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Abstract: The simulation of elastic slender objects like cables is essential for industrial applications in
predicting elastic behaviors and life cycles. The Cosserat model and its variants are the dominant
approaches due to their high efficiency and accuracy. However, these assume cables with homoge-
neous interiors and thus cannot simulate hybrid cables containing different materials. We address
this by developing a novel coarsened-shell-based Cosserat (CSC) model. The CSC model constructs a
material-aware elastic energy function along the cable’s cross-section to describe the global elastic
behavior. The CSC model is specifically developed by carefully leveraging the strengths of three
approaches: the Cosserat theory to model slender cables, the Kirchhoff–Love shell theory to model
the cable’s cross-sectional energy, and numerical coarsening to reduce the degrees of freedom in
the shell simulation via constructing a set of new types of material-aware shape/base functions.
This allows the more accurate computation of the local and global deformations of hybrid cables,
surpassing the classical Cosserat models in accuracy.

Keywords: Cosserat rod theory; hybrid cables; numerical coarsening; material anisotropy

1. Introduction

The mechanical simulation of slender elastic objects, such as long-distance cables or
ropes, differs significantly from traditional simulations of 3D bulk models as their length is
much greater than their section radius. The Cosserat theory [1–3] is a classical and widely
adopted model for the efficient simulation of slender cables of high accuracy. It models
a slender cable as a centerline with an attached material frame, which together reduces
the simulation costs but simultaneously produces realistic elastic deformations such as
buckling [2,4]. A more comprehensive review of the Cosserat model is given in [5–7].

However, practical industrial cables, as considered in this study, are generally in
the form of a hybrid cable that contains different materials or is made up of different
types of cables. They can be described as a cable with a heterogeneous interior material
distribution, taking the void space as a soft material with a low Young’s modulus. The direct
modeling of such hybrid cables as a Cosserat model or one of its variants, however, will
reduce the simulation accuracy as the local material frame contained within the Cosserat
model does not have enough degrees of freedom (DOFs) to adequately reflect the complex
interior deformations. On the other hand, the direct simulation of hybrid cables would be
computationally expensive and would not allow for real-time simulation as it requires a
dense mesh to fully capture the variations in the material distribution along each part of the
interface, thus greatly reducing the simulation speed [8,9]. As a consequence, there is still no
satisfactory solution in simulating such slender hybrid cables with heterogeneous material
distributions so as to realize simulation speeds that can meet the real-time requirements
while guaranteeing the simulation’s accuracy [10].
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Related Work

Various approaches have been proposed in modeling and simulating the elasticity
of such slender objects as cables—for example, the spring-mass model [11,12], Cosserat
elastic rod [13,14], and energy curve method [15–17]. Different modeling approaches may
correspondingly result in differences in the scope of application. For example, the energy
curve method is mainly used in the static simulation of cables, which can only reflect their
bending and stretching deformations. The spring-mass model [11,12] is only suitable for
the dynamic simulation of elastic slender objects. Due to the simplification of the model, it
cannot truly reflect any local deformation of the object. The Cosserat model [5,18] is much
improved in this aspect in its good ability to reflect the bending, twisting, shearing, and
stretching deformation of a slender object, and it can accurately simulate its posture in
three-dimensional space. A compact Cosserat model was recently proposed that further
improves the efficiency of cable simulation [19,20].

In the Cosserat theory, the elastic rod is modeled as a continuous 1D curve in 3D space,
with an attached orthonormal frame at each point of the curve. The Cosserat theory can be
used to simulate hair, ropes, and single cables but is not applicable to some elastic slender
objects with complex material distributions, such as woven belts composed of different
types of fibers, braided hoses composed of multiple material layers, and medical catheters
similar to hybrid cables. However, some research efforts have been devoted to improving
the accuracy of the Cosserat model by considering different material distributions [21–23].

For example, the Cosserat model has been applied to models of anisotropic materials,
such as magnetic filaments [21] or sticky threads [23], by reconstructing the bending
stiffness and shear stiffness matrices of the material distribution at the energy-reactive
section to reflect the different material distributions of the objects. However, the process of
reconstructing the material matrix is not well applied to general cases. Hybrid cables, as
studied here, have a much larger number of cable types and thus more complex material
distributions. It then becomes very challenging to obtain such a material matrix. We instead
construct material-aware shape functions to cope with these challenges.

Li et al. proposed a hybrid model to simulate a hollow tube with a deformable cross-
section by binding a surface mesh model to a Cosserat rod, where the Cosserat rod was
used to simulate the global bending, torsion, shear, and stretch of the tube, while a surface
mesh model was used to represent the surface of the hollow tube [22]. This hybrid method
allows the surface to be realistically and effectively deformed according to the shape of the
reference rod and the surface elastic energy, thus enabling the simulation of elastic hollow
tubes with inhomogeneous materials. However, it cannot be well applied to hybrid cables
with complex material distributions.

In order to achieve high-accuracy simulation for hybrid cables consisting of hetero-
geneous materials, a novel coarsened-shell-based Cosserat model, called the CSC model,
is developed. This study constructs a material-aware elastic energy function in the cross-
section of the cable to describe the cable’s elastic behavior. The CSC model carefully utilizes
the merits of the Cosserat theory in modeling slender cables, the Kirchhoff–Love shell the-
ory in modeling the deformation of its cross-section, and a numerical coarsening approach
to reduce the DOFs in the shell simulation. In particular, it captures the material anisotropy
of the cross-section by modeling its elastic behavior on a regular coarse background mesh,
which does not involve the complex and reliable meshing required for FE analysis, via
constructing a new set of material-aware shape/base functions. As a result, the CSC model
can compute the local and global deformations of hybrid cables, surpassing the classical
Cosserat model in terms of accuracy.

The material-aware shape functions, as mentioned above, are constructed by extending
the curved bridge node (CBN) shape functions for the linear elasticity simulation of 3D
solids [24], which not only greatly improves the simulation accuracy compared with
classical numerical homogenization methods [25–27], but provides important geometric
properties, such as the partition of unity and Lagrange property, for reliable simulation.
The direct application of the method for hybrid cable simulation, as a general 3D model,
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does not make full use of the characteristics of the rod model and still requires much
computational effort. Instead, we use it to model the deformation of the cross-sections
of the hybrid cables based on the Kirchhoff–Love [28] shell theory, where we construct a
new type of material-sensitive shape function on the cross-section of the rod model. In
addition, a novel approach based on moving least squares (MLS) is introduced to reduce
the model scale by optimizing the number of nodes in reconstructing the shape functions.
As a result, the CSC model can well adapt to the heterogeneous structure of a cable, greatly
improving the accuracy of the Cosserat theory in hybrid cable simulation while maintaining
the advantages of simplicity and fast calculation.

In summary, the contributions of the study are as follows. A high-accuracy CSC
model is proposed for the elasticity simulation of hybrid cables of heterogeneous interior
materials, in which it is difficult to obtain high simulation accuracy using the Cosserat
theory. The CSC model carefully leverages the strengths of three approaches: the Cosserat
theory to model slender cables, the Kirchhoff–Love shell theory to model the cable’s cross-
sectional energy, and numerical coarsening to reduce the DOFs in the shell simulation via
constructing a set of new material-aware shape/base functions. As a consequence, it is able
to simulate a hybrid cable without unreliable shape-conforming meshing, improves the
simulation efficiency with its use of fewer DOFs in comparison with direct FEM (Finite
Element Methods), and improves the simulation accuracy via its material-aware energy
function in comparison with the Cosserat model.

The remainder of the study is presented as follows. The Cosserat theory for homoge-
neous cable simulation is introduced in Section 2. Our CSC model is detailed in Section 3,
followed by the numerical approach followed in constructing the material-aware energy
description in Section 4. After demonstrating the CSC model’s performance in Section 5,
we conclude the study in Section 6.

2. Cosserat Theory for Homogeneous Cable Simulation

The Cosserat theory [29] is the most well known theory for the simulation of elastic
slender objects. Different from other theories based on one-dimensional curve formulations,
the Cosserat theory additionally considers a coordinate frame on the three-dimensional
curve in order to describe more accurately the cable’s spatial posture deformation, such as
shear or torsion, with a reasonable computational budget. It is based on the assumption of
the homogeneous material distribution of the cables under study.

Theory Behind Cosserat Model

In the Cosserat theory, the elastic rod is described as a continuous one-dimensional
curve r(s) in 3D space, for a length parameter s ∈ [0, L], as shown in Figure 1. Local
coordinate frames d1(s), d2(s), d3(s) are constructed on a point of the continuous curve
r(s), where d1 is along the tangent direction of the curve, d2 is along the principal normal
direction of the curve, and d3 is along the binormal direction of the curve, as formulated below:

d1 =
dr
ds

/
∥∥∥∥dr

ds

∥∥∥∥,

d2 =
1
ϑ

dd1

ds
, (1)

d3 = d1 × d2,

where ϑ is the curvature of the curve at a specific point.
Accordingly, the centerline and local coordinate system of the Cosserat model are then

used to define the stretch, shear, bending, and torsion of the elastic rod, so as to construct
the deformation energy equation of the elastic rod.
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Figure 1. The Cosserat rod model. {d1, d2, d3} is the local coordinate frame, {e1, e2, e3} is the global
coordinate frame.

In the Cosserat model framework, κ is defined to describe the linear strains of Cosserat
rods, while σ is defined to describe the angular strain, expressed in the following form in a
local coordinate system:

κ(s) = κ1d1 + κ2d2 + κ3d3, σ(s) = σ1d1 + σ2d2 + σ3d3, (2)

where κi represents the rotation of the frame around di for i = 1, 2, 3. In particular, κ1 and
κ2 measure the bending of the rod, and κ3 measures its torsion. σ1 and σ2 represent the
shear along d1 and d2, and σ3 measures the stretch along d3.

The strains κ and σ can be calculated by the following expression:

κ(s) = vec[(∂Q/∂s)TQ], σ(s) = Q
(

∂r
∂s

− d3

)
, (3)

where vec[A] denotes the 3-vector associated with the skew-symmetric matrix, A,
Q = {d1, d2, d3}. Equation (3) is defined in a local coordinate frame built on the elas-
tic rod.

Assuming that the material is completely elastic, the stress–strain relationship is linear,
as can be derived from the linear material constitutive law. According to Kirchhoff’s
constitutive law [30–32], we define the bending stiffness (B) and shear stiffness (S); the
stiffness matrix is a diagonal 3 × 3 matrix,

B(s) = diag{YI1, YI2, GI3}, S(s) = diag{αcGA, αcGA, YA}, (4)

where Y is the elastic Young’s modulus, G is the shear modulus, A is the area of the section,
Ii is the moment of inertia of the section, and the value of the constant αc is related to the
shape of the section. Thus, the torque and stress can be expressed as

τ(s) = B(s)(κ(s)− κ(s)o), n(s) = S(s)(σ(s)− σ(s)o), (5)

where κ(s)o and σ(s)o correspond to the initial posture of the elastic rod.
According to the defined stress and strain, the potential energy equation at any point

on the cross-section of the Cosserat rod can be obtained as

Π(s) =
1
2
[(κ(s)− κ(s)o)⊤τ(s) + (σ(s)− σ(s)o)⊤n(s)], (6)

and the total potential energy of the rod is given as

Π =
∫ L

0
Π(s)ds. (7)

For the discrete Cosserat rod, the potential energy equation on section i is written as

Πi =
1
2
[(κi − κi

o)⊤τi + (σi − σi
o)⊤ni]. (8)
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Therefore, the total energy of the whole rod can be expressed as

Π =
N−1

∑
i=1

li
2
(Πi + Πi+1), (9)

where li denotes the length of the discrete rod in segment i. The values of κ and σ in
the equilibrium state can be determined by solving the minimum potential energy of the
system, thereby enabling the calculation of the centerline r(s) of the Cosserat rod.

In order to solve Equation (9), according to the minimum potential energy principle,
the external constraints on the bar need to be determined. The constraint conditions mainly
include the initial position ri of the rod and the variables κi and σi obtained from the initial
centerline. We then have

[κ, σ] = arg min
N−1

∑
i=1

li
2
(Πi + Πi+1). (10)

The quasi-Newton algorithm [33] is usually taken to compute the solution of the above
optimization problem.

By fully reflecting the cross-section properties of the Cosserat rod, the method of
reconstructing the balance Equation (16) of the Cosserat rod not only ensures the simulation
speed of the Cosserat model but also greatly optimizes it. The general idea of the hybrid
model is elaborated in Section 3.

3. Coarsened-Shell-Based Cosserat Model (CSC)

In this section, we build a coarsened-shell-based Cosserat model (CSC) to efficiently
capture the behaviors of heterogeneous hybrid cables.

The overall idea is as follows: we first discretize the cables into finite sections as the
Cosserat model; then, we compute the potential energy of each section using shell theory;
and we finally coarsen the shell simulation by constructing tailored shape functions for an
efficiency improvement. The preliminaries, shell simulation procedure, and construction of
the coarsened-shell shape functions are elaborated in the following.

3.1. Preliminaries

Consider a cable with centerline curve r0(s), where s ∈ [0, L] is used to parameterize it.
It contains Nr interior bundle rods with centerline curves rk(s) (k = 1, 2, . . . , Nr). The rod is
discretized into N − 1 segments with N heterogeneous section planes Pα (α = 1, 2, . . . , N)
at parameters sα = α

L . See also Figure 2.
Each section plane Pα is further discretized as a regular fine quadrilateral mesh

M = {Me, e = 1, 2, . . . , m} consisting of m fine quadrilateral elements, as plotted in
Figure 3a. For later usage in constructing coarsened-shell shape functions, we classify the
fine nodes X f in fine mesh M into boundary fine nodes and interior fine nodes, denoted by Xb
and Xi, respectively.

Figure 2. Discretization of a cable at certain simulation accuracy. Cα denotes the α discrete point, Pα

denotes the α discrete section, and r(s) is the cable radius.
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Figure 3. (a) Fine mesh nodes classified into two classes: boundary fine nodes and interior fine nodes.
(b) According to the structure of the cable, some nodes (in blue) are selected as coarse nodes.

3.2. Shell Simulation Procedure

Taking each heterogeneous section plane Pα as a thin shell, its potential energy can be
computed by the shell theory, specifically by the Kirchhoff–Love [28] shell formulation, as
in this study.

Shape functions act as the basic functions in shell simulation, whose linear combi-
nations are used to describe the deformation of a section plane. Due to the presence of
curvature variations in the variational formulation, C1 continuous shape functions are
required in the Kirchhoff–Love shell formulation. Thus, the quadratic B-spline basis func-
tions [34] are adopted in the fine mesh M. More precisely, considering a fine node i ∈ X f

with coordinate xi = (xi, yi, zi), the associated quadratic B-spline basis function Ni(x) is
defined as

Ni(x) = ϕ(
x − xi

h
) ϕ(

y − yi
h

) ϕ(
z − zi

h
), (11)

where h denotes the fine element span and ϕ(·) is the univariate quadratic B-spline basis
function [35,36],

ϕ(ξ) =


1
2 ξ2 + 3

2 ξ + 9
8 , − 3

2 ≤ ξ ≤ − 1
2 ,

−ξ2 + 3
4 , − 1

2 ≤ ξ ≤ 1
2 ,

1
2 ξ2 − 3

2 ξ + 9
8 , 1

2 ≤ ξ ≤ 3
2 .

(12)

Given any point x ∈ Me, its x−, y− and z− displacement components u(x), v(x), and
w(x) are interpolated using the quadratic B-spline basis functions as

u(x) = N1(x)u1 + N2(x)u2 + . . . + N16(x)u16,

v(x) = N1(x)v1 + N2(x)v2 + . . . + N16(x)v16,

w(x) = N1(x)w1 + N2(x)w2 + . . . + N16(x)w16,

(13)

where (ui, vi, wi) (i = 1, 2, . . . , 16) denotes the displacements of 16 nodes associated
with Me. By rewriting the above equation in matrix form, we have the displacement
u(x) = (u(x), v(x), w(x))T at point x as

u(x) =

N1(x) 0 0 . . . N16(x) 0 0
0 N1(x) 0 . . . 0 N16(x) 0
0 0 N1(x) . . . 0 0 N16(x)

qe

= Ne(x) qe,

(14)

where Ne(x) of size (3 × 48) denotes the element shape function matrix and qe of size
(48 × 1) is the displacement vector of element Me. Assembling Ne(x) for all fine elements
Me, 1 ≤ e ≤ m, we obtain the shape function matrix Nh(x) in fine mesh M,

Nh(x) =
m

∑
e=1

Ne(x), x ∈ Pα. (15)
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Using the above shape function matrix Nh(x), the potential energy at the section Pα

can be computed based on shell theory [28],

Π̃α =
1
2

∫
Pα

n : ε + m : κdΩ −
∫

Pα
f · u dΩ, (16)

where u denotes the displacement, n and m are the membrane stresses and bending
moments, ε and κ are the membrane strain and bending strain, f is the enforced body force,
and the notation (̃) is used to distinguish from the energy obtained by the Cosserat model.

Directly employing the fine mesh mentioned above would yield high-fidelity solutions,
but it would also bring high computational costs due to the large number of DOFs. On the
other hand, the Cosserat model takes a rod as a homogeneous material, which results in a
considerable loss in simulation accuracy. This study addresses this issue by introducing the
CSC model, as discussed below.

3.3. Coarsened-Shell Shape Functions

In the fine mesh of each section plane Pα, a set of r′ equally spaced nodes on its
boundary (8 nodes in Figure 3b), coupled with Nr nodes at rk(sα) (k = 1, 2, . . . , Nr), forms
r = r′ + Nr coarse nodes X α.

In the proposed CSC model, the displacements Qα at coarse nodes are taken as DOFs
and a set of coarsened-shell shape functions Nα is constructed for coarse nodes X α, as a
combination of the quadratic B-spline shape functions, in each section plane Pα,

Nα(x) = Nh(x) Φα, (17)

where Φα is a matrix to be determined for the purpose of closely capturing the distribution
of the hybrid heterogeneous material in the section plane, and the shape function matrix
Nh(x) in the fine mesh M refers to Equation (15).

Using the coarsened-shell shape functions Nα(x), the displacement of any point x ∈ Pα

can be obtained as
u(x) = Nα(x) Qα, x ∈ Pα. (18)

Further, the potential energy is computed using the proposed shape functions Nα(x) as in
Equation (16).

The critical remaining question is how to determine the matrix Φα so as to consider
the distribution of the internal material. Instead of formulating it as a constrained nonlinear
optimization problem [9], we construct Φα as a mapping from the displacements Qα of
coarse nodes to the displacements qα of fine nodes in Pα,

qα = Φα Qα. (19)

This is achieved in two steps: first, the displacements Qα of coarse nodes X α are mapped
to those qb of boundary fine nodes Xb using the moving least squares (MLS) interpolation
matrix Ψα; then, the displacements qb of boundary fine nodes Xb are mapped to those qi of
interior fine nodes Xi using the shell transformation matrix Mα, i.e.,

qα = Mα qb, qb = Ψα Qα. (20)

Multiplying the matrix Mα and Ψα gives the matrix Φα satisfying Equation (19):

Φα = Mα Ψα. (21)

The construction details of the MLS interpolation matrix and shell transformation
matrix are explained in the next section.
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4. Numerical Construction of Coarsened-Shell Shape Functions

The construction procedure of coarsened-shell shape functions Nα(x) is explained
next, consisting of the MLS interpolation matrix in Section 4.1 and the shell transformation
matrix in Section 4.2.

4.1. MLS Interpolation Matrix

In this section, the moving least squares (MLS) [37,38] interpolation method is em-
ployed to construct a map from the displacements Qα of coarse nodes X α to those qb of
boundary fine nodes Xb.

As shown in Figure 4, given any boundary fine node x0, MLS is used to reconstruct a
continuous function h(x0) considering the data hI located at coarse nodes X α,

h(x0) =
P

∑
j

bj(x0)cj

= bT(x0)c,

(22)

where b(x) and c denote the basis vector containing monomials up to degree p and the
vector of coefficients, respectively,

b(x) = [1, x, y, z, xy, yz, xz, xyz, . . .]T ,

c = [c1, c2, . . . , cP]
T ,

(23)

both having a size of P = (p + 1)3.

Figure 4. Approach to build mapping from coarse nodes to boundary fine nodes using MLS. The
green circle is the influence range of a single boundary fine node. After traversing each boundary
fine node, the interpolation relationship between the coarse nodes and the boundary fine node can
be determined.

To solve for the unknown coefficients of the polynomial fit, the following objective
function is constructed:

R =
r

∑
I

w(xI − x0)

(
P

∑
j

bj(xI)cj − hI

)2

, (24)

where w(x) is the weight function, designed to be the maximum at 0 and drop off to zero
at a search radius R,

w(x) =

{
1 − ||x||2

R , ||x||2 ≤ R,
0, ||x||2 > R.

(25)



Electronics 2024, 13, 1645 9 of 18

By minimizing the above objective function in Equation (24) with regard to the coefficients c,
∂R
∂ck

= 0, k = 1, 2, . . . , P is set to give the normal equations

r

∑
I

(
bk(xI)w(xI − x0)

P

∑
j

cjbj(xI)

)

=
r

∑
I

bk(xI)w(xI − x0)hI .

(26)

By solving the above normal equations, the MLS interpolation functions ψI(x0) at x0 are
computed as

ψI(x0) = bT(x0) H−1(x0) b(xI)w(xI − x0), (27)

where the matrix H is defined as

H(x0) =
r

∑
I

w(xI − x0) b(xI) b(xI)
T . (28)

Using the above MLS interpolation functions ψI(x0) in Equation (27), the displacement
u(x0) at x0 can be interpolated by the displacements Qα at coarse nodes X α as

u(x0) =
r

∑
I

ψI(x0) QI , (29)

or by writing it in the matrix form

u(x0) =

[
ψ1(x0) 0 0 ... ψr(x0) 0 0

0 ψ1(x0) 0 ... 0 ψr(x0) 0
0 0 ψ1(x0) ... 0 0 ψr(x0)

]
Qα

= ψ(x0) Qα.

(30)

By repeating the above MLS interpolation process for each boundary fine node x0 ∈ Xb,
the desired MLS interpolation matrix Ψα is obtained as

Ψα = [ψ(x0), x0 ∈ Xb]. (31)

4.2. Shell Transformation Matrix

In this section, a shell simulation in the fine mesh M is solved and then static con-
densation is applied to map the displacements qb of boundary fine nodes Xb to those qi of
interior fine nodes Xi.

More precisely, each section plane Pα is taken as a thin shell and solved using the
Kirchhoff–Love shell formulation. In the theory of the Kirchhoff–Love shell, transverse
shear strain deformation is neglected and a vector normal to the mid-surface remains
normal after deformation. By using the curvilinear coordinate (ξ1, ξ2, ξ3), the shell Pα is
represented as

x(ξ1, ξ2, ξ3) = r(ξ1, ξ2) + ξ3a3(ξ
1, ξ2), (32)

where r(ξ1, ξ2) denotes the mid-surface of the shell, a3 is the unit normal vector to the
mid-surface, and ξ3 is the coordinate in the thickness direction (−0.5t ≤ ξ3 ≤ 0.5t with t
set as the shell thickness). The deformed and undeformed configurations are denoted by
x, r and X, R, respectively. The covariant basis vectors of the mid-surface and normal vector
are then

aα =
∂r

∂ξα
, a3 =

a1 × a2

|a1 × a2|
, (33)

where α = 1, 2. The covariant metric coefficients aαβ and the curvature tensor coefficients
bαβ are defined as

aαβ = aα · aβ, bαβ = a3 · aα,β. (34)
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Based on the above definitions, the Green–Lagrange strain Eα,β is obtained by

Eαβ = εαβ + ξ3καβ, (35)

where εαβ, καβ are the membrane strains and bending strains, respectively,

εαβ =
1
2
(
aαβ − Aαβ

)
καβ = bαβ − Bαβ,

(36)

where aαβ, bαβ and Aαβ, Bαβ denote the corresponding coefficients in the deformed and
undeformed configurations, i.e., computed on the deformed mid-surface r and undeformed
mid-surface R. For the linear elastic material considered here, the membrane stresses nαβ

and bending moments mαβ are then given as n̄11
n̄22
n̄12

 =
Et

1 − v2

 1 v 0
v 1 0
0 0 1−v

2

 ε̄11
ε̄22

2ε̄12

,

 m̄11
m̄22
m̄12

 =
Et3

12(1 − v2)

 1 v 0
v 1 0
0 0 1−v

2

 κ̄11
κ̄22

2κ̄12

,

(37)

where E is the Young’s modulus, v is the Poisson’s ratio, and the notation (̄) refers to values
on a local Cartesian basis.

Using the principle of virtual work [39] to define the variational formulation for the
Kirchhoff–Love shell problem, the variations in the internal work Wint and external work
Wext are defined as

δΠ̃(u, δu) = δΠ̃int − δΠ̃ext =
∫

Ω
n : δε + m : δκdΩ −

∫
Ω

f · δu dΩ, (38)

where u denotes the displacement, δu is the virtual displacement, δε is the virtual mem-
brane strain, δκ is the virtual bending strain, and f is the enforced body force.

In this fine quadrilateral mesh with n nodes, qi, i = 1, 2, . . . , n are the discretized
nodal displacements and Ni(x) the corresponding C1-continuous B-spline shape functions
in Equation (11). Following the classical Galerkin method [40], the shell displacements are
represented by a linear combination of basis functions Ni(x),

u(x) = ∑
i

Ni(x)qi. (39)

Using the B-spline shape functions Ni(x), the first derivatives of the covariant basis
vectors ∂aα

∂ur
in Equation (33) with respect to the displacements ur are computed as

∂aα

∂ur
=

∂(R,α + u,α)

∂ur
=

∂u,α

∂ur
=

n

∑
i=1

Ni
,α

∂qi
∂ur

. (40)

Taking the first and second derivatives of the virtual work obtains the residual vector
Rh and tangent stiffness matrix Kh (the superscript α is omitted for clarity),

Rh
i =

∫
Ω

n :
∂ε

∂qi
+ m :

∂κ

∂qi
dΩ −

∫
Ω

f · ∂u
∂qi

dΩ,

Kh
ij =

∫
Ω

∂n
∂qj

:
∂ε

∂qi
+ n :

∂2ε

∂qi∂qj
+

∂m
∂qj

:
∂κ

∂qi

+ m :
∂2κ

∂qi∂qj
dΩ.

(41)
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Then, the displacements qα can be solved by solving the following linear system:

Kh qα = −Rh. (42)

By classifying the displacements qα of fine nodes into qb of boundary fine nodes Xb and qi
of interior fine nodes Xi, the above equation can be rearranged as[

kb kbi
kib ki

][
qb
qi

]
=

[
Rb
Ri

]
, (43)

where kb, kbi, kib, ki and Rb, Ri are the associated sub-matrices/sub-vectors in Kh and Rh,
respectively. Assuming Ri = 0, the following equation can be obtained:

qα =

[
qb
qi

]
=

[
I

−k−1
i ki,b

]
qb = Mα qb, for Mα =

[
I

−k−1
i ki,b

]
, (44)

where I is an identity matrix, and Mα is the desired shell transformation matrix.

4.3. Usage of Coarsened-Shell Shape Functions in Hybrid Cable Simulation

Based on the above explanations in Sections 4.1 and 4.2, the proposed coarsened-shell
shape functions Nα(x) are represented as

Nα(x) = Nh(x) Φα = Nh(x) Mα Ψα. (45)

It is reasonable to conclude that the proposed shape functions are able to approximate
the high-fidelity displacements qα of fine nodes using those Qα of the coarse nodes,

u(x) = Nα(x) Qα

= Nh(x) Mα Ψα Qα

= Nh(x) Mα qb

= Nh(x) qα.

(46)

Thus, the employment of the proposed shape functions Nα provides high accuracy at a
certain cost of construction.

Now, in each section plane, taking the displacements Qα of coarse nodes X α as DOFs
and using the coarsened-shell shape functions Nα, we can similarly compute the derivatives
of the covariant basis vectors as in Equation (40), the residual vector RH,α, and the stiffness
matrix KH,α as in Equation (41). Further, the potential energy Π̃α in Equation (16) of each
section is computed in discrete form,

Π̃α =
1
2
(Qα)T KH,α Qα − (Qα)T RH,α. (47)

Based on this, the displacements Q of coarse nodes from all section planes can be computed
by minimizing the total potential Π̃,

Q = arg min
Q

∑
α

Π̃α. (48)

4.4. Properties of Coarsened-Shell Shape Functions

The constructed coarsened-shell shape functions have good properties of C1-continuity and
the partition of unity, which are important in avoiding un-physical simulation effects [41,42].

In addition, the basic geometric properties of shape functions, such as the partition
of unity, are seldom explored in previous studies, and thus they may inevitably produce
un-physical results [41]. In order to better exploit the anisotropic behavior of complex
heterogeneous objects, matrix-valued shape functions [9] are introduced to account for
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interactions among quantities along different axes. A similar matrix form is also adopted
in this study.

C1-continuity. Benefiting from the B-spline basis functions in the fine mesh, the pro-
posed shape functions are likewise C1 continuous and their first and second derivatives are
computed as

∂Nα(x)
∂x

=
∂Nh(x)

∂x
Φα,

∂2Nα(x)
∂x2 =

∂2Nh(x)
∂x2 Φα,

(49)

where the above first and second derivatives of the B-spline basis functions are obvious, as
in Equations (11) and (12).

Partition of unity. In addition, our proposed shape functions have the partition of unity
(PU) property, which avoids non-physical deformations:

Nα(x) I3r = Nh(x) Mα Ψα I3r

= Nh(x) Mα I3b

= Nh(x) I3b+3i

= I3,

(50)

where In denotes a 1-vector of size n, and the following formula representing the PU of
MLS interpolation is used:

I3b = Ψα I3r. (51)

5. Numerical Examples

The performance of the CSC model was also tested using numerical examples. The
hybrid cables using FEM, the Cosserat theory, and the proposed CSC model, and their
performance, were compared. The FEM results were obtained using the ABAQUS soft-
ware, version 2021 and used as a benchmark to measure the accuracy. All examples were
implemented on an Intel Core i7 PC with a 2.8 GHz CPU and 16 GB RAM.

The performance of the tested approach was measured using the following error index
ru to determine their relative solution differences:

ru =
| u1 − u0 |

| u0 | , (52)

where u1 is the calculated displacement and u0 is the reference displacement, while | · |
denotes the Euclidean distance.

The approach’s performance was first tested using a typical hybrid cable, shown in
Figure 5a, which comprised four small cables of different diameters and of a different
material, as shown in Table 1. The initial length of this cable model was 150 mm, and the
outer diameter of the bundle was about 30 mm. The cable was fixed on one end, and the
other end was subjected to a vertical downward force.

Figure 5. A typical heterogeneous cable and the size of the fine mesh used for subdivision: the cable
is composed of four small cables of different materials and diameters. One end of the cable is fixed,
and the other end is subjected to tension.
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Table 1. The material of each part of the cable model. The unit of the Young’s modulus is MPa.

Index Material Young’s Modulus Poisson’s Ratio

Mat1 rubber 789 0.47
Mat2 nylon 1.4 × 103 0.37
Mat3 copper alloy 1.06 × 105 0.39
Mat4 aluminium alloy 7.1 × 104 0.33

5.1. Comparative Analysis of Same Types of Cables

We first tested the approach’s performance using four small cables of the same material,
Mat3; see also Figure 5a. Note that the overall cable was still of a heterogeneous material
distribution, including empty areas.

As shown in Figure 5b, in conducting the shell analysis to build the material-aware
shape functions, the size of the fine mesh was set to 40 × 40. The FEM was conducted on
the mesh so as to give the benchmark simulation results. Three different simulation results,
obtained, respectively, via FEM, the Cosserat theory, and our CSC model, are shown in
Figure 6. Their performance is summarized in Table 2. As can be seen from the results,
the Cosserat theory produced quite different results from those of FEM, with an error
index of 1.01, while our method was close to FEM, with an error index of 0.16. The latter
had a six-times improvement in comparison with the former. The simulation accuracy
improvement can also be seen from the deformation comparison in Figures 6–8, where we
show the deformations and stress distributions for the three different approaches. Cosserat
failed to take into account the material anisotropy of the hybrid cables and had a large
difference from the benchmark FE results. We also list the computational efficiency in
Table 2. Cosserat took 4.3 s, while our CSC method took 9.7 s, as the latter had more DOFs
in computing the global displacement. Although our CSC method is slightly slower in
computational speed compared to the Cosserat model, the improvement in the simulation
accuracy, especially in the accuracy of the stress distribution simulation, is significant.
Furthermore, compared to traditional finite element methods, this study increased the
solving speed by approximately 36% without compromising the simulation accuracy.

Figure 6. Under different methods, deformation results of a cable with one end fixed and one end
subjected to a vertical force.

Figure 7. Stress distribution outside the cable.
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Table 2. Simulation accuracy and elapsed time.

Simulation Method Displacement Error Elapsed Time (s)

FEM - 15.2
Our method 0.16 9.7
Cosserat 1.01 4.3

Figure 8. Stress distribution with the cable.

5.2. Comparative Analysis of Different Types of Cables

We also tested the performance of our CSC model for hybrid cables consisting of dif-
ferent types of cables. The object is shown in Figure 5a, with the cable material parameters
given in Table 1. Due to the different materials of each wire, the overall cable showed large
material anisotropy in the cross-section. The comparisons with the Cosserat results are
shown Figures 9 and 10.

Figure 9. Deformation after increasing the difference in material parameters under downward force.

Figure 10. Deformation of heterogeneous cables under forces in different directions.
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As we can see from Figure 9, due to the different material distributions, the cable was
tilted toward the “softer” side of the material, although the cable was subjected to a vertical
downward force. However, the Cosserat model showed a vertical downward force due to
its homogenization in material treatment, resulting in a large error. The Cosserat method
had an error index of 3.01 and took 4.1 s, while our CSC method had an error index of 0.17
and took 8.9 s.

The deformations of the hybrid cable are also shown and compared in Figure 10 under
different load directions, where (a) gives the section diagram of Cosserat while (b), (c),
and (d) give those of our CSC model. Note here that the Cosserat method produced the
same cross-section deformation, irrespective of the direction, while ours produced three
different ones. The cross-section of the cable was distorted to different degrees due to the
heterogeneity of the cable, which was reflected with high accuracy in our approach.

5.3. Performance at Different Mesh Settings

We also tested the CSC model’s performance at different simulation mesh settings, i.e.,
with variations in the fine mesh size or the number of coarse nodes. The model shown in
Figure 5a was again utilized for the test, and the results are shown in Figures 11 and 12.

Figure 11. Performance at different mesh settings.

Figure 12. Different sizes of fine mesh.

Different numbers of coarse nodes. The coarse nodes are the primary nodes on the cable
section, and the number of coarse nodes can be freely selected to meet different simulation
accuracy requirements. We chose coarse node numbers 4, 8, 12, and 16 for the test, and
the associated efficiency indices ru are shown in Figure 11a. The value of the error index
decreased rapidly as the number of coarse nodes increased, with reliable convergence.

Fine meshes of different sizes. The fine mesh is set to construct the shape function, as
explained in Section 4.2. Four differently sized fine grids of 20 × 20, 40 × 40, 60 × 60, and
80 × 80 were set; we kept the coarse node number as 8. The result is shown in Figure 12.
As can be seen in Figure 11b, the displacement error indices of the proposed CSC method
decreased as the number of fine nodes increased, with reliable convergence.

5.4. Complex Wrapped Cables

The ability of the CSC model to capture the deformations of cables exhibiting fine-
scale geometric details was tested for the more complex dynamic simulation of a complex
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wrapped cable, as shown in Figure 13a. The cable consisted of 7 × 7 bundles and they
were composed of aluminium alloy, as shown in Table 1. The cable had a length of 12.7
and a diameter of 2. It was fixed at its two side faces and subjected to a loading field in
the vicinity of coordinates x0 = (0, 2, 6.35), mimicking the contact forces with a cylinder,
which can be described as

p(x) = p0 · max(0, (1 − ||x − x0||2)), for p0 = 1 × 106. (53)

Figure 13b shows its reliable displacement result with local details, capturing the
behaviors of the different bundles of cables. The simulation used 31.5 K coarse nodes and
took 80.7 s in total. Note that this complex cable required a very fine FE mesh consisting of
about 100 million DOFs to resolve the geometric details, which precludes its direct usage.
The proposed CSC model demonstrated its efficiency in handling such complex details.

Figure 13. Wrapped cables: (a) boundary conditions, (b) deformation plot.

6. Conclusions and Prospects

The paper studies the elastic simulation of hybrid cables with heterogeneous material
distributions. This research introduces a novel coarsened-shell-based Cosserat (CSC) model
that leverages the advantages of the Cosserat model for slender cable representation,
incorporates the Kirchhoff–Love shell theory to model cross-sectional deformations, and
employs a numerical coarsening approach to reduce the degrees of freedom (DOFs). This
approach achieves a high level of simulation accuracy while maintaining the computational
efficiency. The CSC model effectively accounts for material anisotropy, as demonstrated
through numerical examples comparing it with the classical Cosserat model and benchmark
FEM results. This innovative model exhibits significant potential for applications requiring
highly accurate simulations of hybrid slender cables with heterogeneous materials. It is
important to note that the current implementation of the CSC model is limited to linear
elasticity due to the numerical coarsening approach used in modeling cross-sectional
deformations. Its extension to the nonlinear elasticity problem still requires efforts to
develop novel shape functions to reflect the nonlinear deformation behaviors of the cable’s
heterogeneous cross-sections. In the future, we also intend to explore the convergence
of the CSC model with advanced shell theories for cross-sectional modeling for more
accurate simulation.

Author Contributions: Conceptualization, F.Y., P.W., M.L. and Q.F.; Methodology, F.Y., P.W., Q.Z.,
W.C. and M.L.; Software, Q.Z. and W.C. ; Validation, F.Y. P.W. and Q.Z.; Formal analysis, F.Y., Q.Z.
and Q.F.; Investigation, F.Y., P.W. and Q.Z.; Resources, F.Y., P.W., M.L. and Q.F.; Writing—original
draft, F.Y., Q.Z. and W.C.; Writing—review & editing, M.L.; Visualization, Q.Z. and W.C.; Supervision,
M.L. and Q.F.; Project administration, F.Y., P.W., M.L. and Q.F. All authors have read and agreed to
the published version of the manuscript.

Funding: The work described in this paper was partially supported by the Xifei Innovation Re-
search Project (KY2022010), the National Key Research and Development Program of China (No.
2020YFC2201303), and the Zhejiang Provincial Science and Technology Plan Project (2022C01052).



Electronics 2024, 13, 1645 17 of 18

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors wish to thank Ijaz Haroon for discussing and proofreading the
manuscript.

Conflicts of Interest: Authors Feng Yang and Ping Wang were employed by the company AVIC
Xi’an Aircraft Industry Group Company Ltd. The remaining authors declare that the research was
conducted in the absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

References
1. Pai, D. STRANDS: Interactive Simulation of Thin Solids using Cosserat Models. Comput. Graph. Forum 2010, 21, 347–352.

[CrossRef]
2. Spillmann, J.; Teschner, M. CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In

Proceedings of the Symposium on Computer Animation, San Diego, CA, USA, 2–4 August 2007.
3. Spillmann, J.; Teschner, M. Cosserat Nets. IEEE Trans. Vis. Comput. Graph. 2009, 15, 325–338. [CrossRef] [PubMed]
4. Wojtan, C.; Zhao, C.; Lin, J.; Wang, T.; Bao, H.; Huang, J. Efficient and Stable Simulation of Inextensible Cosserat Rods by a

Compact Representation. Comput. Graph. Forum 2022, 41, 567–578.
5. Bergou, M.; Wardetzky, M.; Robinson, S.; Audoly, B.; Grinspun, E. Discrete elastic rods. In ACM SIGGRAPH 2008 Papers; ACM:

New York, NY, USA 2008; Volume 63, pp. 1–12.
6. Weidner, N.; Kyle, P.; Levin, D.; Shinjiro, S. Eulerian-on-lagrangian cloth simulation. ACM Trans. Graph. 2018, 37, 1–11. [CrossRef]
7. Linn, J.; Dreler, K. Discrete Cosserat Rod Models Based on the Difference Geometry of Framed Curves for Interactive Simulation

of Flexible Cables. In Math for the Digital Factory; Springer: Cham, Switzerland, 2017.
8. Smit, R.; Brekelmans, W.; Meijer, H. Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level

finite element modeling. Comput. Methods Appl. Mech. Eng. 1998, 155, 181–192. [CrossRef]
9. Chen, J.; Bao, H.; Wang, T.; Desbrun, M.; Huang, J. Numerical coarsening using discontinuous shape functions. ACM Trans.

Graph. 2018, 37, 1–12. [CrossRef]
10. Grégoire, M.; Schömer, E. Interactive simulation of one-dimensional flexible parts. Comput.-Aided Des. 2007, 39, 694–707.

[CrossRef]
11. Baraff, D. Large Steps in Cloth Simulation. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive

Techniques, Orlando, FL, USA, 19–24 July 1998.
12. Lv, N.; Liu, J.; Xia, H.; Ma, J.; Yang, X. A review of techniques for modeling flexible cables. Comput.-Aided Des. 2020, 122, 102826.

[CrossRef]
13. Hermansson, T.; Bohlin, R.; Carlson, J.; Söderberg, R. Automatic assembly path planning for wiring harness installations. J. Manuf.

Syst. 2013, 32, 417–422. [CrossRef]
14. Stumpp, T.; Spillmann, J.; Becker, M.; Teschner, M. A Geometric Deformation Model for Stable Cloth Simulation. In Proceedings

of the Workshop on Virtual Reality Interactions & Physical Simulations, Grenoble, France, 11–12 November 2008.
15. Celniker, G.; Gossard, D. Deformable curve and surface finite-elements for free-form shape design. ACM Siggraph Comput. Graph.

1991, 25, 257–266. [CrossRef]
16. Hergenrther, E.; Dhne, P.; Rundeturmstr, R. Real-Time Virtual Cables Based on Kinematic Simulation. In Proceedings of the

International Conference in Central Europe on Computer Graphics and Visualization, Plzen, Czech Republic, 7–10 February 2000.
17. Lv, N.; Liu, J.; Ding, X.; Lin, H. Assembly simulation of multi-branch cables. J. Manuf. Syst. 2017, 45, 201–211. [CrossRef]
18. Nordenholz, T.; O’Reilly, O. On steady motions of isotropic, elastic Cosserat points. IMA J. Appl. Math. 1998, 60, 55–72. [CrossRef]
19. Wen, J.; Chen, J.; Umetani, N.; Bao, H.; Huang, J. Cosserat Rod with rh-Adaptive Discretization. Comput. Graph. Forum 2020, 39,

143–154. [CrossRef]
20. Du, H.; Jiang, Q.; Xiong, W. Computer-assisted assembly process planning for the installation of flexible cables modeled according

to a viscoelastic Cosserat rod model. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2023, 237, 1737–1747. [CrossRef]
21. Landau, L.; Lifshitz, E. Electrodynamics of Continuous Media; Butterworth Heinemann: Oxford, UK, 1984.
22. Li, H.; Leow, W.; Chiu, I. Elastic Tubes: Modeling Elastic Deformation of Hollow Tubes. Comput. Graph. Forum 2010, 29, 1770–1782.

[CrossRef]
23. Arne, W.; Marheineke, N.; Meister, A.; Wegener, R. Numerical analysis of Cosserat rod and string models for viscous jets in

rotational spinning processes. Math. Model. Methods Appl. Sci. 2011, 20, 1941–1965. [CrossRef]
24. Li, M.; Hu, J. Analysis of heterogeneous structures of non-separated scales using curved bridge nodes. Comput. Methods Appl.

Mech. Eng. 2022, 392, 114582. [CrossRef]
25. Xia, L.; Breitkopf, P. Design of materials using topology optimization and energy-based homogenization approach in Matlab.

Struct. Multidiscip. Optim. 2015, 52, 1229–1241. [CrossRef]
26. Andreassen, E.; Andreasen, C. How to determine composite material properties using numerical homogenization. Comput. Mater.

Sci. 2014, 83, 488–495. [CrossRef]
27. Sigmund, O. Materials with prescribed constitutive parameters: An inverse homogenization problem. Int. J. Solids Struct. 1994,

31, 2313–2329. [CrossRef]

http://doi.org/10.1111/1467-8659.00594
http://dx.doi.org/10.1109/TVCG.2008.102
http://www.ncbi.nlm.nih.gov/pubmed/19147894
http://dx.doi.org/10.1145/3197517.3201281
http://dx.doi.org/10.1016/S0045-7825(97)00139-4
http://dx.doi.org/10.1145/3197517.3201386
http://dx.doi.org/10.1016/j.cad.2007.05.005
http://dx.doi.org/10.1016/j.cad.2020.102826
http://dx.doi.org/10.1016/j.jmsy.2013.04.006
http://dx.doi.org/10.1145/127719.122746
http://dx.doi.org/10.1016/j.jmsy.2017.09.007
http://dx.doi.org/10.1093/imamat/60.1.55
http://dx.doi.org/10.1111/cgf.14133
http://dx.doi.org/10.1177/09544054221136000
http://dx.doi.org/10.1111/j.1467-8659.2010.01647.x
http://dx.doi.org/10.1142/S0218202510004738
http://dx.doi.org/10.1016/j.cma.2022.114582
http://dx.doi.org/10.1007/s00158-015-1294-0
http://dx.doi.org/10.1016/j.commatsci.2013.09.006
http://dx.doi.org/10.1016/0020-7683(94)90154-6


Electronics 2024, 13, 1645 18 of 18

28. Ventsel, E.; Krauthammer, T.; Carrera, E. Thin plates and shells: theory, analysis, and applications. Appl. Mech. Rev. 2002,
55, B72–B73. [CrossRef]

29. Liu, D.; Cao, D.; Wang, H. Computational Cosserat Dynamics in MEMS Component Modelling. In Proceedings of the 4th Pan
American Congress on Computational Mechanics (WCCM-PANACM), Vancouver, BC, Canada, 21–26 July 2004.

30. Villaggio, P. Mathematical Models for Elastic Structures; Cambridge University Press: Cambridge, UK, 1997.
31. Love, A.E.H. A Treatise on the Mathematical Theory of Elasticity; Dover Publications: Mineola, NY, USA, 1944.
32. Gould, T.; Burton, D.A. A Cosserat rod model with microstructure. New J. Phys. 2006, 8, 137. [CrossRef]
33. Press, W.; Teukolsky, S.; Vettering, W.; Flannery, B. Numerical Recipes in C/C++: The Art of Scientific Computing Code. Eur. J.

Phys. 2003, 24, 329–330. [CrossRef]
34. Hughes, T.; Cottrell, J.; Bazilevs, Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement.

Comput. Methods Appl. Mech. Eng. 2005, 194, 4135–4195. [CrossRef]
35. Özis, T.; Esen, A.; Kutluay, S. Numerical solution of Burgers’ equation by quadratic B-spline finite elements. Appl. Math. Comput.

2005, 165, 237–249. [CrossRef]
36. Steffen, M.; Wallstedt, P.; Guilkey, J.; Kirby, R.; Berzins, M. Examination and analysis of implementation choices within the

material point method (MPM). Comput. Model. Eng. Sci. 2008, 31, 107–127.
37. Lancaster, P.; Salkauskas, K. Surfaces generated by moving least squares methods. Math. Comput. 1981, 37, 141–158. [CrossRef]
38. Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P. Meshless methods: an overview and recent developments. Comput.

Methods Appl. Mech. Eng. 1996, 139, 3–47. [CrossRef]
39. Kiendl, J.; Bletzinger, K.; Linhard, J.; Wüchner, R. Isogeometric shell analysis with Kirchhoff–Love elements. Comput. Methods

Appl. Mech. Eng. 2009, 198, 3902–3914. [CrossRef]
40. Zienkiewicz, O.; Taylor, R.; Zhu, J. The Finite Element Method: Its Basis and Fundamentals; Elsevier: Amsterdam, The Nether-

lands, 2005.
41. Melenk, J.; Babuska, I. The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech.

Eng. 1996, 139, 289–314. [CrossRef]
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