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Abstract: This work investigates the advantages of FPGA-based Multi-Character Non-Deterministic
Finite Automata (MC-NFA) for enhancing regular expression processing over traditional software-
based methods. By integrating Field-Programmable Gate Arrays (FPGAs) within a data processing
framework, our study showcases significant improvements in processing efficiency, accuracy, and
resource utilization for complex pattern matching tasks. We present a novel approach that not only
accelerates database and network security applications, but also contributes to the evolving landscape
of computational efficiency and hardware acceleration. The findings illustrate that FPGA’s coherent
access to main memory and the efficient use of resources lead to considerable gains in processing
times and throughput for handling regular expressions, unaffected by expression complexity and
driven primarily by dataset size and match location. Our research further introduces a phase
shift compensation technique that elevates match accuracy to optimal levels, highlighting FPGA’s
potential for real-time, accurate data processing. The study confirms that the benefits of using FPGA
for these tasks do not linearly correlate with an increase in resource consumption, underscoring the
technology’s efficiency. This paper not only solidifies the case for adopting FPGA technology in
complex data processing tasks, but also lays the groundwork for future explorations into optimizing
hardware accelerators for broader applications.

Keywords: FPGA; heterogeneous computing system; regular expression filtering; multi-character
non-deterministic finite automata

1. Introduction

The current state of the art (SOTA) for FPGA accelerators in relational databases
focuses on optimizing the inherent performance and specialization within these databases’
designs [1,2]. Relational databases, essential for large applications, utilize a query optimizer
to translate user queries expressed in SQL into dynamic execution plans [3,4]. These plans
involve selecting from various operator implementations at runtime, guided by complex
heuristics and cost functions [5,6]. The emphasis on using prepared statements enhances
query execution performance by pre-arranging the operator tree and dynamically filling in
parameters during runtime.

In the context of string processing within these databases, existing relational engines
employ mechanisms like LIKE, REGEXP_LIKE, and CONTAINS, each presenting trade-
offs between generality and performance [7,8]. While CONTAINS offers swift searches
through a pre-built inverted index, it introduces additional maintenance costs. Furthermore,
indexing techniques, including suffix trees and n-grams, pose challenges such as substantial
space requirements and periodic rebuilding for potentially stale data [5,9]. The SOTA
for FPGA accelerators aims to address these challenges efficiently, offering specialized
solutions that balance generality and performance. This emphasis particularly focuses on
optimizing fixed operation types and dynamic parameterization for FPGA acceleration

Electronics 2024, 13, 1635. https://doi.org/10.3390/electronics13091635 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13091635
https://doi.org/10.3390/electronics13091635
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13091635
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13091635?type=check_update&version=1


Electronics 2024, 13, 1635 2 of 19

within relational databases. Another critical domain facing challenges is streaming pattern-
matching in network security, with imperative considerations, including processing data
at the rapidly increasing pace of network bandwidth [10,11]. Adapting to dynamic cyber
threats, maintaining an up-to-date pattern set, and striking the right balance between
minimizing false positives and negatives while optimizing system resources remain pivotal
concerns in this field.

Two key computational models, Deterministic Finite Automata (DFA) and Non-
Deterministic Finite Automata (NFA), play fundamental roles in the implementation of
regular expression matching. DFAs operate by processing each character in constant time,
providing straightforward and deterministic pattern matching [2,12]. However, despite
their simplicity and predictable processing times, DFAs face challenges, particularly the
potential for state explosion, especially when dealing with complex patterns [13,14]. In sce-
narios involving regular expressions with numerous possibilities, the exponential growth
in the number of states in DFAs becomes a drawback, impacting memory utilization and
overall efficiency in applications.

On the other hand, NFAs offer distinct advantages in the realm of pattern matching,
primarily attributed to their linear scalability (O(n)), ensuring a proportional increase in size
corresponding to the complexity of the regular expression [15,16]. This scalability makes
NFAs well-suited for deciphering intricate patterns, such as byte sequences indicative of
specific patterns in relational databases. The synergistic integration of FPGAs with NFAs
further elevates their potential. FPGAs, renowned for their parallel processing capabilities,
enable the concurrent evaluation of multiple patterns, optimizing throughput and facilitat-
ing efficient real-time detection of pattern matching [17,18]. The inherent adaptability of
FPGAs becomes evident as they accommodate customized and parallelized implementa-
tions of NFAs, fostering a blend of flexibility and speed in the pattern-matching process.
Despite these promising advantages, challenges persist in the utilization of NFAs and
FPGAs for regular expression matching, particularly in managing potential state explosions
during the conversion of NFAs to DFAs. The intricate balance between scalability, memory
utilization, and real-time processing efficiency requires careful consideration to harness
the full potential of this powerful combination in addressing the evolving landscape of
database matching.

This paper focuses on three key aspects. Firstly, a performance comparison between
software and FPGA (MC-NFA) processing, showing FPGA’s superior efficiency in handling
regular expressions across various data set sizes. Secondly, the advantage of phase shift
compensation in improving match accuracy, demonstrating perfect accuracy with this
feature versus variable accuracy without it in FPGA projects. Lastly, A detailed analysis
of FPGA resource utilization, indicating that increased processing performance does not
linearly correlate with resource consumption, showcasing efficient use of FPGA resources.
The subsequent sections of this paper are structured as follows: Section 2 provides the
background information. The proposed approach is delineated in Section 3, and the
performance evaluation is expounded upon in Section 4. Finally, Section 5 offers concluding
remarks on this work.

2. Background
2.1. FPGA

Field Programmable Gate Arrays (FPGAs) are hardware chips known for their unique
ability to be reprogrammed multiple times, exhibiting behavior similar to Application-
Specific Integrated Circuits (ASICs) once programmed [19,20]. Traditionally, these chips are
programmed using hardware description languages like Verilog or VHDL. However, recent
advancements have introduced high-level languages and synthesis tools that facilitate the
translation of C/C++ or OpenCL code into logic gates [21,22]. Due to the limited capacity
of on-chip static random-access memory on FPGAs, commonly referred to as block RAMs
or BRAMs, typically a few megabytes in size, standalone boards are frequently utilized as
“bump-in-the-wire” accelerators for stream processing [23,24]. This strategy helps avoid
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the need for extensive data or computational state storage. Nevertheless, contemporary
FPGA boards often integrate DDR memory in the range of several gigabytes, albeit with
higher access latency than the on-chip memory [25,26]. The hybrid system considered in
this context offers an alternative to these established designs.

2.2. Database Operators

In the conceptual framework of a database table, each entry corresponds to a row
containing multiple attributes. The database operates through query compilation by the
query optimizer [27,28], resulting in a query plan structured as a tree of operators. Each
operator within this tree executes a specific part of the query. The transformation of a
database query into a tree involves the utilization of two operators: Filter and Min [29,30].
The Filter operator selects rows in the table that meet the condition specified by ’LIKE,’
employing regular expression matching and forwarding the results to the Min operator.
Subsequently, the Min operator identifies the row with the minimum value iteratively and
extracts the associated Value attribute. This extracted value then serves as the ultimate
output of the query.

Real-world queries tend to be more complex, and the challenge for the query opti-
mizer is to strategically integrate available operators into an execution tree that optimizes
the estimated execution time [31,32]. To facilitate viable operator combinations, these
operators must operate within a consistent, well-defined data layout and share similar
interfaces. In our conceptualized database, operators are implemented in both software
and hardware, offering the query optimizer flexibility to choose optimally between the
two. Hardware-implemented operators are required to adhere to the same data layout
as their software counterparts. Databases employ diverse data layout strategies, ranging
from row-oriented [27,33] to column-oriented structures [34,35]. Despite these variations,
databases generally manage memory independently from the operating system, organizing
records into pages.

2.3. Transitive Closure

The concept of transitive closure plays a pivotal role in the computational theory, espe-
cially within the domain of finite automata [36,37]. It essentially describes the reachability
of nodes within a graph, facilitating the identification of all possible states that can be
reached from any given state within a Non-Deterministic Finite Automaton (NFA). Given a
directed graph G = (V, E), where V represents the vertices or states of the automaton and
E the transitions or edges between these states, the transitive closure of G, denoted as G∗,
is a graph where a direct path from vertex i to vertex j exists if and only if there is a path
from i to j in G. Formally, the transitive closure can be defined as:

G∗ = (V, E∗), where E∗ = {(i, j) | there exists a path from i to j in G} (1)

The computation of transitive closure is essential in the construction of Multi-Character
NFAs, where the goal is to enhance the processing throughput by efficiently identifying all
reachable states from any given state, considering multiple characters as input [38,39]. This
capability is fundamental to optimizing state transitions in NFAs designed to process high
volumes of data, thereby significantly reducing the computational overhead associated
with single-character NFAs [38,40].

In the context of Multi-Character NFA construction, the transitive closure assists in
merging multiple cycles of matching into a singular computational step. By doing so,
it not only improves the matching speed, but also ensures a compact representation of
state transitions, essential for high-throughput computing environments. This concept
is illustrated further in the algorithm for constructing Multi-Character NFAs, where the
transitive closure facilitates the identification of composite states resulting from the ag-
gregation of individual transitions, thereby enabling the NFA to process multiple input
characters simultaneously.
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3. Principles of Constructing Multi-Character NFAs
3.1. Preliminaries

A NFA is defined as a five-tuple, M = (Q, Σ, q0, δ, F), where:

• Q is a finite set of states;
• Σ is a finite set of input tokens;
• q0 is the initial state;
• δ : Q × Σ → P(Q) is the transition function;
• F ⊆ Q is the set of accept states.

The transition function δ is defined such that δ(q, a) = {p1, p2, . . . , pm}, indicating
possible transitions from state q upon reading character a.

3.2. Multi-Character NFA Construction

The core principle behind MC-NFA construction is the exploitation of the transi-
tive closure property in automata, enabling the processing of symbol sequences in bulk.
The transitive closure, a well-known concept in mathematics and computer science, is used
here to establish a connectivity matrix that represents all possible state transitions over
sequences of input symbols. Consider an NFA M = (Q, Σ, q0, δ, F), the enhanced transition
function δ∗ for a MC-NFA can be mathematically represented as:

δ∗(q, w) =
⋃

p∈δ(q,a)

δ∗(p, w[1 :]) (2)

where w is a string of characters from Σ∗, and w[1 :] denotes the string w excluding its
first character. This recursive formulation underscores the transition from processing a
single character to handling strings of characters, significantly augmenting the automaton’s
processing throughput.

The capability to process sequences of characters is encapsulated by a recursive rela-
tionship, facilitating the iterative expansion of the NFA’s processing scope. This relationship
is formalized as:

δn
mc(q, s) =

{
q if n = 0
δ1

mc(δ
n−1
mc (q, s1:n−1), sn) otherwise

(3)

where s1:n−1 and sn denote the substring from the first to the (n − 1)th character and the
nth character in s, respectively. In a case given s =′ ab′, n = 2, we have:

δ2
mc(q,′ ab′) = δ1

mc(δ
1
mc(q,′ a′),′ b′) (4)

In this special case, where n = 2 and s = ‘ab’, the function first processes the substring
‘a’ (s1:1), transitioning from the initial state q based on this input, and then processes the
second character ‘b’ (s2), further transitioning based on the result of the first transition.
The specific case here demonstrates the method for a two-character input, enhancing
processing throughput by reducing the number of transitions required for pattern matching
over large datasets. The introduction of MC-NFAs fundamentally alters the computational
landscape for automata by reducing the number of transitions required to process input
strings. This reduction directly translates to increased efficiency, particularly in scenarios
involving complex pattern matching over large datasets.

3.3. Algorithm

The construction of an MC-NFA involves a recursive traversal algorithm that system-
atically explores all possible paths through the NFA’s state graph, identifying and merging
paths that can be traversed by consuming multiple input characters. The algorithm operates
as follows:
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1. Initialization: start from the initial state q0, marking the current node’s layer as N
and each connected child node’s layer as N + 1.

2. Traversal: For each node, retrieve all connected child nodes. If a child node has been
visited in an even layer previously, the recursion stops for that path to prevent the
duplication of states.

3. Layer Management: nodes appearing in even layers are processed to simulate the
consumption of 2 bytes at a time, aligning with the design of FPGA-based state
machines.

4. State Merging: through recursive traversal, merge transitions that can be compactly
represented by multi-character inputs, effectively reducing the graph’s complexity.

The recursive nature of the algorithm ensures that all potential paths are explored,
allowing for the efficient consolidation of state transitions based on the input characters’
sequences. Upon transforming a regular expression into an MC-NFA, the automaton is
characterized by a set of input tokens, states, and transition conditions tailored to process
multiple characters.

We illustrated the algorithm in a simple example. Figure 1a is the Token table, which
conveys the content of the smallest character groups that cause state transitions after multi-
character transformation, represented using ASCII codes. For example, in a 2-NFA, a token
in the table represents two characters, such as ‘ab’, and in a 4-NFA, a token represents four
characters. The total number of tokens after transformation must be less than the maximum
number of tokens supported by the FPGA, otherwise, it will indicate unsupported. This
paper designs to support up to 16 tokens (totaling 64 characters) based on the application
scenario of the database, which can meet the requirements. Figure 1b shows the state
transition relationships triggered by tokens. For instance, in Figure 1b, “ab” can effectively
trigger state S3, which is marked as “1” in the table, and states that cannot be triggered are
marked as “0”. Figure 1c details the transitions between states. For example, under the
effect of ‘ab’, state S1 can transition to state S3, which is marked as ‘1’ in the corresponding
place in the table, and other markings that do not result in state transitions are marked as
“0”. Based on the information from these three tables, the NFA’s transition relationships can
be obtained, thereby acquiring the matching rules for the regular expression.

Figure 1. MC-NFA algorithm demonstration.

4. System Implementation
4.1. System Overview

The FPGA solution proposed in this paper relies on the conversion of regular expres-
sions into NFA, leveraging the advantage of NFA allowing multiple states to be active
simultaneously, and input Tokens can trigger many different state transitions in con-
stant time.

We propose the implementation of multi-character regular expression matching in
FPGAs, covering both its functionality and performance. The process begins with software
extracting and optimizing the regular expressions, and then compiling them into NFAs
(Non-deterministic Finite Automata) using a library (this part is not the contribution of
this paper and relies on existing library functions). The main contribution of this paper
starts from step 1 in Figure 2. Specifically, it first utilizes the conversion algorithm proposed
in this paper to transform the NFA into a multi-character NFA. Then, it abstracts and
parameterizes the multi-character NFA, forming pattern encoding information that can be
recognized by the FPGA and transmitted to the FPGA board. Packet data is sent to the
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FPGA’s acceleration module through a 512-bit wide transmission channel, initiating the
FPGA to perform accelerated computation of the regular expression. After completing the
computation, the FPGA provides the Result information back to the user.

Figure 2. System overview.

4.2. The Extraction and Preprocessing of Regular Expressions
4.2.1. Regular Expression Input

Regular expressions are divided into five metacharacter categories, each tied to a
specific implementation method and corresponding to the creation of specialized regular
expression HDL libraries. These categories encompass the Basic Matching Library, which
handles single character and wildcard “.” matching, serving as the foundation for complex
expressions. The Relational Operations Library focuses on OR and AND operations within
regular expressions, accommodating the “|” and “and” operators for pattern selection and
logical conjunction.

The Quantity Limiting Library quantifies subexpression occurrences with support
for “*”, “+”, “?”, “{n}”, “{n,}”, and “{n,m}”. Meanwhile, the Positional Matching Library
anchors expressions to string positions using “ˆ” and “$” metacharacters to match the start
and end of strings. Finally, the Range Matching Library specializes in character set and
range matching via “[ ]” and “[ˆ ]” for inclusive and negated sets, along with support for
character ranges “[a–z]” and negated ranges “[ˆa–z]”. Combining these metacharacters and
single-byte matching modules enables the comprehensive implementation of all regular
expression patterns, making it a versatile tool for various pattern matching tasks.

4.2.2. Regular Expression Preprocessing

In traditional theoretical models, using FPGA for matching is constrained by pro-
cessing only one input character per cycle, limiting the matching speed of a single com-
putational unit. To enhance matching efficiency, this solution introduces a single-cycle,
multi-character (MC-NFA) construction method, allowing FPGAs to process multiple
characters simultaneously within a single cycle. Therefore, to support multi-character
matching, adjustments and adaptations to the algorithm are required during the software
preprocessing phase, which is described in two distinct steps.

4.2.3. Software Compilation

Converting regular expressions into single-character NFAs can be achieved using
the classical Thompson construction method. For example, consider the expression
‘ab(cdb)*ef’.The resulting NFA transformation is illustrated in Figure 3. In this fig-
ure, S1 represents the initial state, S6 denotes the final acceptance state, and ϵ signifies any
character. The construction of NFAs is generated by a software program, with the input
being the regular expression and the output being an NFA stack. As regular expressions
are often lengthy and subject to frequent modifications, automating the generation of NFAs
through a program enhances the efficiency of this construction approach.
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Figure 3. Non-Deterministic Finite Automaton (NFA) expression.

4.2.4. Phase Compensation

Upon a thorough examination of the principles underlying multi-character NFAs,
particularly in the context of the two-step jump automaton transformation, a noteworthy
observation emerges. In the case of double-byte matching, the default assumption is that
the matching process commences with the first character, and subsequent jump condi-
tions are predicated on pairs of characters. However, if the matching initiates from the
second character of the input, adhering to the aforementioned jump conditions may lead to
erroneous results, commonly known as “false positives”.

To mitigate this issue and enhance the comprehensiveness of the multi-character
matching algorithm, this paper introduces a phase compensation method. This technique
is hardware-based and entails the creation of a sliding window that duplicates the input
string and shifts it one byte to the left. In scenarios necessitating N-character matching
within an NFA context, the input is replicated N times, with each copy shifting one byte to
the left, resulting in a maximum shift of N − 1 bytes.

The implementation process is exemplified using a 4-NFA as a reference. For in-
stance, consider the regular expression pattern=babana and the input string Str=ϵbanana
(Figure 4). When matching is executed, the first cycle “consumes” four characters, and it
compares these with four tokens that have a phase offset, determining equality and out-
putting the match result. This result can be the final Match result, or it may serve as a
prerequisite for whether a token related in the next cycle matches. Only after all con-
nected matches are completed does it output whether the current input string matches.
When matching is executed according to the previously outlined construction method, it
yields a mismatch. However, following this “phase compensation” processing, successful
matching is achieved. This hardware-driven solution not only mitigates false positives,
but also streamlines the software-level algorithm. Depending on the availability of hard-
ware logic resources, this approach offers a versatile trade-off between resource utilization
and processing speed. This process only requires two cycles, whereas traditional single-
character 1-NFA matching would need six cycles to complete. Therefore, this method
not only resolves mismatch issues and improves accuracy, but also significantly enhances
matching efficiency.
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Figure 4. Phase compensation.

4.2.5. Parameterization

Runtime configurability means that an FPGA, once configured and in use, does not
require a change in its design or recompilation when users modify the regular expression.
The FPGA should support updates to the regular expression. Three tables with specific
numerical values are filled into the configuration information in Figure 5 (the three tables
generated by the software algorithm). This information is sent to the FPGA through the
PCIe registers. The FPGA stores the relevant data in RAM and retrieves it when needed.
Internally, the FPGA needs to translate the new configuration information into specific
circuit connections to support the new regular expression. Taking the 2-NFA from Figure 1
as an example, the FPGA supports eight tokens and eight states, and the three tables are
encoded according to the following protocol into a form that the FPGA can recognize
and use.

From the aforementioned example, it becomes evident that, for a given regular expres-
sion, extracting information about the token set, the number of states, and the transition
details between states is adequate for implementing regular expression matching on FPGA.
This approach serves as the foundation for our design strategy. We organize the crucial
information into three two-dimensional matrix storage structures, which are then written
to the FPGA via online configuration. The FPGA interprets this information and carries
out the matching process. When altering the pattern, you need only modify specific values
within the two-dimensional matrix storage structures, without necessitating changes to
the FPGA’s underlying logic code. Within the FPGA’s internal implementation, there
are two main architectures: the transition mapping diagram between tokens and states,
and the pre-linking between states (Figure 6). The input characters that satisfy the matching
requirements are selected based on the configuration information.



Electronics 2024, 13, 1635 9 of 19

Figure 5. Configuration information to FPGA.

Figure 6. Configuration information and FPGA implementation.

4.2.6. FPGA Logic Design Solution

This section details the specific implementation method of 4-NFA as a functional
module in FPGA. A processing module capable of handling multiple characters will be
treated as a Process Unit (PU). The PU is designed to handle multi-byte matching operations
between individual regular expressions and input strings. The use of multiple PUs enables
parallel processing of input tuples, significantly enhancing the system’s throughput.

Given the dynamic nature of regular expressions in response to various database
application scenarios and customer needs, where different data tables may require different
query demands, the flexibility of handling varying regular expressions is essential. This
paper introduces a database-centric solution with several key features. It allows for online
configuration of parameterized regular expressions, eliminating the need to re-download
FPGA bitstreams when encountering new regular expressions in queries. Additionally,
the logic overhead does not grow linearly, regardless of the complexity or length of the
regular expressions used. Furthermore, the proposed multi-character NFA matching
method is particularly effective for scenarios involving lengthy strings commonly found
in databases, facilitating fast and efficient matching of extended strings. The internal
implementation logic of FPGA is shown in Figure 7.

The PU mainly consists of a configuration information decoding module, a multi-
character matching module, a phase compensation processing module, a Token and State
trigger jump selection module, and a state-to-state jump selection module. In the specific
logic design, the maximum number of characters and states supported are first determined.
For illustration purposes, this article sets the number of characters to 16 and the number of
states to 8. These two parameters are configurable. In the logic implementation, relevant
modules can be modified by changing the parameter controlling the number of modules.
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This article uses a quantity of 16 × 8 as an example. Figure 8 shows an NFA after four-
character conversion for the regular expression a(bc)∗(d|e). Subsequent modules will be
detailed using this regular expression as an example.

Figure 7. FPGA logic.

Figure 8. 4-character NFA demonstration.

4.2.7. Configuration Information Decoding Module

The function of this module is to decode the information configured from the CPU side,
extract Tokens, Convert information, and States state transitions according to the protocol
defined by both parties, and save them to the corresponding registers. It is important to
note that Token is the character(s) to be matched in the regular expression. It can be a
single character or multiple characters (or a word). In the single-character matching mode,
Token is a character, while in the multi-character matching mode, the Token can be two or
four characters, etc. Among them, from the 4-NFA configuration information in Figure 8,
the following can be obtained: there are a total of 10 input characters, including abcd, adxx,
abcb, cbcb, aexx, abce, cbcd, cdxx, cexx, and abce. Regarding States (State), there are three
states: S0, S1, and Sf. The State Triggers and Transitions (Convert) consist of 10 transitions.

4.2.8. Token Matcher Implementation

In this solution, a multi-character matcher is used to match characters from the regular
expression against the source data characters in the database. It performs basic character-to-
character matching. Only when the input characters have a match is there a possibility of a
regular expression match. If the characters do not match, the regular expression will definitely
not match. Therefore, character matching is the first step in the logical implementation.

To support arbitrary expressions as designed in this solution, the FPGA internally
only needs to configure a certain number of matchers without worrying about the spe-
cific characters to match. For example, in the detailed example described in Figure 8,
the system supports four-character matching, with each comparator capable of simulta-
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neously comparing 32 bits. For a system supporting a maximum of 16 character groups,
the FPGA configures 16 modules for four-character matching. The specific number of
configurations can be adjusted through parameters at the top level, and the maximum
number of characters supported by the system needs to be evaluated based on the FPGA’s
logic resources.

To enhance matching performance and eliminate the need for backtracking in case
of mismatches, we have designed a scheme that allows for the simultaneous matching of
multiple characters. This design enables all 16 character matching modules to operate con-
currently, providing synchronous feedback on whether the current input character matches
the predefined configurations. The matching process is depicted in Figure 9. In previous
examples, challenges arose during multi-character matching when the characters that
matched did not align with multiples of four or two. For example, after some characters
have been successfully matched, one or two characters might remain unmatched at the end
of the sequence, with these being disregarded in terms of the broader matching context.
In such instances, the symbol ‘ϵ’—which represents any character—is used as a placeholder.
When ‘ϵ’ is included in the Token configuration, it requires special handling to implement
this matching functionality effectively. Alongside configuring the character information,
a flag is associated with each character to indicate the presence of ‘ϵ’ characters. To accom-
modate these characters, a selector is employed to substitute the character information in
the pattern with the actual characters from the string being matched. This strategy ensures
that any input character is treated as a match, as illustrated in Figure 10.

Figure 9. Mult-char matching implementation.

Figure 10. Handling of dynamic length character.

4.2.9. Mapping Diagram Between Token and State

As mentioned earlier, supporting any regular expression implies that any Token in the
expression may trigger any one of the eight states supported by the logic, as it is related to
NFA. In the hardware logic circuit design, this mapping relationship is virtually present,
where each Token → state transition is present in the logic. In the specific configuration
of the regular expression, the Convert configuration information in Figure 11 is used to
select the states that are truly triggered, i.e., to choose the output results based on the
configuration information. In the case of this solution’s example, the mapping diagram
between Token and State will be as shown in Figure 11.
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Figure 11. Principle and implementation logic of state mapping selection.

4.2.10. Pre-Linking Diagram between State

The pre-linking between states means that all states supported by the system are
connected, and every regular expression is mapped to a state in the NFA. All states have the
potential to transition to each other within the 16 states, and the final selection of connections
that meet the expression requirements is based on the State Transitions configuration
information in Figure 12. Each state is a node in the pre-linking diagram, and the transition
conditions are the connections between nodes, marked as “1” in first table in Figure 12.
The pre-linking state diagram for this solution’s example is shown in Figure 12.

Based on the State Transitions configuration information, the “1” marks in the table
indicate valid transitions between states, represented by solid line arrows in the diagram.
With the described process, when a string to be matched undergoes regular expression
filtering, the FPGA performs three comparisons: character matching, character and NFA
state transition matching, and state-to-state transition matching, ultimately yielding the
calculation result of whether it matches or not.

Figure 12. State pre-linking.

4.2.11. Result Processing Module

The result processing module in this system is responsible for handling the output
generated by the parallel regular expression matching units. It processes the matching
flags (match) and the positions of matched characters. The primary goal of this module is
to refine the information related to matched rows and columns and provide feedback to
the user.

5. Results

To evaluate the FPGA-based system for regular expression processing, a series of
queries representing different complexity levels and use cases were utilized:

• Q0: searches for the word “engage” followed by “blithel” and any character from x to
z, testing basic string matching.

• Q1: a simple query looking for occurrences of the word “Strasse”, evaluating basic
string search functionality.
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• Q2: combines string search with repetition, looking for “Str” followed by any character
repeated eight times, testing the system’s ability to handle complex patterns with
repetitions.

• Q3: aims at identifying patterns where a sequence of digits is followed by “USD”,
testing numeric processing and string concatenation capabilities.

• Q4: searches for patterns with three lowercase letters followed by a colon and four
digits, evaluating the system’s performance on mixed alphanumeric patterns with
specific formats.

These queries help in assessing the system’s efficiency across a range of regular expres-
sion functionalities, from simple text searches to more complex pattern matching involving
repetitions and specific formats. The algorithm is implemented in Python 3.9, the system
uses Ubuntu 18.04, the compilation environment is gcc7.5, with 32 GB of RAM, and the
CPU is an Intel dual-core. The FPGA uses Xilinx’s XCVU37P-L2FSVH28926LX565T chip
model, and the simulation software is ISE14.7. The database uses PostgreSQL version 11.2.

5.1. Performance of MC-NFA

To validate the performance superiority of Multi-Character Non-Deterministic Finite
Automata (MC-NFA) over software-based and single-character processing for regular
expression retrieval, experiments were conducted across datasets of varying sizes using
the regular expression Q0. The results indicated that the performance of processing with
1-NFA is approximately 6.5 times that of software-based processing. The performance of
2-NFA processing is about 1.7 times that of 1-NFA, and 4-NFA processing is approximately
3.5 times that of 1-NFA (Figure 13). Additionally, the performance of the Xilinx method is
comparable to the 2-NFA method proposed in this paper. This similarity in performance is
due to the Xilinx method’s separation of data flow from control flow, its implementation of
pre-fetch and post-store operations to improve memory access efficiency, and its resolution
of read-and-write dependencies in on-chip RAMs by caching intermediate data in registers
to reduce unnecessary accesses. Moreover, it executes a predictive (second) instruction
in each iteration to accelerate the process under specific circumstances. The performance-
optimized version executes two instructions every three cycles.

Figure 13. MC-NFA performance in processing time [1].

Consistently, Figure 14 presents a comparison of processing times for different regular
expressions (Q2 to Q4) in PostgreSQL (PG) and FPGA (using 4-NFA), across datasets of
varying sizes. The findings indicate that for FPGA, the processing time for various regular
expressions is not influenced by the complexity of the expressions themselves but rather
by the size of the dataset and the location of matches. Under the same dataset and match
location conditions, regular expressions of the same length have consistent processing times
on FPGA. Conversely, in PG software 11.2, the processing time varies with the complexity
of the regular expressions, highlighting the efficiency and consistency advantages of FPGA
(4-NFA) processing in handling regular expressions, regardless of their complexity.
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Figure 14. MC-NFA performance with complexities.

As mentioned in the previous section, the regular expressions Q1 to Q4 used in this
experiment cover several common retrieval forms:

• Q1: a simple string search.
• Q2: involves the case of infinite repetition “*” occurrences.
• Q3: includes matching within the range of 0 to 9 and using “+” to represent one or

more occurrences.
• Q4: contains matching for fixed character digit ranges and lowercase letter ranges.

Different levels of complexity in regular expressions, when executing retrieval func-
tions in FPGA, have a response time that depends on the size of the dataset rather than
the expression itself. For example, when detecting against an 8 K dataset size using FPGA,
the retrieval time for Q1 to Q4 is consistently 7.08 microseconds, as shown in Figure 15.
However, when executed in the PostgreSQL database software 11.2, the response times for
Q1 to Q4 differ.

Figure 15. Retrieval on 8 k dataset.

In software, regular expressions of varying complexities require different algorithms
for matching. More complex regular expressions may require more calculation and com-
parison steps, thus potentially taking longer to execute. The matching time is also related
to the length of the matching string. Therefore, when executing regular expressions of
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different complexities in software, it is necessary to consider the structure of the regular
expressions and the efficiency of the matching algorithms, which will directly affect the
length of execution time.

When using FPGA for regular expression matching, the complexity of the expression
does not affect processing time, making it relatively more stable compared to software
implementations. To verify the processing performance of multi-core CPUs, the following
experiments were conducted. SQL statements were executed in the PostgreSQL database
for data sizes of 128 MB and 8 KB:

select count(*) from stringq0 where l_stringq0 ~ ’engage blithel[x-z]’;

The testing method is as follows: the Perf tool is used to collect the accumulated query
process function counts via the CPU’s Performance Monitoring Unit (PMU), generating
periodic interrupts. This allows for obtaining the time consumption ratio of each function
during the query process. The response times of the software were recorded with different
numbers of cores enabled.

In Figure 16, the x-axis values 1, 2, 4, 8 represent the number of CPU cores enabled,
while the y-axis represents the query time (in microseconds). From the figure, it can be
observed that the time consumed for regular expression filtering decreases as the number
of CPU cores increases, for both data sizes of 128 MB and 8 KB. When the number of
CPU cores increases from 1 to 2, the time for regular expression filtering almost halves.
As the CPU core count increases to 8, the decreasing trend in query time gradually slows
down. This is because in a multi-core parallel situation, software execution requires the
creation of multiple processes, which incurs a certain amount of time overhead. Therefore,
as the number of created processes gradually increases, the reduction in time consumed
for regular expression filtering slows down. When the CPU is configured with 8 cores,
its processing performance is comparable to the 1-NFA processing performance shown in
Figure 12, while the 4-NFA processing performance is 3.5 times that of the 1-NFA processing
performance. Thus, the proposed FPGA-based acceleration of regular expression processing
presents a significant advantage for offloading computational workload from the CPU.

Figure 16. Retrieval in PG in terms of Q0.

5.2. Impact of Selectivity

To investigate the impact of different hit rates on performance, experiments were
conducted using datasets with varying hit rates, applying software, 1-NFA, 2-NFA, and 4-
NFA for the same datasets and recording and comparing processing times. The results show
that lower hit rates significantly enhance the performance improvement of multi-character
processing (Figure 17). This is because in database searches, once a matching string is
found in a row, the search for the remaining characters in that row is terminated. In this
experiment, the matching strings were positioned at the beginning of each line. For the



Electronics 2024, 13, 1635 16 of 19

FPGA projects, once the first few characters were successfully matched, the remaining
characters were not searched, and the processing moved directly to the next line, enabling
rapid completion of a data block’s search. Therefore, the advantage of multi-character
processing is less pronounced at higher hit rates. Consequently, in situations with lower hit
rates (which are more common), the acceleration effect of 4-NFA becomes more apparent.

Figure 17. Impact of selectivity [1].

5.3. Resource Utility

IP projects with the same settings for Chars (supporting 16 characters with range
matching) and State (eight transition states) are compared (Figure 18). It shows that
even when performance doubles, resource utilization does not increase in exact propor-
tion. For instance, while 4-NFA offers a 3.54-fold performance improvement over 1-NFA,
the consumption of the most resource-intensive Logic resources increases by approximately
3.36 times. Only the CARRY8 resource usage reaches 4 times, but its overall impact on
resource consumption is minimal. Additionally, the utilization of Registers and CLB re-
sources remains below twice their original amount, indicating that the performance gains
of 4-NFA do not require a proportional increase in resource consumption.

Figure 18. FPGA resource distribution [1].

6. Conclusions

This research has elucidated the advantages of employing FPGA-based Multi-Character
Non-Deterministic Finite Automata (MC-NFA) for the processing of regular expressions,
demonstrating notable superiority over traditional software-based approaches across var-
ious dataset sizes. Through comprehensive experimentation, we have illustrated that
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FPGA processing markedly surpasses software in terms of efficiency, unaffected by the
complexity of expressions, with performance improvements being primarily influenced by
dataset size and the specific location of matches. Additionally, the incorporation of phase
shift compensation has significantly enhanced match accuracy, highlighting the potential
of FPGAs for precise, real-time data processing. Furthermore, our findings reveal that
the efficiency gains achieved through FPGA processing do not necessitate proportional
increases in resource consumption. This aspect underscores the inherent efficiency of FPGA
technology in handling complex data processing tasks, offering a compelling alternative to
software-based methods. The research presented here not only advocates for the broader
adoption of FPGA technology in sophisticated data processing scenarios, but also lays the
groundwork for further exploration into optimizing hardware accelerators for applications
in databases and network security. In sum, the outcomes of this study contribute valu-
able insights into the potential of FPGA technology to revolutionize regular expression
processing, both from performance and resource utilization perspectives. Future research
directions may include the exploration of more complex pattern matching algorithms on
FPGAs, the integration of FPGA-based processing units into existing database management
systems, and the development of more advanced phase compensation techniques to further
enhance matching accuracy.
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