed on 19 December 2023).
3. RIPE(RIS). Available online: https://www.ripe.net/ris/ (accessed on 19 December 2023).
4. Isolario. Available online: https://www.isolario.it/ (accessed on 23 October 2023).
5. Chang, H.; Govindan, R.; Jamin, S.; Shenker, S.J.; Willinger, W. Towards capturing representative AS-level Internet topologies.

Comput. Netw. 2004, 44.6, 737–755. [CrossRef]
6. Chen, K.; Hu, C.; Zhang, W.; Chen, Y.; Liu, B. On the eyeshots of bgp vantage points. In Proceedings of the GLOBECOM 2009—2009

IEEE Global Telecommunications Conference, Honolulu, HI, USA, 4 March 2010; pp. 1–6.
7. Oliveira, R.; Pei, D.; Willinger, W.; Zhang, B.; Zhang, L. The (in) completeness of the observed Internet AS-level structure.

IEEE/ACM Trans. Netw. 2009, 18, 109–122. [CrossRef]
8. Milolidakis, A.; Bühler, T.; Wang, K.; Chiesa, M.; Vanbever, L.; Vissicchio, S. On the Effectiveness of BGP Hijackers That Evade

Public Route Collectors. IEEE Access 2023, 11, 31092–31124. [CrossRef]
9. Qiu, J.; Gao, L.; Ranjan, S.; Nucci, A. Detecting bogus BGP route information: Going beyond prefix hijacking. In Proceedings of the

2007 Third International Conference on Security and Privacy in Communications Networks and the Workshops-SecureComm
2007, Nice, France, 17–21 September 2007; pp. 381–390.

10. Sermpezis, P.; Kotronis, V.; Dainotti, A.; Dimitropoulos, X. A survey among network operators on BGP prefix hijacking. ACM
SIGCOMM Comput. Commun. Rev. 2018, 48, 64–69. [CrossRef]

11. Problem Definition and Classification of BGP Route Leaks. Available online: https://www.rfc-editor.org/rfc/rfc7908 (accessed on
23 October 2023).

12. Gregori, E.; Improta, A.; Lenzini, L.; Rossi, L.; Sani, L. A novel methodology to address the internet as-level data incompleteness.
IEEE/ACM Trans. Netw. 2014, 23, 1314–1327. [CrossRef]

13. Jin, Z.; Shi, X.; Yang, Y.; Yin, X.; Wang, Z.; Wu, J. Toposcope: Recover as relationships from fragmentary observations. In
Proceedings of the ACM Internet Measurement Conference, Pittsburgh, PA, USA, 27–29 October 2020; pp. 266–280.

14. Gao, L. On inferring autonomous system relationships in the Internet. IEEE/ACM Trans. Netw. 2001, 9, 733–745.
15. Luckie, M.; Huffaker, B.; Dhamdhere, A.; Giotsas, V.; Claffy, K.C. AS relationships, customer cones, and validation. In Proceedings

of the 2013 Conference on Internet Measurement Conference, Barcelona, Spain, 23–25 October 2013; pp. 243–256.

https://github.com/GlobalRouteData/Hidden-SAGE
http://doi.org/10.1145/1052812.1052825
http://www.routeviews.org/routeviews/
https://www.ripe.net/ris/
https://www.isolario.it/
http://dx.doi.org/10.1016/j.comnet.2003.03.001
http://dx.doi.org/10.1109/TNET.2009.2020798
http://dx.doi.org/10.1109/ACCESS.2023.3261128
http://dx.doi.org/10.1145/3211852.3211862
https://www.rfc-editor.org/rfc/rfc7908
http://dx.doi.org/10.1109/TNET.2014.2323128


Electronics 2024, 13, 1617 18 of 18

16. Jin, Y.; Scott, C.; Dhamdhere, A.; Giotsas, V.; Krishnamurthy, A.; Shenker, S. Stable and practical AS relationship inference with
ProbLink. In Proceedings of the 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), Boston,
MA, USA, 26–28 February 2019; pp. 581–598.

17. Peng, S.; Shu, X.; Ruan, Z.; Huang, Z.; Xuan, Q. Classifying multiclass relationships between ASes using graph convolutional
network. Front. Eng. Manag. 2022, 9, 653–667. [CrossRef]

18. Giotsas, V.; Luckie, M.; Huffaker, B.; Claffy, K.C. Inferring complex AS relationships. In Proceedings of the 2014 Conference on
Internet Measurement Conference, Vancouver, BC, Canada, 5–7 November 2014; pp. 23–30.

19. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks. IEEE Trans. Neural
Netw. Learn. Syst. 2020, 32, 4–24. [CrossRef] [PubMed]

20. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. in Advances in Neural Information Processing
Systems; Curran Associates, Inc.: Long Beach, CA, USA 2017; Volume 30.

21. Roughan, M.; Willinger, W.; Maennel, O.; Perouli, D.; Bush, R. 10 lessons from 10 years of measuring and modeling the internet’s
autonomous systems. IEEE J. Sel. Areas Commun. 2011, 29, 1810–1821. [CrossRef]

22. Mao, Z.M.; Qiu, L.; Wang, J.; Zhang, Y. On AS-level path inference. In Proceedings of the 2005 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, Banff, AB, Canada, 6–10 June 2005; pp. 339–349.

23. Deng, W.; Mühlbauer, W.; Yang, Y.; Zhu, P.; Lu, X.; Plattner, B. Shedding light on the use of AS relationships for path inference. J.
Commun. Netw. 2012, 14, 336–345. [CrossRef]

24. Mühlbauer, W.; Feldmann, A.; Maennel, O.; Roughan, M.; Uhlig, S. Building an AS-topology model that captures route diversity.
JACM SIGCOMM Comput. Commun. Rev. 2006, 36, 195–206. [CrossRef]

25. Mühlbauer, W.; Uhlig, S.; Fu, B.; Meulle, M.; Maennel, O. In search for an appropriate granularity to model routing policies. ACM
SIGCOMM Comput. Commun. Rev. 2007, 37, 145–156. [CrossRef]

26. Dimitropoulos, X.; Krioukov, D.; Fomenkov, M.; Huffaker, B.; Hyun, Y.; Claffy, K.C.; Riley, G. AS relationships: Inference and
validation. ACM SIGCOMM Compute. Commun. Rev. 2007, 37, 29–40. [CrossRef]

27. Faratin, P.; Clark, D.D.; Bauer, S.; Lehr, W.; Gilmore, P.W.; Berger, A. The growing complexity of Internet interconnection. Commun.
Strategies 2008, 72, 51.

28. Dual Transit/Peering. Available online: http://drpeering.net/white-papers/Art-OfPeering-The-Peering-Playbook.html#4
(accessed on 19 December 2023).

29. Partial Transit (Regional). Available online: http://drpeering.net/white-papers/Art-OfPeering-The-Peering-Playbook.html#7
(accessed on 19 December 2023).

30. Kastanakis, S.; Giotsas, V.; Livadariu, I.; Suri, N. Replication: 20 Years of Inferring Interdomain Routing Policies. In Proceedings of
the 2023 ACM on Internet Measurement Conference, Montreal, QC, Canada, 24–26 October 2023; pp. 16–29.

31. Examine Border Gateway Protocol Case Studies. Available online: https://www.cisco.com/c/en/\us/support/docs/ip/border-
gateway-protocol-bgp/26634-bgp-toc.html#toc-hId--910520404 (accessed on 23 October 2023).

32. Jin, W.; Liu, X.; Ma, Y.; Aggarwal, C.; Tang, J. Feature overcorrelation in deep graph neural networks: A new perspective. arXiv
2022, arXiv:2206.07743.

33. CAIDA Public Dataset. Available online: https://publicdata.caida.org/datasets/as-classification_\restricted/ (accessed on 23
October 2023).

34. Carmi, S.; Havlin, S.; Kirkpatrick, S.; Shavitt, Y.; Shir, E. A model of Internet topology using k-shell decomposition. Proc. Natl.
Acad. Sci. USA 2007, 104, 11150–11154. [CrossRef]

35. Yang, Y.; Shi, X.; Yin, X.; Wang, Z. The power of prefix hijackings in the internet hierarchy. In Proceedings of the 2016 IEEE
Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26 August 2009; pp. 228–235.

36. Wikipedia. Available online: https://en.wikipedia.org/wiki/PageRank (accessed on 23 October 2023).
37. Li, J.; Cao, J.; Meng, Z.; Xie, R.; Xu, M. RoLL: Real-Time and Accurate Route Leak Location with AS Triplet Features. In Proceedings

of the ICC 2023—IEEE International Conference on Communications, Rome, Italy, 28 May–1 June 2023; pp. 5240–5246.
38. CAIDA Public Dataset. Available online: https://publicdata.caida.org/datasets/as-organizations/ (accessed on 23 October 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s42524-022-0217-1
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://www.ncbi.nlm.nih.gov/pubmed/32217482
http://dx.doi.org/10.1109/JSAC.2011.111006
http://dx.doi.org/10.1109/JCN.2012.6253094
http://dx.doi.org/10.1145/1151659.1159937
http://dx.doi.org/10.1145/1282427.1282398
http://dx.doi.org/10.1145/1198255.1198259
http://drpeering.net/white-papers/Art-OfPeering-The-Peering-Playbook.html#4
http://drpeering.net/white-papers/Art-OfPeering-The-Peering-Playbook.html#7
 https://www.cisco.com/c/en/\us/support/docs/ip/border-gateway-protocol-bgp/26634-bgp-toc.html#toc-hId--910520404
 https://www.cisco.com/c/en/\us/support/docs/ip/border-gateway-protocol-bgp/26634-bgp-toc.html#toc-hId--910520404
 https://publicdata.caida.org/datasets/as-classification_\restricted/
http://dx.doi.org/10.1073/pnas.0701175104
https://en.wikipedia.org/wiki/PageRank
https://publicdata.caida.org/datasets/as-organizations/

	Introduction
	Related Work
	Hidden-SAGE
	Inference of Hidden AS Links
	Training Dataset
	Feature Selection
	Model Framework

	Inference of Complex Business Relationships
	Basic Ideas
	Features of Complex Business Relationships
	Training Samples and Inference Method


	Experiments
	Datasets
	Inference of Hidden AS Links
	Inference of Complex AS Business Relationships
	Replacement Experiment
	Inference of Hidden AS Links
	Inference of complex AS business relationships

	Ablation Experiment
	Hidden Link Features
	Complex Business Relationships Features


	Conclusions
	References

