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Abstract: Stock market prediction is a subject of great interest within the finance industry and beyond.
In this context, our research investigates the use of reinforcement learning through implementing
the double deep Q-network (DDQN) alongside technical indicators and sentiment analysis, utilizing
data from Yahoo Finance and StockTwits to forecast NVIDIA’s short-term stock movements over
the dynamic and volatile period from 2 January 2020, to 21 September 2023. By incorporating
financial data, the model’s effectiveness is assessed in three stages: initial reliance on closing prices,
the introduction of technical indicators, and the integration of sentiment analysis. Early findings
showed a dominant buy tendency (63.8%) in a basic model. Subsequent phases used technical
indicators for balanced decisions and sentiment analysis to refine strategies and moderate rewards.
Comparative analysis underscores a progressive increase in profitability, with average profits ranging
from 57.41 to 119.98 with full data integration and greater outcome variability. These results reveal
the significant impact of combining diverse data sources on the model’s predictive accuracy and
profitability, suggesting that integrating sentiment analysis alongside traditional financial metrics
can significantly enhance the sophistication and effectiveness of algorithmic trading strategies in
fluctuating market environments.

Keywords: data mining; machine learning (ML); double deep Q-network (DDQN); reinforcement
learning; sentiment analysis; stock forecasting

1. Introduction

The field of stock market forecasting has always been a subject of great interest within
the finance industry. It has been the focus of extensive research and innovative practices,
with various traditional methods utilized to predict market trends. These methods include
technical analysis, which examines historical market data such as price and volume, and
fundamental analysis, which assesses a stock’s intrinsic value. Additional techniques
involve quantitative and econometric models, applying mathematical, statistical, and
economic analyses to forecast market directions [1].

However, these traditional approaches face challenges in managing the vast and in-
tricate datasets prevalent in today’s financial markets. Machine learning (ML) has led to
the introduction of revolutionary methodologies in stock market prediction, leveraging ad-
vanced algorithms to analyze vast quantities of data beyond human capacity. These models
identify intricate patterns and relationships by training on extensive historical datasets,
mirroring the learning process of human traders but with superior processing power [2].
Notably, ML has been employed in the field of finance for algorithmic trading. This strategy
employs computer algorithms to execute trades at optimal speeds and volumes based on
predefined criteria derived from various data sources, including market indicators and
news events. Algorithmic trading enhances trade execution, minimizes costs, and improves
risk management, with algorithms capable of evolving in response to market dynamics,
thereby continuously optimizing trading strategies [3].
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In addition to conventional data sources, social media platforms have become a great
source of insightful information for analyzing the stock market. Popular platforms such as
Twitter, StockTwits, and Reddit offer forums for users to share their views, expectations,
and analyses of stock and market trends, making user-generated content a powerful source
of sentiment data. These data reflect the collective mood and outlook of individuals
concerning specific stocks or the market at large. The integration of social media sentiment
analysis into stock market prediction models is an expanding field of interest. Sentiment
analysis applies natural language processing (NLP), text analysis, and computational
linguistics to identify, quantify, and examine emotional states and subjective insights from
text [4,5].

By evaluating sentiments from social media content, researchers and analysts can
assess public sentiment toward certain stocks or the overall market. This approach is
invaluable for predicting short-term market movements influenced by public sentiment.
Merging traditional market data with social media sentiment analysis offers a comprehen-
sive approach to stock market forecasting [6]. ML models that assimilate and scrutinize
both types of data can achieve more precise and holistic market predictions, capturing
not only historical market trends but also market participants’ prevailing sentiments and
expectations [7].

The potential of ML to enhance stock market predictions is significant. These models
can analyze vast amounts of data and technical indicators beyond human capabilities
and excel at detecting intricate patterns that may elude human analysts. This proficiency
promises to refine trading strategies and improve returns. However, it is crucial to ac-
knowledge the inherent challenges and limitations given the susceptibility of the stock
market to unpredictable factors [8]. With ongoing technological advancements and the
increasing availability of data, the landscape of stock market prediction is poised for further
innovation. The dynamic interplay between technology and finance is exemplified by the
merger of ML and social media sentiment analysis, which offers advanced and effective
trading strategies. As exploration and refinement of these methods continue, the future of
stock market forecasting appears vibrant and promising [9,10].

This study aims to explore the potential of using reinforcement learning, specifically
through the double deep Q-network (DDQN) [11], to predict stock market trends. The
research focuses on NVIDIA, a company with a reputation for volatility and significant
market presence. The main goal and contribution of this research is the methodological
application of the DDQN to predict short-term stock movements into three sequential
phases, focusing on the NVIDIA stock and providing valuable insight into the ML model’s
efficiency, integrating diverse data sources, including traditional financial indicators and
sentiment analysis, to enhance predictive accuracy and profitability. The study comprehen-
sively analyzes how combining these data sources refines trading strategies and increases
profitability, demonstrating a clear progression as model complexity increases. Furthermore,
it focuses on the impact of sentiment analysis, using NLP to integrate market sentiments
from social media. Ultimately, this study aims to lay the groundwork for a more nuanced
understanding of how data integration impacts algorithmic trading efficacy in the dynamic
stock market environment by demonstrating that layered data integration can optimize
algorithmic trading strategies in dynamic market environments.

2. Related Work

Stock market forecasting has evolved significantly, moving from traditional theories
to leveraging cutting-edge technologies and incorporating psychological insights. Foun-
dational theories such as the efficient market hypothesis (EMH) [12] and random walk
theory [13] initially framed the understanding of market dynamics, suggesting that stock
prices fully reflect all available information and follow unpredictable paths. These concepts
have been instrumental in shaping investment strategies and financial analyses. However,
criticisms from the realm of behavioral finance have exposed gaps in these theories, empha-
sizing the need to consider the psychological aspects that influence market movements and
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investor decisions. This has paved the way for a more nuanced understanding of market
behaviors that incorporate both rational and irrational factors [14].

The field has since witnessed a shift toward integrating diverse forecasting method-
ologies, including fundamental and technical analysis, alongside advanced statistical and
computational models [1]. The application of ML techniques, such as support vector
machines (SVMs) [15], long short-term memory (LSTM) networks [16,17], and deep rein-
forcement learning (DRL) [18,19], represents a significant step toward enhancing predictive
accuracy and processing complex datasets. These technological advancements have led to
the development of sophisticated algorithmic trading strategies that can more effectively
navigate the complexities of financial markets. Additionally, sentiment analysis, fueled
by the wide spread of social media, has introduced a novel dimension to forecasting by
capturing the collective mood and opinions of market participants. This convergence of
quantitative analysis and qualitative insights underscores the multifaceted nature of stock
market forecasting, reflecting an ongoing journey of adaptation and innovation in the face
of financial market intricacies [20].

2.1. Core Theories of Stock Market Forecasting

The EMH, in [21], states that stock prices reflect all available information, making
modern investment strategies possible. It is categorized into three forms: the weak form,
which negates the predictive value of historical prices; the semi-strong form, which states
that all public information is already priced; and the strong form, which suggests that
no investor can consistently outperform the market due to the immediate incorporation
of all information into stock prices [22,23]. Despite its widespread influence on passive
investment strategies, EMH is assessed by behavioral finance to overlook human biases
that may delay information assimilation [24].

Random walk theory, developed in [25] and later promoted in [26], declares that stock
prices follow an unpredictable path, indicating that traditional forecasting methods are inef-
fective. This theory argues that stock movements are independent and random, challenging
the ability of actively managed funds to surpass passive index funds in performance. How-
ever, this theory was reinforced in [24] by illustrating the futility of attempting to outguess
market trends. Moreover, the analysis in [27] for random walk theory underscores the
importance of developing economic models that account for observable patterns in asset
pricing without necessarily disputing market efficiency.

Compared to related work and studies focused on the evolution of stock market
forecasting from foundational theories to incorporating diverse statistical and machine
learning methodologies, our study centers on the practical application of the DDQN and
its benefits. We investigate integrating a multi-layered data strategy, including technical
indicators, financial data, and sentiment analysis, highlighting not only the enhancement of
the predictive accuracy of our DDQN model for NVIDIA’s short-term stock movements, but
also presenting the methodology which advances those results and significantly improves
algorithmic trading strategies in a volatile market. Unlike broad theoretical explorations,
our research provides a detailed analysis of how layering distinct data types incrementally
benefits the predictive capabilities of DDQN, demonstrating its practical implications.

2.2. Stock Market Prediction Methodologies

Stock market forecasting combines fundamental and technical analysis, time series,
and momentum investing strategies to predict market movements. Fundamental analysis
evaluates a stock’s value through economic indicators, company performance, and market
demand [23,28,29]. Influential research has highlighted the importance of using financial
ratios and accounting data for valuation, advocating for sector-specific studies [30–33].

Technical analysis utilizes historical price data and indicators such as the simple
moving average (SMA), exponential moving average (EMA), moving average convergence
divergence (MACD), relative strength index (RSI), and on-balance volume (OBV) to forecast
trends [34–37]. In [38], it was emphasized that market prices reflect all available information,
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trends can be identified and exploited, and historical patterns often repeat. Moreover, time
series analysis predicts stock prices by analyzing past trends and employing models such
as ARIMA to account for seasonality and trends [39]. Additionally, the EMH challenges
the premise of prediction based on historical data by stating that prices already reflect all
known information [21]. Additionally, momentum investing is based on the observation
that stocks with strong past performance tend to continue outperforming stocks with
weak past performance in the short term. Studies [40–42] support this trend but also
note concerns regarding transaction costs and the sustainability of momentum strategies.
Behavioral finance studies, such as [43], show the complex influence of market trends on
investor behavior.

2.3. Advances in Stock Market Forecasting through Machine Learning

A study in [44] aimed at predicting daily fluctuations in the Korea Composite Stock
Price Index (KOSPI) utilized technical indicators as predictive variables. The goal was
to forecast daily index movements, categorizing outcomes into two types: a decrease
(“0”) or an increase (“1”) relative to the current day’s index value. The study analyzed
data from 2928 trading sessions between January 1989 and December 1998, with 20%
reserved for testing and the rest reserved for model training. Data normalization ensured
consistent scaling within [−1.0, 1.0] to balance the influence of different variables and
improve prediction accuracy. The research evaluated support vector machines (SVMs) using
polynomial and Gaussian radial basis kernels against back propagation neural networks
(BPNs) and case-based reasoning (CBR), and revealed that the performance of SVMs is
superior due to their reliance on the structural risk minimization principle, suggesting that
SVMs are effective at predicting financial time series and stock indices. These findings
underscore the potential of SVM in enhancing stock market forecasting methods, offering
significant implications for academic and practical applications in finance.

Researchers [45] studied the effectiveness of ML techniques, specifically the back
propagation technique (BPN) and support vector machine (SVM) technique, in forecasting
futures prices in the Indian stock market. Using real index futures data from the National
Stock Exchange of India, this study compared these methods using statistical metrics
such as the normalized mean squared error (NMSE), mean absolute error (MAE), and
directional symmetry (DS) to evaluate the prediction accuracy. The results indicated SVM’s
superior performance over BPN in forecasting accuracy for futures prices, highlighting
SVM’s potential in financial forecasting within the Indian market context.

Furthermore, the application of long short-term memory (LSTM) models for stock
market trend prediction has gained prominence due to their ability to capture complex
temporal patterns in financial data. A study in [46] developed a classification model
using LSTM networks aimed at predicting short-term price movements of Brazilian stocks,
showcasing its efficacy in real-time trading with the model being retrained daily. This
model, which integrates past pricing data and technical indicators, demonstrated significant
predictive accuracy over baseline methods, underscoring the utility of LSTM in enhancing
stock market prediction strategies. In another study [17], LSTM networks were applied to
predict stock returns in the Chinese market, demonstrating a significant improvement in
prediction accuracy from 14.3% to 27.2% over random predictions. The research utilized
900,000 training sequences of 30-day spans with 10 learning features and 3-day return rate
labels and tested them on an additional 311,361 sequences, highlighting the potential of
LSTM for financial forecasting within the volatile Chinese stock market.

The emergence of deep reinforcement learning (DRL), particularly deep Q-networks
(DQNs), has influenced stock market prediction. DQN integrates reinforcement learn-
ing with deep neural networks to navigate the financial market’s inherent uncertainty
and volatility, making informed sequential decisions based on historical data [47]. Previ-
ous research [48] introduced a DQN-based algorithmic trading (AT) system designed for
single-stock trading with daily actions—”hold”, “long”, or “short”—and a reward system
encouraging trend-compliant actions. By incorporating trading charges, the model outper-
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formed the decision tree and buy-and-hold strategies across various metrics, including the
accumulated return and Sharpe ratio, indicating that the DQN is effective at enhancing
trading strategies and reducing portfolio volatility. This work presented the potential
of the DQN in algorithmic trading, particularly in handling single-stock investments for
improved financial performance. In managing the complexities of financial markets, the
robustness and stability provided by methods used in fractional-order uncertain BAM
neural networks [49] prove beneficial for ensuring reliable predictive performance un-
der volatile conditions. Similarly, applying deep neural networks for probabilistic state
estimation demonstrates their ability to surpass traditional methods, enabling real-time,
uncertainty-aware decision making in dynamic environments [50].

2.4. The Role of Sentiment Analysis in Stock Market Forecasting

Researchers in [51] highlight the innovative use of time-specific data divisions to ana-
lyze investor sentiment through tweets and news articles, focusing on the more predictive
value of sentiments expressed during stock market hours than natural day cycles, applying
their methodology to companies’ stocks like Amazon, Netflix, Apple, and Microsoft, and
showcasing that sentiment analysis during opening hours can better forecast next-day
stock trends. Another study in [52] expands this concept by developing a user-facing
application that dynamically assembles stock-related news to predict stock prices in real
time using deep learning models. Additionally, in [53], a more general exploration of
sentiment analysis on Twitter showcases its potential to estimate public sentiment towards
specific stocks or sectors. They conclude that the effectiveness of such tools depends mainly
on data quality and the precision of sentiment analysis algorithms.

Researchers in [54] present a sophisticated approach using neutrosophic logic to refine
sentiment analysis processes by effectively handling uncertain and indeterminate data
within social media content. Their methodology is based on feeding into a long short-term
memory network, which uses the results from the sentiment analysis combined with histor-
ical stock data to predict market movements more accurately than previously compared
models. Moreover, in [55], researchers integrated sentiment analysis with graph neural
networks for stock predictions, highlighting the synergy between graph neural networks’
structural data representation capabilities and sentiment interpretation. They explored
various graph structures, like stock and investor networks, and how those can incorporate
sentiment data extracted from news articles, social media feeds, and financial reports.

The rise of social media has transformed societal interaction, enabling a digital land-
scape where “online individualism” continues to increase, enhancing dialog and collective
action. This digital era emphasizes the importance of sentiment analysis, which aims to
automate the extraction of subjective information—opinions, feelings, and attitudes—from
natural language texts [56–59]. In financial contexts, sentiment reflects market participants’
collective optimism or pessimism, significantly influencing asset prices. Discrepancies
between trading prices and inherent values often highlight the impact of sentiment, incor-
porating emotional responses and other exogenous factors into pricing mechanisms. This is
central to behavioral finance, which investigates the effect of biases on financial decisions,
and technical analysis, where price movements are seen as combinations of factual and
emotional responses. Analysts and researchers have focused on identifying price levels
that indicate emotional extremes, predicting potential corrections and market backsliding
to mean values [60]. This approach underscores the critical role of sentiment in financial
markets, offering insights into price deviations and correction predictions.

A study in [61] analyzed the impact of Twitter sentiment on stock market trends,
specifically examining Microsoft ($MSFT). They collected 2.5 million tweets over a year,
filtering them with Microsoft-related keywords. Preprocessing procedures, which included
tokenization, stop word removal, and special character elimination, were used to prepare
the tweets for analysis. Tweets were annotated for sentiment, and ML models classified the
emotions of the remaining dataset. The logistic regression and LibSVM models achieved
accuracies of 69.01% and 71.82%, respectively, demonstrating a significant correlation be-
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tween Twitter sentiment and stock market movements, with model performance improving
as the data volume increased. Researchers in [62] further investigated Twitter’s influence
on stock markets during the COVID-19 pandemic, comparing its effect to that during the
H1N1 pandemic. Their findings indicated that a lexicon-based method combined with
correlation analysis could uncover subtle relationships between Twitter sentiment and
financial indices, with the SenticNet lexicon proving particularly effective. This study
confirmed social media’s increasingly pivotal role in forecasting stock market trends.

3. Data

This research’s methodology is based on the systematic collection of necessary data
from three distinct sources chosen for their unique contributions to the research. This
section details the selection criteria for these datasets and the preparation steps for analytical
readiness, aiming for transparency in the data acquisition and modeling process.

3.1. Data Collection

This research specifically focuses on NVIDIA stocks, spanning from 2 January 2020
to 21 September 2023, a period denoted by significant volatility and changes in NVIDIA’s
market valuation, thus making it an ideal period for investigating the dynamics of stock
behavior and the efficacy of the DDQN integrating diverse data sources. The data were
sourced from StockTwits, Yahoo Finance, and the yfinance Python library, with each source’s
contribution detailed in subsequent sections.

3.1.1. StockTwits

The StockTwits platform [5,7], which is consistent with the platform’s user engagement
patterns, was utilized for the sentiment analysis component of the study. Posts related to
NVIDIA tagged as $NVDA were collected. StockTwits is a unique social media platform
designed specifically for investors and traders. It was launched in 2008 and has grown
into a vibrant community where participants share insights, strategies, and real-time
market trends. Unlike traditional social media platforms, StockTwits is focused on the
financial market, offering an environment for discussing stocks, bonds, cryptocurrencies,
and other investment vehicles. The study gathered a range of attributes for each post on
the StockTwits platform to ensure a comprehensive analysis. These attributes include:

• ID: A unique identifier for each post.
• Body: The main content or message of the post.
• Created_at: The original timestamp at which the post was created.
• User.home_country: The user’s home country.
• User.followers: The number of followers the user has on StockTwits.
• Likes.total: The total number of likes the post received.
• Entities.sentiment.basic: A basic sentiment analysis of the post, if available, categoriz-

ing it as bullish or bearish.

3.1.2. Technical Indicator Overview

Technical indicators are crucial for traders worldwide, assisting in making informed
decisions. This study focuses on five widely recognized and effective indicators sourced
from the yfinance Python library, chosen for their analytical relevance:

• SMA Fast;
• RSI;
• SStoch RSI;
• MACD;
• Volume weighted average price (VWAP).

SMA Fast is utilized for its responsiveness to recent price movements and for iden-
tifying short-term trends [63]. RSI, a momentum oscillator [64] ranging from 0 to 100, is
employed for spot overbought or oversold conditions, with values above 70 indicating
overbought situations and values below 30 indicating oversold situations. Stoch RSI offers
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a more sensitive measure for detecting these conditions [65]. MACD, a trend-following
momentum indicator, identifies buy or sell signals through the relationship between two
moving averages of stock prices [66]. Finally, VWAP [67] provides a day-trading bench-
mark, reflecting the average price a security trades at, weighted by volume, which is useful
for institutional investors managing large trades.

3.1.3. Historical and Financial Data

Yahoo Finance [68], a well-known financial news and data platform, offers extensive
financial resources such as real-time stock quotes, market data, portfolio management
tools, and comprehensive news coverage. Its design facilitates easy monitoring of personal
investments and market analysis, supplemented by interactive charts, historical stock data,
and live earnings call webcasts.

For this study, historical data on NVIDIA stocks were retrieved from Yahoo Finance.
The data encompasses key metrics such as closing, opening, high, and low prices, trading
volume, and adjusted prices for the study period, with a focus on trading days only.
Particular attention was given to analyzing the closing prices of NVIDIA stocks.

3.2. Data Wrangling

In our study, we used data wrangling techniques to enhance ML and sentiment
analysis efficacy, utilizing the advanced RoBERTa model [69] for analyzing social media
sentiments on StockTwits. This progression from conventional models to RoBERTa, notable
for its adeptness with informal social media language, enables more accurate sentiment
analysis, revealing a generally positive sentiment toward NVIDIA stocks. This finding is
consistent with user engagement trends on the platform and NVIDIA’s market performance,
illustrating the tendency of users to actively participate in discussions when they presented
positive sentiments toward a stock.

Furthermore, our analysis incorporates essential technical indicators such as SMA, RSI,
Stoch RSI, MACD, and VWAP, which were chosen for their ability to provide a detailed
understanding of market behavior and assist in trading decisions. Coupled with Yahoo
Finance data, which focus on active trading days and omit nontrading days for dataset
consistency, our approach provides a robust foundation for reinforcement learning model
development. This compact, focused strategy for data preparation and analysis sets the
groundwork for leveraging reinforcement learning and sentiment analysis in financial
market predictions, ensuring relevance and coherence with real-world trading activities.

3.2.1. Sentiment Analysis Methodology

In sentiment analysis, various models, such as VADER [70] and TextBlob [71], assess
text sentiment polarity, categorizing it as positive, negative, or neutral. This study, how-
ever, utilizes the more recent and advanced RoBERTa model, an evolution of the BERT
architecture, marking significant progress in the field. RoBERTa, which was introduced
in “RoBERTa: A Robustly Optimized BERT Pretraining Approach” [69], is the basis for
numerous specialized models for distinct text analysis tasks.

The chosen model for this analysis is the “Twitter-roBERTa-base for Sentiment Anal-
ysis”, detailed in “TWEETEVAL: Unified Benchmark and Comparative Evaluation for
Tweet Classification” [72]. This model, fine-tuned on approximately 58 million tweets via
the TweetEval benchmark, is especially effective for sentiment analysis of concise, often
informal social media texts, like those found on StockTwits. Its selection was strategic,
considering the dataset’s resemblance to Twitter’s content, enabling precise sentiment
analysis of StockTwits posts.

Figure 1 indicates a generally positive sentiment toward NVIDIA stocks, demonstrated
by a sentiment scale ranging from −1 (negative) to +1 (positive), with a median sentiment
value of 0.10, indicating a modestly positive average sentiment. The lower quartile (Q1)
shows that 25% of sentiments are neutral or less, while the upper quartile (Q3) at 0.21 con-
firms a positive sentiment trend. The absence of negative outliers and a cluster of positive
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outliers highlight days with notably positive sentiment. This trend aligns with NVIDIA’s
significant stock price growth in recent years, capturing user interest.
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In summary, the analysis shows that the NVIDIA stock has a mildly positive sentiment
on StockTwits. Users expressing positive sentiment toward a stock tend to be more active,
leading to an increased presence of positive sentiment in posts. This reflects the natural
tendency of optimists to share their views and follow related stock pages, suggesting that
sentiment analysis on such platforms tends to lean positive, fueled by the enthusiasm of
supportive users.

3.2.2. Technical Indicators

This study incorporates key technical indicators calculated using specified parameters,
focusing on SMA, RSI, Stoch RSI, moving MACD, and VWAP.

SMA [63] is calculated over a 14-day period using closing stock prices, a method
chosen for balancing recent price trends and volatility smoothing. The closing price, the
last trade price during regular trading hours, offers a reliable market sentiment indicator.

RSI [64], a momentum oscillator, assesses the speed and change of stock price move-
ments within a 14-day window to identify overbought or oversold conditions, with values
over 70 indicating potential pullbacks and values below 30 indicating price rebounds. It
underscores market strengths or weaknesses.

Stoch RSI [65], which enhances RSI’s sensitivity, applies stochastic calculations to
RSI values to detect earlier market sentiment changes. Values above 0.8 suggest over-
bought conditions, and values below 0.2 indicate oversold states, aiding in identifying
market trends.

MACD [66], a trend-following momentum indicator, illustrates the relationship be-
tween two EMAs, specifically the 12-period and 26-period EMAs. The MACD line is
derived by subtracting the 26-period EMA from the 12-period EMA, with a nine-day EMA
of MACD serving as a signal line for buying or selling cues.

VWAP [67] provides the average price a security has traded throughout the day,
combining price and volume data. It offers a benchmark for evaluating trade efficiency,
with purchases below VWAP and sales above it considered favorable.

Each indicator offers unique insights into market behavior, contributing to the devel-
opment of a comprehensive technical analysis framework for informed trading decisions.
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3.2.3. Yahoo Finance

The Yahoo Finance dataset captures daily trading activities, excluding weekends and
holidays, to focus exclusively on active market days. This study primarily analyzes closing
prices, confronting challenges associated with missing data on nontrading days.

Two prevalent methods address this issue: linear interpolation and the complete
omission of nontrading days. This research removed nontrading data from the analysis
to ensure a consistent and uninterrupted dataset for modeling, as further explored in a
subsequent section on reinforcement model structuring. Similarly, this exclusion principle
applies to sentiment analysis of StockTwits posts, where nontrading days are ignored to
prevent their influence on sentiment metrics. This strategy maintains the relevance and
consistency of the sentiment analysis with actual trading periods.

4. Modeling

In the Modeling section of our study, we focus on developing and implementing an
advanced stock market trading agent, leveraging the DDQN methodology to address and
mitigate the overestimation biases commonly found in DQN models. This refinement
allows for a more precise assessment of action values by separating the processes of action
selection and evaluation. The agent is programmed with the capability to perform “BUY”
and “SELL” actions based on predictive analyses of daily market changes, supported by a
meticulously designed reward system that aligns with the fundamental trading principle
of buying low and selling high. By integrating a policy network for decision making and
a target network to enhance training stability, along with employing experience replay
for a varied and efficient learning experience, our model simulates a realistic trading
environment requiring nuanced daily market evaluations.

This section further explores the created reinforcement learning environment that
frames the agent’s operational context, detailing the structure of the action space and the
formulation of the reward function to encapsulate a realistic trading scenario. By creating
multiple DDQN environments, each incorporating varying levels of market data complexity,
our study aims to assess the impact of different data types—ranging from closing prices and
technical indicators to market sentiment—on the agent’s ability to forecast short-term stock
movements. This comprehensive approach highlights the versatility of DDQN in adapting
to complex market conditions and emphasizes the potential of reinforcement learning to
transform financial market strategies, demonstrating the way for future advancements in
algorithmic trading.

4.1. Agent

This study introduces a stock market trading agent for daily operations. It utilizes
the DDQN technique to overcome the overestimation bias prevalent in DQN models.
By decoupling action selection from evaluation, DDQN ensures more accurate value
assessments [73].

The agent employs “BUY” and “SELL” actions in response to daily market dynamics.
BUY actions are predicated on expected stock value increases, while SELL actions anticipate
decreases, aiming to capitalize on or mitigate market fluctuations. The reward system is
drafted to promote sound trading decisions, with “BUY” rewards based on subsequent
price increases and “SELL” rewards based on decreases, signifying the principle of buying
low and selling high. Figure 2 presents the schema of the Q-network process.

DDQN’s framework includes a policy network for decision making and a target
network for stability during training, with the latter’s parameters periodically refreshed
to minimize volatility. A key learning mechanism is experience replay, which stores
and randomly samples experiences to enhance training inputs and improve learning
efficiency. The emphasis on daily trading aligns the agent’s operation with real-world
trading environments, requiring daily market assessments to inform actions [74]. This
DDQN-based approach aims to simulate effective trading strategies, highlighting the
potential of advanced reinforcement learning in stock trading applications.
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4.2. Environment in Reinforcement Learning

In reinforcement learning (RL), the environment is a crucial element that outlines the
context for agent operations, defining external conditions and parameters for decision mak-
ing. Specifically, within the DDQN, the environment is instrumental in directing the agent’s
learning and decision-making processes. It encompasses the state space, action space, and
reward system, presenting the agent with states and evaluating its actions through rewards
or penalties, consequently facilitating learning and adaptation to environmental dynamics.

This study explores three DDQN environments, each adding complexity through
additional market data:

1. Closing Price Environment: This environment focuses on daily stock closing prices,
serving as a foundational framework for understanding basic market fluctuations.

2. Technical Indicators with Closing Price Environment: Enhances the closing price data
with technical indicators (SMA, MACD, RSI, Stoch RSI, VWAP), offering a multi-
faceted market perspective that includes trend, momentum, and volume analysis.

3. Technical Indicators, Sentiment, and Closing Price Environment: Integrates closing
price, technical indicators, and market sentiment (from StockTwits) for comprehensive
stock market analysis, encouraging the agent to consider quantitative and qualitative
data in decision making.

Normalization across these environments utilizes RobustScaler [75], which is notably
suitable for financial data prone to volatility and outliers. This scaler ensures data integrity
and consistent model training, and its stability to outliers and trend accommodation
maintains data point relevance during normalization.

This environmental setup presents agents with escalating market complexities, from
basic price trends to combined technical and sentiment analysis. Employing RobustScaler
ensures uniform input scaling, promoting unbiased learning. This progressive environmen-
tal design prepares the DDQN agent for diverse trading scenarios, reflecting the complexity
of real-world stock trading.

4.3. Action Space

In this reinforcement learning experiment, the action space [76] is critically designed
to enable the agent’s decision making with two fundamental actions: “BUY” (0) and
“SELL” (1). This binary structure serves the experiment’s goal of evaluating the agent’s
ability to predict daily stock price movements, either upward or downward, thereby
assessing its capability for making profitable trading decisions.

4.4. Reward Function

The reward function [77] in our study is designed to be direct and impactful, focusing
on the financial consequences of the agent’s actions using real financial figures without
normalization. This approach ensures that the rewards genuinely reflect the outcomes of
trading decisions, thereby motivating the agent to develop effective trading strategies. The
reward mechanism operates as follows:

• SELL action: The reward is calculated based on the difference between the selling
day’s closing price and the following day’s closing price. A positive reward indicates
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a profitable sell (price dropped the next day), and a negative reward suggests a loss
(price increased the next day).

• BUY action: The reward is the difference between the next day’s closing price and the
current day’s closing price, with a positive reward indicating a gain (price increased
the next day) and a negative reward indicating a loss (price decreased the next day).

This method of calculating rewards based on actual price movements provides a
realistic measure of trading success and offers the agent clear feedback on its decisions.

This study focuses on analyzing the impact of different data types on agents’ predictive
abilities rather than simulating a comprehensive trading scenario. By simplifying the
reward structure and limiting the action space to buying and selling, this study aims to
directly evaluate how closing prices, technical indicators, and sentiment analysis influence
short-term stock predictions.

This simplified approach examines the contribution of each data layer to the agent’s
decision-making process, avoiding the complexity of more intricate trading simulations
that could weaken the clarity of these insights. This methodology underlines the potential
of reinforcement learning in financial market applications, demonstrating its capacity for
profit generation, and deepening our understanding of market dynamics.

4.5. Advanced Techniques in DDQN Model Optimization

This section presents the intricate mechanisms and strategic methodologies underpin-
ning our DDQN model, aimed at refining the decision-making processes in stock market
trading. Central to our model’s learning and adaptation capabilities is the experience replay
memory technique, a cornerstone in DRL that significantly enhances algorithmic perfor-
mance by mitigating the correlation among sequential learning samples. This technique,
supplemented by a capacity of 100,000 steps, ensures a rich repository of experiences for
the agent, facilitating a sophisticated learning process across varied market scenarios.

Additionally, we implement a step-decaying learning rate and a decaying epsilon-
greedy strategy, which are crucial for balancing the exploration of new strategies against
exploiting known profitable actions. The step-decaying learning rate methodically reduces
the learning rate to fine-tune the model’s adjustments for precision. At the same time, the
decaying epsilon-greedy strategy systematically lowers epsilon and shifts focus from explo-
ration to exploitation as the agent acquires additional information. These methodologies
optimize the training process and ensure a well-rounded and adaptive learning experience,
highlighting the sophisticated design and execution of our DDQN model.

4.5.1. Experience Replay Memory in Deep Q-Networks

Experience replay memory is a key strategy in DQNs and is essential for enhancing
learning stability and efficiency in DRL. Researchers in [78] used this method, involving the
storage and reutilization of past transitions (state, action, reward, next state) for learning.
This approach mitigates the correlation among sequential learning samples, which is a
challenge in deep RL, particularly with high-dimensional inputs such as Atari game frames.

The utility of experience replay stems from its capacity to ensure a diversified and
uncorrelated selection of experiences for training batches, thereby improving algorithmic
performance and learning robustness. It randomizes the learning updates by drawing sam-
ples from a replay buffer, granting even rare but crucial experiences repeated opportunities
to impact the learning outcome and aid in retaining knowledge over time [79].

For our study, experience replay memory was essential, given the limited size of
the dataset. With a capacity of 100,000 steps, it provided a comprehensive repository of
encountered experiences, enabling the agent to leverage and learn from various situations.
This extensive memory allowed for the revisiting of past transitions, contributing to a
well-informed and refined learning process by utilizing every piece of data within the
dataset for informed decision making.
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4.5.2. Step-Decaying Learning Rate

In the DDQN framework, the implementation of a step-decaying learning rate [80]
serves to strategically refine the learning process. This technique, in contrast to a static
learning rate, systematically lowers the learning rate at predetermined periods, facilitating
several advantages:

• Efficient convergence: Starting with a higher learning rate to achieve quick conver-
gence to a viable solution, the rate to fine-tune the adjustments gradually decreases,
culminating in a more refined and precise model.

• Adaptability: Adjusts the learning pace according to the agent’s progression, em-
ploying larger steps for swift initial learning and smaller steps for meticulous model
refinement in later stages.

• Prevention of oscillations: A reduced learning rate in advanced training phases shortens
fluctuations near the optimal solution, enhancing the model’s precision and stability.

This approach effectively balances exploration and exploitation by modulating the
learning velocity in sync with the agent’s incremental task comprehension.

The step-decay procedure is illustrated in Figure 3 for a model starting with an initial
learning rate of 0.0045. A decay factor of 0.8, applied at fixed intervals—every 20 epochs—
characterizes this method. The learning rate is kept constant within each interval before
being reduced multiplicatively by the decay factor. This creates a staircase effect on the
learning rate across 300 epochs, optimizing the training process and allowing the model
to adjust smoothly to the evolving learning rate for an efficient and effective learning
experience. Additionally, this controlled approach assists in reducing the risk of exceeding
the minimum of the loss function, which can be particularly useful in the later stages of
training when finer adjustments are essential for stabilizing the model.
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4.5.3. Decaying the Epsilon-Greedy Strategy

The epsilon-greedy strategy, which is pivotal in the realm of DQNs for reinforcement
learning, is formulated to strike an optimal balance between the exploration of new actions
and the exploitation of familiar ones [81]. It operates on a mechanism where the agent,
based on a predefined probability epsilon (ε), either randomly selects an action or commits
to the most advantageous known action with a probability of 1 − ε. Starting with a higher
ε promotes exploration, facilitating the acquisition of varied environmental insights. Over
time, ε decreases to enhance the focus on exploiting accumulated knowledge for optimal
decision making. This methodology enables the agent’s learning by ensuring a balanced
approach to discovering new strategies and applying learned experiences.
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In our DDQN model, the decaying epsilon-greedy approach is essential for modulating
the exploration–exploitation trade-off. Initially, set high, epsilon propels the agent toward
exploration, enabling a broad sampling of actions for environmental learning. As the agent
becomes more knowledgeable, epsilon decays, gradually orienting the strategy toward
exploiting learned behaviors.

The key advantages of this strategy include the following:

• Balanced exploration and exploitation: This prevents the agent from being overly
cautious or excessively daring, ensuring a well-rounded learning experience by inte-
grating discoveries with existing knowledge.

• Adaptive learning: The strategy’s decaying nature allows the agent’s exploration-
exploitation balance to adjust over time, which is tailored to the pace of learning,
ensuring a smooth transition from exploration to exploitation.

• Enhanced decision making: With the reduction in epsilon, the agent increasingly relies
on its learned Q-values for making decisions, resulting in more accurate and optimal
choices reflecting its cumulative experiences.

Therefore, the decaying epsilon-greedy strategy is fundamental to the DDQN model,
facilitating effective navigation between exploring novel strategies and leveraging known
rewards, which significantly contributes to a sophisticated and efficient learning process.

Our research examined the epsilon decay strategy across 350 epochs, which is integral
to balancing exploration and exploitation in reinforcement learning. Initially, at 1.0, epsilon
indicates the likelihood of the model taking a random action to promote exploration.
Throughout the training, we applied a decay rate of 0.991 per epoch, reducing epsilon to
a floor of 0.05. This methodical reduction in epsilon facilitates a smooth transition from
an exploration-dominant approach to one that favors exploitation, progressively favoring
informed decisions over random actions. The observed epsilon trend depicted a consistent
exponential decrease, illustrating the effectiveness of this strategy in adjusting the model’s
learning focus over time.

5. Results

This section evaluates the performance of a DDQN agent within the stock market
prediction context by examining its behavior through diverse training stages and environ-
mental conditions. We focus on the agent’s performance during the training and testing
phases across three distinct and complex environmental settings.

The initial environment is based on the stock’s closing price, providing a basic under-
standing of market trends. The second setting incorporates technical indicators to enrich
the model’s inputs, which is crucial for analyzing market patterns and predicting future
price shifts. These indicators offer insights into market momentum, trends, and volatility,
providing the agent with a more detailed awareness of market dynamics. The last set
includes sentiment analysis, introducing a component that captures the sentiment and
subjective dimensions of the market. This addition aims to mirror the impact of public
sentiment, as reflected on social media, on stock prices.

Throughout the training phase, the agent’s goal is to refine its strategy for optimal
performance based on the state representations of each environment. This phase is essential
for the agent to enhance its prediction and market strategy skills. Performance is measured
by the total profits achieved by the agent in each episode.

During the DDQN model training phase, 890 active trading days were utilized, exclud-
ing weekends, public holidays, and market closure days, starting on 2 January 2020, with
an opening stock price of USD 59.97, and ending on 17 July 2023, with a closing price of
USD 464.60. This period encompasses various market conditions, from volatility triggered
by global events in 2020 to recovery and growth in the following years, providing a rich
dataset that likely improved the training robustness and enabled the DDQN model to
adjust to different trading environments.
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5.1. Experiment Setup

In this research, we conducted a series of experiments to evaluate the efficacy of
DDQN within three uniquely defined environmental states. Each state was subjected to
three distinct tests, employing predetermined random seeds to ensure consistency and
reproducibility of the results. The strategic application of these seeds across all tests was
critical for maintaining the integrity and comparability of our findings.

In ML and, more specifically, reinforcement learning, random seeds serve as the
foundation for generating reproducible sequences of random numbers. These sequences
are essential to numerous aspects of the learning process, including but not limited to
the initial setting of network weights, the selection of actions, and the sampling from
experience replay buffers. The value of a random seed lies in its ability to generate a
consistent sequence of “random” numbers across different runs, provided that the seed
value is unchanged.

A uniform set of random seeds across various experiments guarantees that each trial
is conducted under the same initial conditions and random processes. This uniformity was
crucial for accurately comparing the performance of the DDQN agent across different envi-
ronmental states, as it minimizes the impact of random variations in the learning process.

Furthermore, the fixed random seed methodology directly links the observed per-
formance differences to the modifications in environmental states, eliminating random
variability as a confounding factor. This practice significantly strengthens the trustworthi-
ness of our experimental conclusions.

Reinforcement learning frameworks, such as the DDQN, are prone to overfitting,
particularly in intricate scenarios such as predicting stock market movements. Overfitting
describes a scenario where a model excessively learns from the training data to the detri-
ment of its performance on unseen data by capturing noise and anomalies as if they were
significant patterns. This issue is a prominent concern in reinforcement learning due to the
critical balance required between the exploration of new strategies and the exploitation of
known rewards.

To reduce the risk of overfitting in our study, we meticulously calibrated the number
of training episodes. This planning aimed to provide the agent with satisfactory learning
opportunities while safeguarding against the potential for overfitting to the training data
patterns. By adopting this approach, we aimed to cultivate a strategy within the agent
that is both generalizable and resilient rather than overly tailored to the specific instances
presented during training.

5.2. Training Phase

During the training phase of this study, the DDQN model was evaluated across three
sequential experiments, each designed to progressively integrate layers of information and
assess their impact on the model’s ability to predict stock market movements. Starting
with a basic environment that utilized only NVIDIA’s closing stock prices, this phase
set a foundational benchmark for the model’s performance, highlighting the limitations
of relying on a singular data point for decision making. As the study advanced, the
environment was enriched first with technical indicators, offering a broader perspective
on market dynamics, and then with sentiment analysis from the StockTwits platform,
incorporating qualitative insights into market sentiment. This enhancement allowed for a
detailed examination of how varying types and complexities of data influence the model’s
trading strategies and effectiveness.

The findings of these experiments revealed a clear trajectory toward improved prof-
itability and strategic sophistication within the DDQN model’s operations. Experiment 1
demonstrated the inherent limitations of a closing price-based model, prompting a move
toward a more nuanced approach in Experiment 2 with the introduction of technical in-
dicators. This shift yielded a more balanced distribution of buy and sell actions, paving
the way for Experiment 3’s integration of sentiment analysis, which further refined the
trading strategies by incorporating public opinion and market sentiment. Through this
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phased approach, the research showcased the progressive enhancement of the model’s
predictive accuracy and profitability and underscored the necessity of embracing a mul-
tifaceted data integration strategy. The insights gleaned from this training phase, which
will be presented in the following subsections, emphasize the significance of combining
diverse data sources, including both quantitative and qualitative information, to bolster
the sophistication and effectiveness of algorithmic trading strategies in navigating the
complexities of the stock market.

5.2.1. Closing Price Environment (Experiment 1)

The initial experiment within our investigation sets the stage with the most basic
configuration, focusing exclusively on the stock’s closing price. This environment, the
simplest of the three evaluated, bases its entire premise on this singular data point, offering
a foundational yet narrow perspective for the trading agent’s decision-making process.

This simplified approach has several limitations. While the closing price reflects the
stock’s final trading position each day, it does not provide a comprehensive view of the
market’s broader movements. Consequently, the agent is bereft of critical information that
could facilitate a more rounded understanding of market behaviors and trends.

Figure 4 illustrates the agent’s buy and sell actions in the final episode. A dominance
of buy actions is noted, indicating an expectation of higher returns from buying rather than
selling. The absence of deeper market insights, such as those from technical indicators on
market momentum or comprehensive trends, significantly restricts the agent’s ability to
distinguish and respond to market developments. Given the agent’s limited operational
scope, any perceived short-term trends based solely on closing prices are vulnerable to
sudden and inexplicable changes.
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Figure 5 reveals the variability in total profits across episodes, highlighting the agent’s
struggle to stabilize its trading strategy. This fluctuation suggests that without a broader
array of market data, the agent struggles to form a consistent approach to trading, hindered
by the sparse information available in this elementary environment.

Thus, while this initial setting provides an introductory platform for the agent’s
engagement with the stock market, its basic nature significantly constrains the agent’s
capacity to develop a sophisticated market analysis. The findings underscore the need for a
more enriched environmental setup, incorporating a wider spectrum of market data, to
empower the agent with the knowledge necessary for executing informed and strategic
trading decisions.
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5.2.2. Enhanced Environment with Technical Indicators (Experiment 2)

In this phase of our study, the environment for the DDQN model incorporates technical
indicators, providing a richer dataset for the agent’s decision-making processes. This
augmentation significantly influences the agent’s trading behavior, as evidenced in Figure 6,
where the agent executed a balanced mix of 483 buy and 406 sell actions. This contrasts with
the previous experiment’s dominance of buy actions, illustrating how technical indicators
have equipped the agent with a deeper understanding of market dynamics, facilitating
a finer strategy in trading decisions. This development underscores the pivotal role of
comprehensive data in refining trading strategies and enhancing market analysis.

Electronics 2024, 13, x FOR PEER REVIEW 16 of 28 
 

 

 
Figure 5. Experiment 1—evolution of total profits per episode. 

Thus, while this initial setting provides an introductory platform for the agent’s en-
gagement with the stock market, its basic nature significantly constrains the agent’s ca-
pacity to develop a sophisticated market analysis. The findings underscore the need for a 
more enriched environmental setup, incorporating a wider spectrum of market data, to 
empower the agent with the knowledge necessary for executing informed and strategic 
trading decisions. 

5.2.2. Enhanced Environment with Technical Indicators (Experiment 2) 
In this phase of our study, the environment for the DDQN model incorporates tech-

nical indicators, providing a richer dataset for the agent’s decision-making processes. This 
augmentation significantly influences the agent’s trading behavior, as evidenced in Figure 
6, where the agent executed a balanced mix of 483 buy and 406 sell actions. This contrasts 
with the previous experiment’s dominance of buy actions, illustrating how technical indi-
cators have equipped the agent with a deeper understanding of market dynamics, facili-
tating a finer strategy in trading decisions. This development underscores the pivotal role 
of comprehensive data in refining trading strategies and enhancing market analysis. 

 
Figure 6. Experiment 2—buy/sell actions. Figure 6. Experiment 2—buy/sell actions.

The training progress in this enriched environment shows less volatility across episodes
than that observed in the initial experiment, suggesting a more stable and comprehensible
environment for the agent. This stability indicates that the introduction of technical indica-
tors provides sufficient information for the agent to discern optimal actions early in the
training process, indicating the effectiveness of these indicators in improving performance.

In Figure 7, the trajectory of total profits during training episodes demonstrates a
marked improvement in the agent’s ability to identify optimal trading actions, with profits
peaking at approximately USD 3500 before reaching a plateau. This enhanced performance
relative to the initial experiment highlights the value of integrating technical indicators into
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the trading environment, enabling the agent to achieve better-informed trading decisions
and, consequently, more consistent profits.
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5.2.3. Comprehensive Environment with Closing Prices, Technical Indicators, and
Sentiment Analysis (Experiment 3)

In this concluding experiment of the training phase, the environment encompasses
closing prices, technical indicators, and market sentiment analysis, providing a comprehen-
sive market overview. This multifaceted approach merges quantitative data (such as closing
prices and technical indicators) with qualitative insights (derived from sentiment analysis),
challenging the agent to navigate through empirical evidence and sentiment-driven market
trends in its decision-making process.

In Figure 8, we observe the agent’s trading decisions. The number of “buy” actions,
totaling 475, slightly surpassed the number of “sell” actions, which accounted for 414. This
distribution reflects the agent’s strategic balance in action selection, informed by a broad
spectrum of market data.
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Figure 9 illustrates the cumulative profit trajectory over 300 training episodes within
the DDQN model. The graph shows an ascending profit curve, demonstrating the DDQN
agent’s effective learning process. This ascending trend suggests the agent’s increasing
adeptness at securing profitable transactions within the given market simulation. Toward
the training’s conclusion, cumulative profits exceed USD 3500, indicating an optimal
performance level achieved by the agent.
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The execution of 300 episodes proved satisfactory for the agent to refine and optimize
its policy. Notably, the profit graph does not plateau, suggesting the potential for further
improvements in agent performance with additional training episodes. However, this
scenario also raises concerns about overfitting. The final episodes show profits reaching
USD 4000, signifying the agent’s expedited learning and application of optimal actions
within the enriched environment.

This experiment’s stable profit trajectory, without significant fluctuations or down-
turns, signifies a consistent and effective learning process. In the context of reinforcement
learning, especially within volatile financial markets such as stock trading, such stabil-
ity is crucial. This implies the agent’s ability to learn, adapt, and proficiently apply this
knowledge effectively. The steady increase in total profits further indicates that the training
reward function is aptly designed to align with the goal of profit maximization.

5.3. Evaluation Phase

The evaluation phase is essential, as it assesses the model’s proficiency in applying
its acquired strategies to unseen datasets, a critical attribute for a resilient trading algo-
rithm. Following the training of the DDQN agent within three distinct environments, each
reflecting distinct market dynamics or asset behaviors, a real test of its utility coverage was
conducted during the evaluation phase.

Spanning 47 trading days, the evaluation phase is designed to cover a timeframe not
previously encountered by the agent in its training, offering a thorough examination of the
agent’s adaptability across varying market conditions. This duration is selected to provide
an insightful analysis of the agent’s capability through multiple market situations, from
short-term volatilities to more extended market trends, confirming the effectiveness of the
DDQN model in real-world trading settings. Currently, the agent’s performance serves as
a reliable measure of its practical value and adaptability in dynamic trading environments,
where estimating accordingly to new information is crucial.

In financial time series analysis, an innovative normalization technique known as
adaptive/dynamic normalization [82,83] has emerged, particularly aimed at tackling the
challenges of nonstationary data. Traditional normalization methods, such as min–max
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scaling and z score normalization, often do not efficiently address the variable nature of
financial time series characterized by frequent shifts in scale and distribution.

The dynamic window-based normalization method [84] bypasses these issues by
adjusting normalization parameters in alignment with the latest available data, ensuring
that test data are normalized contextually appropriately. This approach is especially
relevant for financial time series forecasting, where it is vital to incorporate recent market
trends and volatilities into the normalization process.

This methodology selects a recent “window” of data points from the training set, with
the window’s size reflecting the data’s volatility and frequency—typically the past few
weeks or months—for daily stock prices. Normalization parameters, such as the mean and
standard deviation, are derived from this window and applied to the test data. For our
study, we considered the most recent 30 days of data for this purpose. A significant benefit
of this approach is its sensitivity to recent market conditions, enabling a more realistic
and flexible data processing framework. This is particularly beneficial in fast-changing
environments such as the stock market.

Nevertheless, this technique also presents challenges, including the selection of win-
dow size and normalization metrics, which can affect model performance. Moreover, if
the window size is too small, there is a risk of overfitting to short-term trends, potentially
overlooking longer-term market behaviors. The following sections will present and discuss
the results, highlighting these considerations.

5.3.1. Validation in a Closing Price Environment (Experiment 1)

Figure 10 shows the results from Experiment 1, where the agent was tested under three
distinct random seeds—42, 75, and 93—introducing variability to its training conditions to
evaluate the stability of its trading strategy. For seeds 42 and 75, the agent’s trading actions
(buys and sells) distribution remained notably uniform, with buys constituting 63.8% and
sells constituting 36.2%. The introduction of seed 93 led to an altered distribution, with
buys increasing to 68.1% and sells decreasing to 31.9%. This shift indicates that the agent’s
strategy has a certain level of robustness but remains sensitive to the influence of initial
conditions determined by the random seed. The buying action preference may suggest an
inherent learning bias or reflect the market conditions encountered during the experiment.
The prominent difference with seed 93 underlines the importance of randomness in training
to strengthen the strategy’s adaptability to diverse market environments.
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Figure 10. Experiment 1—buy/sell actions across three different random seeds.

Figure 11 presents the dynamics of positive and negative rewards by the agent for
each test day, aligned with the training phase’s random seeds. The outcomes illustrate
minimal variation in the seed reward patterns, signifying a consistent mechanism for the
agent’s actions irrespective of the seeds’ initial conditions. The rewards exhibit similar
fluctuations across all seeds, denoting the stability of the agent’s learning and decision-
making framework against the randomness introduced at the training’s outset.
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Figure 11. Experiment 1—daily profits (green) and losses (red) across three different random seeds.

The agent can navigate and identify advantageous actions despite the environment’s
simplicity, focused exclusively on the stock’s closing price. The reward distribution repre-
sents the agent’s proficient decision-making capabilities, consistently securing positive and
negative rewards across various seeds and days. This consistent performance underscores
the agent’s aptitude for recognizing and leveraging profitable ventures within a limited
informational framework. This signifies the efficacy of the underlying learning algorithm
in distilling valuable insights from a constrained dataset, indicating the model’s utility in
practical settings well.

5.3.2. Validation of the Closing Price with the Technical Indicator Environment
(Experiment 2)

Figure 12 presents the division of buy and sell decisions made by the agent in Ex-
periment 2, where technical indicators are integrated alongside closing price data within
the trading framework. For Seed 42, buy actions accounted for 68.1%, and sell actions
accounted for 31.9%. Seed 75 demonstrated a more equitable distribution, with 59.6% of the
participants exhibiting buy actions and 40.4% exhibiting sell actions. Moreover, 93 seeds
exhibited 63.8% of buy actions and 36.2% of sell actions.
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Figure 12. Experiment 2—buy/sell actions across three different random seeds.

The analysis depicted in Figure 13 shows the daily rewards, both positive and nega-
tive, leveraging similar random seeds. This experiment’s findings, compared to those of
Experiment 1, which solely relied on closing price information for the agent’s decisions,
illustrated a significant evolution in trading behavior. Including technical indicators has
prompted the agent to adopt a more evenly distributed trading approach, particularly
with Seed 75. The agent’s previous predilection for buying actions seen in Experiment 1
decreased, indicating a moderate bias in Experiment 2.
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Figure 13. Experiment 2—daily profits (green) and losses (red) across three different random seeds.

Moreover, the reward patterns in Experiment 2 show a reduction in extreme losses,
indicating that the extended data from technical indicators enabled more informed and prof-
itable trading decisions. This addition has expanded the agent’s capability beyond tracking
short-term price movements, enabling it to discern and act on wider market indicators.

The integration of technical indicators has enriched the agent’s informational environ-
ment, facilitating more sophisticated navigational and decision-making capabilities within
the trading scenario, evident in both the action distribution and the daily reward pattern,
where the agent exhibits an enhanced ability to secure rewards and execute balanced trad-
ing decisions. Such improvements suggest a more in-depth understanding of the market
and a strengthened trading strategy, which can be attributed to the inclusion of complex
input data.

5.3.3. Validation of the Closing Price with Technical Indicators and the Sentiment
Environment (Experiment 3)

In Experiment 3, the trading environment is enriched with sentiment analysis from the
StockTwits platform, introducing an additional layer to the already utilized closing prices
and technical indicators from Experiment 2. This inclusion aims to provide a holistic view
of market dynamics by combining quantitative data with qualitative sentiment insights.

Figure 14 displays the distribution of buy and sell actions by the trading agent, show-
casing a nearly even split: 53.2% of buys and 46.8% of sells. This balanced action distribution
is consistently observed across all three evaluated random seeds—42, 75, and 93. This
indicates that including sentiment data might have allowed the agent to adopt a more
unbiased stance in its trading decisions, moving away from the pronounced buy or sell
bias observed in earlier experiments.
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Figure 15 compares the daily rewards, both positive and negative, across the random
seeds. Differing from Experiment 2, the integration of sentiment analysis has refined the
agent’s reward dynamics, potentially tempering the extremities of gains or losses and
offering a deeper comprehension of the market factors influencing trading choices.
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Figure 15. Experiment 3—daily profits (green) and losses (red) across three different random seeds.

By analyzing the findings from Experiment 2, it is evident that sentiment analysis
contributes significantly to the agent’s trading strategy. While Experiment 2 marked a
progression in the agent’s capability to balance buy and sell actions beyond the fundamental
model, Experiment 3 showcases a further refined trading method, as reflected by the
equitable distribution of actions. Additionally, the patterns of rewards imply that sentiment
integration provides the agent with an added layer of market insight, enriching its decision-
making process and leading to steadier performance under various market scenarios.

Nonetheless, Experiment 3’s increased complexity also brings about a degree of vari-
ability among the outcomes derived from the three distinct random seeds. Despite achiev-
ing higher overall profits compared to Experiment 2, the daily actions exhibited variability
across seeds, suggesting the introduction of fluctuations within this enriched environment.

6. Discussion

The ascending trajectory in average profits and outcome variability from Experiments
1 through 3 indicates a progressive increase in the complexity of the training environment.
This escalation likely provided the DDQN model with a more diverse array of data points
and scenarios, enhancing its ability to make informed and profitable decisions in real-world
trading situations. Figure 16 compares outcomes from three distinct experiments utilizing
the DDQN model to forecast stock market movements. The outcomes from each experiment
are illustrated through a range of results (minimum to maximum) depicted by blue boxes,
with the mean outcome of each experiment marked by a red line.
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Experiment 1’s average profit is 57.41, with outcomes showing limited variability. This
consistency points to uniform performance across the board, although the average profit is
lower than that in the latest experiments. The minimal variability highlights the simplistic
nature of this initial experiment, which focused solely on the day’s closing price.

Experiment 2 records an enhanced average profit of 80.82 along with a wider spread
of outcomes, presenting exposure to a more complex trading environment (comprising
closing prices + technical indicators). Despite the enlarged outcome range, consistency
remains across the three random seeds used.

Experiment 3 shows a notable increase, with an average profit of 119.98, which sig-
nificantly increased from the initial experiments. This experiment also exhibited the most
considerable spread in outcomes, indicating a highly dynamic environment enriched with
closing prices, technical indicators, and sentiment analysis. This wide range suggests that
while the model achieved higher performance peaks, it also faced substantial troughs,
reflecting the environment’s increased complexity and the exogenous factors affecting stock
market predictions.

The trend of growing average profits based on the trajectory of experiments suggests
that the DDQN model is continually refining its predictive process and decision-making
strategies. The expansion in both average outcomes and their ranges indicates an improved
capability of the model to navigate the stock market, leveraging a richer dataset for its
trading decisions. Nevertheless, the extensive variability observed in Experiment 3 also
highlights a greater degree of performance unpredictability. This suggests that while the
DDQN model has the capacity for high returns, it is also exposed to significant losses,
reflecting the dual edge of engaging with a more complex and variable trading environment.

It is worth mentioning that while the model developed for NVIDIA stock demon-
strated effectiveness in a volatile market, its application to other datasets requires careful
consideration. The DDQN presented performance is tailored to the specific dynamics
of NVIDIA stock and could potentially limit its transferability to stocks with different
characteristics. For experiments with broader applicability, the model could be retrained or
fine-tuned with new data to accommodate dissimilar market conditions or sector-specific
factors. Additionally, robustness checks by back-testing on diverse datasets could benefit
from assessing their generalizability. Lastly, adjustments and validations are essential to
confirm the model’s effectiveness across varying market scenarios for reproducibility in
other stock dynamics.

7. Conclusions

This research focuses on developing and optimizing a DDQN model to examine the
impact of progressively adding layers of information on its stock market prediction ca-
pabilities, specifically focusing on volatile and significant NVIDIA stocks. Initiated with
a basic setup that only considered the stock’s closing prices, this research established a
performance baseline for the DDQN model without complex market variables, allowing
for a step-by-step evaluation of additional information layers (technical indicators and sen-
timent analysis). Then, we expanded the model’s environment by incorporating technical
indicators to enhance market insight and assess their influence on forecasting accuracy. A
vital factor of the investigation was integrating sentiment analysis to quantify the influ-
ence of public opinion on stock performance, utilizing social media commentary from the
StockTwits platform to estimate investor sentiment toward NVIDIA stocks.

The DDQN model’s performance was comprehensively evaluated across each stage,
aiming to compare the environment’s complexity with its trading efficacy. The initial
experiment, which relied only on closing prices, involved setting the groundwork. Fur-
thermore, in the second experiment with technical indicators, a significant improvement in
the model’s decision making was observed, denoted by a more balanced distribution of
buy and sell actions and an increase in cumulative profits. This progression was finalized
in the third experiment, where sentiment analysis introduced a more profound layer of
market understanding, subsequently enhancing profitability. However, this increase in
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profitability was accompanied by heightened complexity in the model environment. Every
additional layer of information not only broadened the model’s analytical and predictive
scope, but also introduced more variability in outcomes. This complexity, resulting in a
wider range of potential outcomes, suggests that while added information can boost profits,
it necessitates a thorough consideration of the environment’s intricacies and the resilience
of the underlying trading strategies.

The exploration of the DDQN model in forecasting NVIDIA’s stock movements over a
volatile period has yielded significant insights into the benefits of layered data integration
in algorithmic trading strategies. From a simple model based on closing prices to gradu-
ally incorporating technical indicators and sentiment analysis, the study’s approach has
demonstrated a clear trajectory of strategic evolution and improved profitability. The initial
model’s tendency towards buy actions underscored the need for a more comprehensive
approach to decision making within the trading algorithm. The integration of technical
indicators marked the first step toward achieving this, leading to a more balanced distribu-
tion of trading actions and an initial increase in profitability. The subsequent incorporation
of sentiment analysis, capturing market participants’ collective mood and outlook, further
refined the model’s trading strategies.

Comparative analysis across the three stages revealed increased profitability, demon-
strating the significant impact of combining sentiment analysis with traditional financial
metrics. From an average profit of 57.41 in the simplest model setup to 119.98 with full
data integration, the findings underscore the potential for sophisticated data synthesis to
enhance predictive accuracy and trading performance. This incremental improvement,
however, came with increased variability in outcomes, suggesting a more complex envi-
ronment for the model to navigate. The research concludes that while adding data sources
can substantially boost the model’s profitability, it also necessitates a deeper understand-
ing of the underlying complexities and a careful consideration of the robustness of the
trading strategies. The insights gained from this study establish the value of integrating
sentiment analysis alongside traditional financial metrics, increasing the sophistication and
effectiveness of algorithmic trading strategies in the face of fluctuating market conditions.

Finally, by addressing off-market days such as weekends and holidays, which were
excluded from the dataset for continuity, this approach might overlook critical events that
could significantly affect stock sentiment and prices. Future research could explore methods
such as linear interpolation [85] to effectively bridge this data gap, potentially allowing for
a more refined stock performance analysis. Moreover, the sentiment analysis methodology,
based on average daily social media sentiment, could be used in future studies to include
weighted sentiment scores that reflect the influence of individual posts, enhancing the
depth of market sentiment analysis.

Investigating hyperparameter optimization and architectural enhancements presents
opportunities for further refinement of stock market predictions with the DDQN model.
With no standardized approach for tuning reinforcement learning models to financial tasks,
future research could explore adjustments in neural network architecture and other model
components to discover more subtle market patterns. In conclusion, exploring advanced
time series forecasting techniques beyond sliding window normalization [86], such as
“differencing”, could be an alternative approach for handling financial data, potentially
leading to more accurate and robust forecasting models in future studies.
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