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Abstract: Insect diversity monitoring is crucial for biological pest control in agriculture and forestry.
Modern monitoring of insect species relies heavily on fine-grained image classification models. Fine-
grained image classification faces challenges such as small inter-class differences and large intra-class
variances, which are even more pronounced in insect scenes where insect species often exhibit signifi-
cant morphological differences across multiple life stages. To address these challenges, we introduce
segmentation and clustering operations into the image classification task and design a novel network
model training framework for fine-grained classification of insect images using multi-modality clus-
tering and approximate mask methods, named PCAM-Frame. In the first stage of the framework,
we adopt the Polymorphic Clustering Module, and segmentation and clustering operations are
employed to distinguish various morphologies of insects at different life stages, allowing the model
to differentiate between samples at different life stages during training. The second stage consists of
a feature extraction network, called Basenet, which can be any mainstream network that performs
well in fine-grained image classification tasks, aiming to provide pre-classification confidence for
the next stage. In the third stage, we apply the Approximate Masking Module to mask the common
attention regions of the most likely classes and continuously adjust the convergence direction of
the model during training using a Deviation Loss function. We apply PCAM-Frame with multiple
classification networks as the Basenet in the second stage and conduct extensive experiments on
the Insecta dataset of iNaturalist 2017 and IP102 dataset, achieving improvements of 2.2% and 1.4%,
respectively. Generalization experiments on other fine-grained image classification datasets such
as CUB200-2011 and Stanford Dogs also demonstrate positive effects. These experiments validate
the pertinence and effectiveness of our framework PCAM-Frame in fine-grained image classification
tasks under complex conditions, particularly in insect scenes.

Keywords: fine-grained image classification; insect classification; model framework; clustering;
region masking

1. Introduction

Fine-grained image classification (FGIC) involves the detailed classification of images
belonging to the same broad category of objects. These objects include animals, plants, and
artificial items, such as different species of birds [1], dogs [2], and insects [3,4], as well as
individual instances of vehicles [5] and aircraft [6]. Fine-grained insect image classification
is a subset of FGIC, focusing specifically on the next-level classification of insects.

There are over one million species within the insect class, distributed worldwide across
various habitats and elevations, making them one of the most abundant animal groups
on Earth playing crucial roles in ecosystems. Subcategories within the insect class exhibit
extensive diversity, with some closely related species sharing similar visual characteristics
in terms of color and texture. Traditional methods of insect classification often require field
experts to conduct on-site collection and classification, which is costly and not suitable for
large-scale scenarios. Low-cost fine-grained image classification tasks typically involve the
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use of cameras equipped with classification models placed at fixed locations or carried by
drones to capture and classify images. However, the performance of such classification
models is critical, alongside issues related to image quality. Therefore, employing an image
classification model based on deep learning has emerged as a feasible approach to address
fine-grained insect image classification problems.

Currently, the mainstream neural network models used in computer vision image
classification are primarily divided into two categories: Convolutional Neural Networks
(CNNs) [7] and Transformers [8]. CNNs excel at capturing local image features, while a
Vision Transformer [9] from the visual field prioritizes capturing global image features
through self-attention mechanisms, albeit with a weaker perception of local structures of
the image. Both types of models have their own advantages and applicability, and the
choice between them depends on the specific problem being addressed.

This paper mainly discusses and explores the fine-grained classification of insect
images. The main experimental datasets include the Insecta subset of the iNaturalist 2017
dataset and the IP102 dataset. Some samples are shown in Figure 1.

Danaus plexippus Limenitis archippus Ochlodes agricola

Danaus plexippus Limenitis archippus Limenitis archippusDanaus plexippus

Achalarus lyciades

Figure 1. Partial samples from the Insecta subset of the iNaturalist 2017 dataset.

The first row of Figure 1 shows insect image samples belonging to different categories
that exhibit very similar visual appearances. The second row includes samples of two insect
categories at different life stages, namely larva and adult. It can be seen that the visual
difference of the samples in different life stages within the same category is significant,
which is far more than the visual difference of different insects in the same life stage.
Therefore, it is a challenge to accurately learn the classification characteristics of insect multi-
life stages in fine-grained image classification of insect scenes. This raises two questions:

• How to accurately classify insect samples among easily confused approximate categories.
• How to accurately distinguish samples of the same insect category but at different life

stages with significant visual differences.

There are few studies on fine-grained image classification tasks in the insect scene,
and the targeted research on the above problems is currently missing. The mainstream
networks in fine-grained image classification tasks in other scenarios, whether CNN or
Transformer, represent the deep features of a single image itself, such as color, texture, and
spatial relationship, into a tensor of some dimension. It is impossible to solve the non-
horizontal relationship between each image (like the image of the same life stage and the
image of the same different life stage should be used to extract category features and pay
attention to the morphological differences of the life stage), which is not noticed in a single
network, which belongs to the defect of the corresponding relationship between the dataset
structure and the model structure. To this end, it is necessary to design a general modeling
framework in the insect scene; this paper refers to the imbalanced dataset partitioning methods
in other scenarios and makes localization improvements for the insect scene as described above.
A novel neural network model framework called Polymorphic Clustering and Approximate
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Masking Frame (PCAM-Frame) for fine-grained image classification is designed. In the
innovative re-classification stage after the feature extraction network extracts features for
preliminary classification, a mask method is adopted for additional contrast correction so that
PCAM-Frame is specifically suitable for insect scenes. PCAM-Frame can be divided into three
stages in the training process:

• The first stage consists of the main target segmentation and polymorphic clustering
modules. To ensure that the clustering process is not affected by background features,
we first perform target segmentation on the original image samples. Then, using
the segmented insect image samples as indices, we replace the clustered results with
the original image samples, thereby dividing insects of each category into different
morphological life stages.

• The second stage is responsible for image feature extraction and utilizes a backbone
network, which can be any CNN or Transformer image classification network. We
typically use those networks that perform best in fine-grained image classification
tasks as the backbone network for experimentation.

• The third stage consists of the approximate masking module and a deviation loss
function. In this stage, the final features obtained from the previous stage undergo a
classification decision. The common attention regions of the classes with the highest
scores are then masked, and the features of the masked images are input for the
second round of classification decisions. This stage primarily alleviates the problem of
confusion between approximate classes. Finally, a deviation loss, which is a fusion of
multiple losses, helps the model converge towards optimal classification performance.

2. Related Work

In this chapter, we introduce and discuss research on fine-grained image classification
and its applications in insect scenarios.

2.1. Research on Fine-Grained Image Classification

Early research on fine-grained image classification relied mainly on manually designed
feature extractors and traditional machine learning algorithms, such as SIFT [10] and
HOG [11], combined with classifiers like Support Vector Machines (SVMs). These methods
have limitations in handling fine-grained classification tasks because they struggle to
capture complex, high-level image features, which are often crucial for distinguishing
between different fine-grained categories.

With the rise of Convolutional Neural Networks (CNNs), significant advancements
have been made in image classification models. CNNs can automatically learn features
from images and achieve integration of feature extraction and classification through end-
to-end training. In the field of fine-grained image classification, researchers began to
apply CNN models to such tasks. Methods like the one proposed by Tsung-Yu Lin [12],
based on bilinear CNNs, capture differences between fine-grained categories by applying
local region attention mechanisms to different regions of images. Zhuang et al. [13]
constructed pairwise interaction networks based on human intuition to capture subtle
differences between categories in fine-grained classification. Yifan Sun [14] proposed a
method based on refined part pooling, which models part relationships in images and
integrates multiple part features through specific pooling strategies to achieve fine-grained
person retrieval tasks. Saining Xie [15] proposed a network structure with aggregated
residual transformations, which enhances the network’s ability to recognize fine-grained
categories by using local region attention mechanisms. Hongye Liu [16] proposed a deep
relative distance learning method, which models part relationships in images and achieves
outstanding performance in fine-grained vehicle recognition tasks.

In addition to CNNs, another model that has attracted attention is the Transformer.
Initially proposed for natural language processing tasks, Transformers have been successfully
applied to the field of images, giving rise to variants such as Vision Transformers (ViTs), which
represent attention-based methods. Many models relying on Vision Transformers for fine-
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grained image recognition have emerged. The TransFG model [17] proposed the PSM module
to select partial maximum weight attention heads to concatenate with classification tokens to
identify subtle differences between different categories. The TPKSG model [18] proposed a
visual transformer architecture with peak suppression and knowledge-guided mechanisms to
optimize final representations by learning knowledge embeddings from multiple images. The
Swin Transformer model [19] achieved hierarchical image feature extraction by introducing a
shifting window mechanism, which also has advantages in terms of computational efficiency.
The SIM-Trans model [20] proposed a sliding window strategy similar to Swin Transformer’s
shifting window and introduced a Structure Information Learning module to characterize
spatial relationships between blocks. The SR-GNN model [21] proposed a gate-controlled
attention pool for relationship-aware feature aggregation to capture fine features of the most
relevant image regions’ context. The HERBS network [22] relied on a high-temperature
refining module to refine feature maps of different scales and improve the learning of multiple
features, enabling the model to learn appropriate feature scales and achieve state-of-the-art
performance in fine-grained bird image classification. Some researchers [23] conducted in-
depth comparative investigations on how to integrate Transformer models with CNN models
to achieve better performance. However, there is still limited research on the targeted study of
fusion models in fine-grained image classification tasks.

2.2. Application of Fine-Grained Image Classification in Insect Scenarios

Fine-grained image classification in insect scenarios is an important research direction
in the field of computer vision, with significant implications for addressing issues related
to pest control in agriculture and forestry and maintaining ecological balance. Traditional
methods of insect classification often require expert entomologists for identification or
validation through techniques like genetic testing. While accurate and reliable, these
methods are costly and time-consuming. Therefore, it is of great practical significance
and economic value to study the low-cost and efficient fine-grained classification of insect
images based on computer vision technology.

Early research on insect classification primarily employed traditional machine-learning
methods. For instance, Larios et al. [24] utilized a model based on SIFT features and color
histograms for feature localization in images of stone fly larvae. Faithpraise [25] proposed a
biological prevention system against plant pests based on the k-means clustering algorithm.
Zhu et al. [26] analyzed color histograms and grayscale co-occurrence matrices of insect
wings to establish an automated classification system for insects. Although these methods
can classify insects to some extent, they are often limited by the capability of feature
extraction and the expressive power of classification models, making it difficult to handle
complex insect image scenes.

In recent years, with the development of deep learning technology, especially the
rise of Convolutional Neural Networks (CNNs), significant progress has been made in
insect image classification. Some researchers have proposed deep learning models based
on CNNs for identifying and classifying insects of different categories. Cheng et al. [27]
integrated deep residual mechanisms into AlexNet, enabling the identification of insects
from complex background images and achieving good experimental results. Xie et al. [28]
used spatial pyramids with sparse coding to identify field pests in agricultural scenes.
Dimitri [29] first used the MultiBox detector, allowing it to exchange lower-level backbone
networks to significantly improve species recognition accuracy in moth scan images. Some
researchers [30] analyzed the classification accuracy of 9 CNN networks for 256 species
of Odonates and found the CNN model most suitable for their dataset. Compared to
traditional machine learning, these methods significantly improve insect recognition in
insect image scenes with backgrounds, making CNN deep learning methods increasingly
popular in the field of insect classification.

Some researchers have begun exploring insect image classification methods based on
Transformers. As a model capable of capturing global image features, Vision Transformers
have achieved great success in the field of image classification. Recently, researchers [31]
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proposed a custom Transformer model for pest identification, emphasizing the need to
integrate some CNN features into the Transformer structure to make the model focus more
on global coarse-grained information rather than local fine-grained information. Although
there is limited research on Transformer models in insect image fine-grained classification
tasks, studies on numerous other fine-grained image classification datasets indicate that
models based on ViTs generally outperform those based on CNNs.

Furthermore, some researchers focus on integrating insect morphological features
into computer vision technology for insect classification. For example, Zhu et al. [32]
used Support Vector Machines (SVMs) for classification to improve classification accuracy.
Dembski et al. [33] analyzed video stream image channels to find the optimal color channels
conducive to bee identification. Although these studies are limited to a specific network
and difficult to transfer to the newly launched general model for fine-grained image
classification, they also bring ideas to our work. We noticed the significant morphological
differences between the same species of insects at different life stages. Therefore, we first
introduced both segmentation and clustering operations to solve this problem and tried
to avoid misclassification of insects with similar morphology by the classifier through the
approximation class comparison mask operation.

In many scenarios of deep learning, there is the problem of unbalanced distribution of
samples in the dataset. In the early stage, Nitesh et al. proposed the oversampling technique
SMOTE [34] to select samples that are close to each other in the feature space. Later, it is generally
used in combination with Edited Nearest Neighbors (ENN) rule to carry out undersampling and
remove possible noise and duplicate samples. Different from SMOTE, ADASYN [35] assigns a
weight to each minority class sample, which indicates how many synthetic samples need to
be generated for that sample. Its main advantage is that it can adaptively generate synthetic
samples according to the data distribution, especially for datasets with large differences in
intensity. However, in the insect scene, the sample imbalance problem in fine-grained image
classification is amplified, which is due to the fact that the same kind of insects have multiple life
stages with different visual appearances. If the species and visual appearance are considered for
classification, the insects at each life stage will be divided into a subclass. At this time, the sample
imbalance problem of each subclass is aggravated, and some mitigation measures are needed.
Wu et al. [36] applied the Cost-Sensitive Learning method in the brain–computer interface to
deal with unbalanced Electroencephalogram (EEG) samples. Tang et al. [37] adopted Ensemble
Learning with Sampling to overcome the shortcomings of deep learning under imbalanced
sample datasets by using multiple models instead of a single model for prediction. Lin et al.
[38] use Focal Loss for object detection and classification after imbalanced target capture so that
the weight of the few and difficult classification targets increases. Therefore, we also introduce
such a mitigation operation into our framework by fusing it with other loss functions. Here, a
novel fusion loss function can avoid the model falling into a local optimum due to the sample
problem to some extent, and the supervised model can perform positive convergence.

3. Approach

Our proposed PCAM-Frame is primarily divided into three stages. Stage 1 is a novel image
data processing method that combines segmentation and clustering operations, which we call
the Polymorphic Clustering Module (PCM), which preprocesses insect images before extracting
specific features. This preprocessing primarily addresses the significant visual differences
in insect individuals at different life stages encountered in fine-grained image classification
tasks in insect scenarios. Initially, a transferred salient object segmentation model is used to
extract the regions of target insects in the images. This step aims to remove the influence of the
background on the next clustering operation. Then, each segmented insect image is subjected
to clustering to enable the network to differentiate between individuals of different life stages
when learning features. Stage 2 involves feature extraction using a backbone network that
has performed well in fine-grained image classification tasks in other scenarios. Stage 3 is a
novel masking method, which compares the focus area of the image and filters the area to
be occluded with fixed restrictions, called the Approximate Masking Module (AMM), which
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performs Approximate Masking and Deviation Loss processing for difficult-to-distinguish insect
categories after primary feature extraction. This process strengthens the model’s attention to
subtle differences between approximate categories during training. The overall framework is
illustrated in Figure 2. Since our PCAM-Frame relies on a backbone network, which can be
any classification network based on CNN or Transformer, we use "Basenet” to represent the
embedding position of the backbone network. Therefore, we will provide detailed explanations
of the main content of PCAM-Frame Stage 1 and Stage 3 in detail in the following sections.

Softmax

Euphydryas chalcedona
morphology1

Danaus plexippus 
morphology1

Danaus plexippus 
morphology

Euphydryas chalcedona
morphology

···

···

·
·
·

·
·
·

Stage 1 Polymorphic Clustering Stage 2 Basenet Stage 3 Approximate Masking

Basenet

Achalarus lyciades
morphology

Danaus plexippus 
morphology1

Euphydryas chalcedona
morphology1

n classes

Softmax

Panoquina ocola
morphology
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morphology1
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Panoquina ocola
morphology
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Deviation Loss

Output

Release

Approximate 
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Figure 2. Overall structure of PCAM-Frame. It consists of three stages from left to right: Stage 1
Polymorphic Clustering is represented in the dashed box on the left, which is mainly completed by
segmentation and clustering operations. The middle rounded rectangular box represents Stage 2
Basenet, which represents the embedding position of the backbone network. The dashed box on
the right represents Stage 3 Approximate Masking, which consists of two parts: image mask and
deviation loss.

3.1. Stage 1: Polymorphic Clustering

This section will elaborate on Stage 1 before feature extraction, which consists of two
sub-modules: primary target segmentation and polymorphic clustering. Its purpose is to
reclassify individuals of the same subclass of insects at different life stages due to the large
appearance difference of the same subclass in different life stages in the insect scene. This
allows Basenet to pay attention to the difference in life stages within the class during training,
and, to a certain extent, the difference between the insect images of the same life stage is less
than the difference within the insect images of different life stages, which has less impact on
the final classification of the model. The entire process is depicted in Figure 3.

U2Net Cluster

Euphydryas chalcedona

Danaus plexippus
Euphydryas chalcedona

morphology1

Danaus plexippus 
morphology1

Danaus plexippus 
morphology

Euphydryas chalcedona
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·
·
·

···

···

n classes n classes

·
·
·

·
·
·

Stage 1 Polymorphic Clustering Module

Figure 3. Stage 1: salient object detection and polymorphic clustering. Firstly, U2Net was used to
perform Salient Object Detection (SOD) operation, and then the SOD results were used to perform
k-means clustering on the original image set.
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3.1.1. Salient Object Detection

To ensure accurate differentiation of insect individuals at different life stages through
clustering, it is essential to remove the influence of background noise on target insect
images. Here, we employ the Salient Object Detection (SOD) method, using the highly
acclaimed U2Net network to handle this task. The main structure of U2Net adopts a U-
shaped network structure, which includes an encoder (downsampling path) and a decoder
(upsampling path). This structure can effectively capture both local and global features
in images. It introduces a multiscale feature fusion mechanism in its design, enabling the
fusion of feature information from different levels for a more comprehensive understanding
of the image. This is particularly helpful for handling targets with large-scale differences.
Additionally, it incorporates local perception modules and global perception modules
in the network to capture local and global semantic information, aiding in dealing with
complex relationships between targets and backgrounds in images. Furthermore, U2Net
utilizes attention mechanisms to allow the network to focus more on important areas
of the image, thus improving segmentation accuracy. It can predict at high resolution,
preserving image details, making it particularly suitable for handling small targets or
complex textures. Through this structure, U2Net accurately segments insect targets from
complex backgrounds and has begun to be used in recognition and classification tasks [39].
Although there are still some imperfect segmentation cases, it usually removes most of the
background noise. Therefore, we use the salient object segmentation method as the first
step in preprocessing insect images before extracting specific features.

As shown in Figure 3, insect images have removed the vast majority of background
noise after passing through the segmentation network. However, there may still be cases
of segmentation errors, such as missing limbs, wings, antennae, etc. Considering that the
segmented images are only used as references for subsequent clustering and not as the final
input to the feature extraction network, the influence of incorrect segmentation on the final
classification can be ignored here.

Here, U2Net accurately segments insect images from the background by designing
effective network structures and introducing various feature fusion mechanisms. In our
fine-grained insect image classification task in this paper, we utilize this network to perform
the first step of processing on each batch of insect images xn where n is the index of different
images in each batch, obtaining segmented images xns. After overall processing, the image
set dss is obtained.

3.1.2. Polymorphic Clustering

Since the image set ds processed by U2Net has no interference from background noise,
the insect subject is revealed, which makes the image more convenient for class clustering.
In the images processed by U2Net, there are usually only incomplete or complete insect
subjects left in the images. At this time, we use a clustering operation to distinguish them,
but the original image is still saved in the end. We perform clustering operations on each
segment subset datasetn

s in the segmented image set datasets as follows:

Sp = {xp : ∥x − ci∥2 ≤ ∥x − cj∥2, j ̸= i, 1 ≤ j ≤ α} (1)

Here, Sp represents the set of data points assigned to the p-th cluster center, ∥x − c∥2

represents the Euclidean distance between point x and cluster center c, c represents a certain
cluster center of the cluster, in this paper, c represents the category to which the image
sample belongs, the first hyperparameter α is introduced here, representing the number of
categories to be clustered, and then the cluster center is updated:

cluster =
α

∑
i=1

ci =
α

∑
i=1

1
|Si| ∑

xp∈Si

xp (2)
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Finally, the image is segmented after clustering as an index to classify the original image:

datasetc = dataset[cluster(datasetn
s )] (3)

Here, n represents the n subclass image set. We adopt the K − means clustering
algorithm to cluster each sub-image set after segmentation first to obtain cluster(datasetn

s ).
Here, we do not use the segmentation set after clustering as the input for subsequent
feature extraction. Instead, cluster(datasetn

s ) is used as the index of the original dataset
before the segmentation, and the image of the dataset before the segmentation is classified
into datasetc. At this time, the total category number of the dataset is expanded to α times
of the original dataset.

3.2. Approximate Masking Module

This section elaborates on Stage 3, the AAM, which consists of two sub-methods: the
Approximate Masking (AM) method and the Deviation Loss (DL) function. Its purpose is
to accurately distinguish the most similar categories, The AM method is a novel masking
method, which maps the image to the most likely multiple classes. After comparing the
attention regions of these classes, the common attention region is taken as the mask part.
This process enhances attention to edge detail differences among these approximate classes
to some extent. The structural details are illustrated in Figure 4.

Softmax

Achalarus lyciades
morphology

Danaus plexippus 
morphology1

Euphydryas chalcedona
morphology1

Danaus plexippus 
morphology1

Deviation Loss
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Focal Loss

add

add

add

Stage 3 Approximate Masking Module

Danaus plexippus 
morphology1

Danaus plexippus 
morphology

·
·
·

Figure 4. Stage 3: region masking and deviation loss. Firstly, the pre-classification is performed, and
then the image mask is performed according to the mapping of the pre-classification results. Finally,
the Deviation Loss is used to correct the convergence direction.

3.2.1. Approximate Masking

As shown in Figure 4, after extracting the final features fn of insect images before
classification using the backbone network basenet in the second stage, we first need to
identify several classes most likely to be determined as the final category. Here, we
introduce a second hyperparameter, β, which represents how many easily confused classes
are selected for masking. The process of selecting the confusing classes is as follows:

fn = basenet(xn) (4)

clstotal =
β

∑
i=1

clsi =
β

∑
i=1

max(linear( fn), i) (5)

Here, fn is the final feature of the basenet output, clstotal represents the set of all β most
probable classification categories, and clsi represents the class of the i-th highest probability.
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Linear regression is applied to map the pre-classification results, and the mapped value
represents the classification probability.

Then, we map the obtained set of confusing categories clstotal back to the weights in
the linear regression function to obtain the feature weight vectors for the β most likely
classification classes. Subsequently, the regions of interest for these classes are masked.
This is achieved by forming a matrix with these β vectors and then replacing all elements
in each column of the matrix greater than 0 with 0. During masking, we introduce a third
hyperparameter γ to indicate the degree of attention to which regions should be masked.
The overall process is as follows:

Ew0 = [wi0
0 , wi1

0 , ..., w
iβ

0 ] (6)

wi0
γ , wi1

γ , ..., w
iβ
γ =

0 i f wi0
γ , wi1

γ , ..., w
iβ
γ > γ

wi0
γ , wi1

γ , ..., w
iβ
γ otherwise

(7)

Emask
w0

= [wi0
γ , wi1

γ , ..., w
iβ
γ ] (8)

Here, w0 is the weight mapped back to linear by clstotal , w
iβ

0 is the feature weight

vector of class β, and Ew0 is the original weight matrix of class β. If all wi0
γ , wi1

γ , ..., w
iβ
γ are

greater than 0, it means that all the regional features of these classes have a positive effect

on the final classification. In this case, if wi0
γ , wi1

γ , ...I f w
iβ
γ is greater than γ, it means that

the region represented by the change vector is masked; otherwise, it is not processed, and
Emask

w0
is the new weight matrix after mask processing. Finally, the new weight matrix is

obtained, and the new weight matrix is multiplied with the final feature fn matrix, thus:

possibility = linear(matmul(wγ, fn)) = linear(matmul(Emask
w0

, w0, fn)) (9)

Here, in order to facilitate the operation, the rotation rank EmaskT
w0

of the mask matrix
is taken and multiplied by the original weight matrix w0 to obtain the new weight matrix
wγ. Finally, the possibility obtained by linear regression of the original feature matrix is the
classification confidence of the output after the final correction of the network.

3.2.2. Deviation Loss

A batch size contains both different insect samples belonging to the same category
and different insect samples belonging to different categories, and these insect samples
may be mistakenly classified into similar classes after classification. For the classification
results after adding the Approximate Masking Module logitsAM under ideal conditions,
compared with the original classification result logits without adding a similar region mask
module, the recognition accuracy is higher. Here, we propose a novel fusion loss function,
called Deviation Loss (DL), which consists of three loss functions with different powers.
First of all, we introduce Rankloss [40] to compare the two tensors logitsAM and logits, but
Rankloss will only produce loss when the logitsAM classification result is worse than logits.
When similar area mask modules fall into inferior classification accuracy, it is helpful for
the Approximate Masking Module to move forward in the direction of better feature effect.
Here is:

lossrank(logitsAM, logits, y) = max(0,−y(logitsAM − logits)) (10)

where y is an indicator vector with an element value of 1 or −1: a position of 1 indicates
that logitsAM is expected to perform better than logits, and a position of −1 indicates the
opposite. In this paper, in the y vector, except the position of the final classification label
corresponding to the sample, which is 1, the other position values are −1. Obviously,
Rankloss only produces loss-directed backpropagation when logitsAM performs worse
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than logits. Therefore, the addition of Rankloss can make the network develop in the
direction of positive revenue.

In the first stage, we expanded the total number of categories in the dataset to α times
the original number by means of clustering, and the classification errors of different forms
of the same class were mostly caused by the imbalance of category samples in different life
stages of the subclasses after clustering, which was difficult to be solved by the traditional
cross-entropy loss function. At this time, we introduce the Focalloss [38] loss function to
focus on the problem of classification difficulty imbalance. Here is:

loss f ocal(pt) = −(1 − pt)
ω log(pt) (11)

where pt is the probability that the model predicts the correct class, and ω is the regulator
that controls the weight of easily classified samples. Relative to the cross-entropy loss
function, Focalloss has one more (1 − pt)ω. When the pt is larger (that is, the model can
predict the sample more accurately), the (1 − pt)ω value is smaller, so the loss of easily
classified samples is reduced. On the contrary, when pt is small, that is, when the model’s
prediction of the sample is inaccurate, the larger the value of (1 − pt)ω, then the loss of
easily classified samples will be amplified. This mechanism enables Focal Loss to better
deal with category imbalance, which can help the model to better learn the key features of
insufficient life stage category samples and improve the classification accuracy.

Therefore, we finally combine these loss functions and finally adopt the DL function
lossdev that can be expressed as:

lossdev = lossCE + lossrank + loss f ocal

= 1 − (1 − pt)
ω log(pt) + max(0,−y(logitsAM − logits))

(12)

where lossdev is the sum of the above lossrank, loss f ocal , and cross-entropy loss lossCE.
Through this loss function, the training process of the network can be optimized simply
and directly, and the approximate class problem and the imbalance of life stage form
samples in insect image classification can be alleviated so that the model is more inclined
to the correct classification direction without introducing unnecessary complexity. In
summary, the significant target segmentation operation aims to capture small and complex
target insect regions in insect images and greatly reduces the interference of background
noise on the multi-life stage morphological clustering operation of insects. After clustering
each species of insects according to their life stage morphology, the new sample set with
category multiplication obtained has a more significant feature extraction effect in the
classification network. Then, by masking the confusion area of the approximate class, the
attention of its subtle features is further enhanced. Finally, the model is further converged
by combining Rankloss, Focalloss and basic cross-entropy loss.

4. Experiments

In this section, we will introduce the detailed setup of experiments and comprehen-
sively evaluate our PCAM-Frame on two fine-grained insect image classification public
datasets and two other fine-grained image classification public datasets using multiple
mainstream models with the highest accuracy in other fine-grained image classification
datasets such as Basenet. Ablation analysis and visualization results are presented to
demonstrate the interpretability of PCAM-Frame and the effectiveness of fine-grained
image classification in insect scenes.

4.1. Experimental Settings
4.1.1. Datasets

We conducted experiments on four fine-grained image classification public datasets;
they are Insecta insect long-tailed distribution in iNaturalist 2017, a large dataset for fine-
grained classification of natural biological images distribution subclass dataset, IP102
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dataset, the well-known CUB200-2011 bird image fine-grained classification dataset in the
field of fine-grained image classification, and the Stanford Cars dataset. Insecta, CUB200-
2011, and Stanford Cars dataset’s training and test image distribution were divided ac-
cording to official guidance documents, while the IP102 dataset had no official guidance
documents, so the training set and test set were randomly divided according to 8:2. The
reason why we chose CUB200-2011 and Stanford Cars, two non-insect fine-grained image
datasets, is to use other fine-grained image classification datasets to confirm the high appli-
cability of our PCAM-Frame in the special case of insect scenes with huge differences in
intra-class features. The statistics of training test samples corresponding to each category of
the four datasets are shown in Table 1. We used only the images and image labels provided
by these datasets in all our experiments, without using any additional annotations.

Table 1. Summary of the total number of categories and training–testing sample statistics for the
four datasets.

Dataset Class Total Images Train Images Test Images

Insecta [3] 1021 118,555 100,479 18,076
IP102 [4] 102 75,222 60,177 15,045
CUB-200-2011 [1] 200 11,788 5994 5794
Stanford Cars [2] 196 16,185 8144 8041

4.1.2. Detailed Experimental Settings and Evaluation Indicators

In the experiments on Insecta, IP102, CUB200-2011, and Stanford Cars datasets, we
first randomly cropped the original image with the size of 224 × 224 and used a random
horizontal flip to enhance the data during the image preprocessing in the training stage.
In the test phase, we adjusted the image to 256 × 256 size, and then the image was center
cropped to 224 × 224 size. In order to ensure the fairness of the experiment, we used the
above image preprocessing methods when testing other mainstream models on the two
datasets. In the training process of the two datasets, we used the stochastic gradient descent
(SGD) optimizer to optimize the model, whose momentum was 0.9, the initial learning
rate was 0.0001, and batch size was 16 by default. The cosine annealing function was used
to constantly update the learning rate during the training process. The default value of
hyperparameter α in the first stage experiment of PCAM-Frame was 2, the default value of
the number of approximate classes β in the mask operation of similar class confusion area
in the third stage was 3, and the mask degree γ was 150.

For all the mainstream fine-grained image classification models used as Basenet in
the experiment, we use its pre-trained model parameters without classification headers on
ImageNet21k or ImageNet22k as the initial training parameters. Therefore, the comparison
between the Transformer class as the backbone network model and the CNN-based model
in our experiment is fair and credible. For all comparison experiments related to PCAM-
Frame on the four datasets, we adopted precision as the evaluation index, which was
defined as follows:

Accuracy =
Tright

Tall
(13)

where Tright is the number of correctly predicted samples, and Tall is the total number
of predicted samples. All experiments to verify the effectiveness of our approach were
performed on the Pytorch platform using a single Nvidia RTX3060 GPU. Here, we use top-1
accuracy as the evaluation criterion.

4.2. Effects of PCAM-Frame on Basenet and Comparison with the Most Advanced Methods

This section describes the effect of PCAM-Frame on the most advanced (SOTA) method
for performing fine-grained classification tasks as Basenet on Insecta, IP102, CUB200-
2011, and Stanford Cars. At the same time, other CNN-based methods that are not used
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as Basenet, Vision Transformer-based methods, CNN methods, and Vision Transformer
hybrid methods are compared and tested, and the results are obtained and the analysis is
completed. In order to ensure the fairness of the comparison experiments, all experiments
on our method used the same training hyperparameter settings and test settings. The
experimental results are shown in Table 2, in which the experimental accuracy of our
method is obtained through the pre-training model provided by the author and other
accuracy results are obtained through the relevant literature. Optimal and competitive
accuracy are highlighted in bold and underlined, respectively.

Table 2. Comparison of top-1 accuracy on Insecta, IP102, CUB200-2011, and Stanford Cars datasets.

Method BackBone Acc(%)/Insecta Acc(%)/IP102 Acc(%)/CUB Acc(%)/Cars

VGG-19 [41] VGG-19 52.7 48.7 84.0 91.8
RA-CNN [42] VGG-19 53.3 48.8 85.3 92.5
ResNet-50 [43] ResNet-50 54.1 49.5 84.5 92.7
DCL [44] ResNet-50 54.0 49.4 87.4 94.4
ResNet-152 [43] ResNet-152 54.2 49.3 86.6 93.6
SSN [45] ResNet-101 54.9 49.9 86.7 -
FDL [46] DenseNet-161 55.0 - 89.1 94.3
FBSD [47] ResNet-50 55.1 - 89.3 94.4
API-Net [13] DenseNet-161 55.3 50.4 90.0 95.3
StackedLSTM [48] GoogleNet 56.0 51.0 90.4 -
ViT [9] ViT-Base 57.7 51.9 90.2 93.6
AFtrans [49] ViT-Base 58.2 52.2 91.5 95.0
TransFG [17] ViT-Base 58.4 52.3 91.7 94.8
FFVT [50] ViT-Base 58.4 52.4 91.6 94.4
IELT [51] ViT-Base 58.4 52.9 91.8 94.8
Swin-Trans [19] Swin-Base 58.8 52.9 92.0 94.9
SIM-Trans [20] Swin-Base 58.9 53.0 91.8 -
PIM [52] Swin-Large 60.9 53.3 92.4 95.1
HERBS [22] Swin-Base 60.6 54.0 93.1 -
DCAL [53] ResNet-50+ViT-Base 60.4 52.6 92.0 95.3
CvT [54] ResNet-50+ViT-Base 60.0 52.3 91.2 -
Mobile-Former [55] MobileNet+ViT-Base 60.9 53.2 92.4 -

Our PCAM-Frame VGG-19 55.0 (+2.3) 49.9 (+1.2) 83.9 (+0.1) 92.0 (+0.2)
Our PCAM-Frame ResNet-50 55.7 (+1.6) 50.4 (+0.9) 84.7 (+0.2) 93.0 (+0.3)
Our PCAM-Frame ViT-Base 60.0 (+2.3) 53.4 (+1.5) 91.1 (+0.9) 93.3 (−0.3)
Our PCAM-Frame Swin-Base 61.6 (+2.8) 54.7 (+1.8) 92.4 (+0.4) 95.0(+0.1)
Our PCAM-Frame Swin-Large 63.1 (+2.2) 54.9 (+1.6) 92.7 (+0.3) 95.1 (+0)

The numbers in parentheses indicate that PCAM-Frame improves the performance of the current backbone
network.

4.2.1. Impact Analysis of PCAM-Frame on Basenet in Insecta and IP102 Insect Datasets

From Table 2, we can see that the performance of fine-grained image classification
models introduced in the past three years in the insect scenario is not very satisfactory. One
reason may be the uneven distribution of sample data in these two insect datasets, but
more importantly, it is due to the unique morphology of insects. A significant portion of
insect samples contain images from different life stages, and the differences between them
are too significant. The uneven distribution of samples from different life stages makes it
difficult for these networks to distinguish the specific categories to which these low-sample
life-stage insects belong.

However, when the five mainstream networks, VGG-19, ResNet50, ViT-Base, Swin-
Base, and Swin-Large, are added to our PCAM-Frame as Basenets, there is a significant
improvement in performance on the Insecta and IP102 datasets. The average improvement
in accuracy on the Insecta and IP102 datasets reaches 2.2% and 1.4%, respectively, both
achieving state-of-the-art (SOTA) results. The difference in accuracy improvement between
these two datasets is mainly due to the fact that the IP102 dataset has far fewer samples
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than Insecta, and the samples of insects in low-sample life stages are even scarcer or
missing, resulting in less improvement compared to the large-sample Insecta dataset. This
indicates that our PCAM-Frame is more suitable for long-tail datasets with a large number
of samples.

4.2.2. Impact Analysis of PCAM-Frame on Basenet in Other Fine-Grained Classification
Tasks: CUB200-2011 and Stanford Cars Datasets

As fine-grained image classification tasks have gradually entered the researchers’ field
of vision thanks to the development of deep learning neural networks in recent years,
there have not been many studies focusing further on fine-grained classification in specific
scenarios. The related well-known datasets are also mostly representative. The CUB200-
2011 dataset does not have significant differences in appearance between subclasses similar
to insects, and the Stanford Cars dataset, as a car dataset, does not have distinctions in
appearance based on life stages. Therefore, the life stage clustering in the first stage of the
PCAM-Frame may not have a positive effect on the performance of these Basenets on the
Stanford Cars dataset.

From Table 2, we can see that the effect of PCAM-Frame on the bird image dataset
CUB200-2011 and the car image dataset Stanford Cars is quite limited. The average
improvement in accuracy is only 0.4% and 0.1%, respectively, and it even does not exceed
the normal accuracy fluctuation range in the experiments. This indicates that our PCAM-
Frame is not suitable for image datasets where subclass samples have only one life stage
morphology or where the differences in life stage morphology between subclasses are
much smaller than the differences between classes.

4.3. Module Ablation Analysis

This section will introduce the accuracy impact of adding different modules of PCAM-
Frame to Basenet on the insect image fine-grained classification datasets Insecta and IP102,
as well as other fine-grained classification datasets CUB200-2011 and Stanford Cars. To
ensure fair comparison experiments, all methods use Swin-Transformer-Base as Basenet,
with default hyperparameter values. The same training hyperparameter settings and
testing configurations were used for all experiments. The qualitative analysis is shown
in Table 3.

Table 3. The top-1 accuracy of each module of PCAM-Frame is compared on Insecta, IP102, CUB200-
2011 and Stanford Cars datasets.

Module
Acc(%)/Insecta Acc(%)/IP102 Acc(%)/CUB Acc(%)/Cars

Stage1-PCM Stage3-AM Stage3-DL

58.8 52.9 92.0 94.9
✓ 60.7 (+1.9) 53.9 (+1.0) 90.8 (−1.2) 93.4 (−1.5)

✓ 59.7 (+0.9) 53.3 (+0.4) 92.7 (+0.7) 95.1 (+0.2)
✓ 58.6 (−0.2) 52.3 (−0.6) 92.0 (+0) 94.4 (−0.5)

✓ ✓ 61.0 (+2.2) 54.3 (+1.4) 92.2 (+0.2) 94.8 (−0.1)
✓ ✓ 60.9 (+2.1) 54.1 (+1.2) 91.6 (−0.4) 94.1 (−0.8)

✓ ✓ 60.2 (+1.4) 54.7 (+1.8) 92.5 (+0.5) 95.0 (+0.1)

✓ ✓ ✓ 61.6 (+2.8) 54.7 (+1.8) 92.4 (+0.4) 95.0 (+0.1)

The numbers in parentheses indicate the impact of each module of PCAM-Frame on the accuracy of Basenet on
the insect datasets.

According to Table 3, we can see that our PCAM-Frame, using Swin-Transformer-Base
as Basenet, has improved accuracy on all four datasets, with notably better performance in
insect scenes. We visualized the regions of interest in insect images from the Insecta dataset
using heatmaps for different modules of PCAM-Frame, as shown in Figure 5.
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Euphydryas chalcedona
morphology1

Danaus plexippus 
morphology1

Danaus plexippus 
morphology2

Basenet(Swin-Base) Stage1+Basenet Masking Basenet+Stage3 Stage1+Basenet+Stage3

PCAM

Figure 5. Visualization of areas of interest for different modules of PCAM-Frame on Insecta dataset.

From the heatmaps of the regions of interest for each module in Figure 5, we can
intuitively observe that after adding the clustering operation in the first stage, the model
focuses more on the main area of the insect target. When the Approximate Masking module
in the third stage masks the main conflicting areas of the image, the model pays more
attention to the detail area between the approximate classes. The figure visually explains
the role of PCAM-Frame at each stage of the fine-grained classification task. This confirms
that our research is of great help for insect image fine-grained classification tasks.

We are concerned that the computing speed of the model on the computer changes
after the model is applied to the modules of each stage of PCAM-Frame. Therefore,
we conduct an experimental discussion on the overall model parameter number and
computational complexity after the addition of each module of PCAM-Frame. Resnet50,
two Transformer models (ViT-Base, SWI-base) for statistical experiments, and their results
are shown in Figure 6.
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Figure 6. Parameter number and Floating Point Operations (FLOPs) statistics of mainstream Basenet
after applying PCAM-Frame.

According to the statistical results of parameters before and after applying PCAM-
Frame to the model in the left figure of Figure 6, we can see that the parameters of CNN
and Transformer networks have little change after applying PCAM-Frame. This is because
U2Net-Lite is embedded in the PCM operation of Stage 1 of PCAM-Frame, and its parameter
count is only 4.7 M at the default 224 × 224 size. The mask operation in Stage 3 of PCAM-
Frame needs to remap the features into the model. In the CNN class model, the final features
of the CNN class model are multiplied with the gradient to map to an attention map. The
mapping between cls token and position embedding can obtain the attention map, and the
number of model parameters will not increase. The original network classification head is
only retrained in the second classification stage, and the number of model parameters will
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increase very little at this stage. And the Deviation Loss function at the end of PCAM-Frame
does not add additional parameters. Therefore, the final number of parameters of each
model does not change much after applying PCAM-Frame.

The right figure of Figure 6 is the statistics of Floating Point Operations before and
after applying PCAM-Frame to the model. It can be seen that the FLOPs of Transformer
network increase greatly, which is because the mask operation of Stage 3 is mapped to patch
mapping in the mapping process. Pixel reconstruction in each patch is required, which
greatly increases the amount of model computation. However, in CNN-like networks,
simple gradient multiplication can be used for mapping, which requires a relatively small
amount of computation. Therefore, after applying PCAM-Frame, the training efficiency of
CNN-like models is less affected, and the training efficiency of Transformer-like models is
significantly reduced.

4.3.1. The Accuracy Effect Analysis of Introducing the Polymorphic Clustering Module in
Stage 1

From the experimental results in the fourth row of Table 3, we can see that the model’s
accuracy on the insect tasks in the Insecta and IP102 datasets has been improved by 1.9%
and 1.0%, respectively, showing significant improvement. However, the accuracy on the
bird dataset CUB200-2011 and the car dataset Stanford Cars decreased by 1.2% and 1.5%,
respectively. This is because the bird images in the CUB200-2011 dataset are mostly adult
birds, and the few juvenile bird samples have very small visual differences from the adult
bird samples, making clustering operations unable to distinguish them. Similarly, each type
of car in the Stanford Cars dataset does not have different life stage differences, and the
clustering operation often groups some car images with different paint colors into one class,
ignoring the structural features of the cars, resulting in a decrease in classification accuracy.

Therefore, the Polymorphic Clustering module in the first stage is mainly suitable
for fine-grained image classification tasks in scenes with multi-life-stage morphological
organisms, such as insects, and is not suitable for image datasets of single-life-stage mor-
phological organisms or artificial objects.

4.3.2. The Accuracy Effect Analysis of Introducing the Approximate Masking Method in
Stage 3

From the fifth row of Table 3, it can be seen that directly inputting unprocessed
images into the feature extraction network based on Swin-Transformer-Base improves the
classification accuracy on all four datasets, with a relatively even improvement effect. This
indicates that the Approximate Masking module in the second stage of our PCAM-Frame
can be applied to fine-grained image classification tasks in any scene, as it mainly masks
the confusing areas of approximate classes, leaving out the distinctive detail areas for the
model to make determinations between similar classes.

From the seventh row of Table 3, it can be seen that after clustering the images and
inputting them into the feature extraction network based on Swin-Transformer-Base, the
model’s accuracy improvement is more significant on insect datasets, while the performance
in other scenes is poor. Combined with the results of the fourth row, it can be tentatively
concluded that this is due to the influence of the first stage of PCAM-Frame.

4.3.3. The Accuracy Effect Analysis of Introducing Deviation Loss

From the sixth row of Table 3, it can be observed that changing the model’s loss
has almost no effect on the model’s accuracy, and the model’s performance even slightly
decreases. This is because the new loss lossdev is the sum of lossrank, loss f ocal , and cross-
entropy loss (lossCE). At this point, the model does not have a second logits, so the lossrank
is 0, and the imbalance of the samples in the four datasets is minimal, causing loss f ocal to
hardly update. The average of lossrank is close to lossCE, resulting in experimental results
on the four datasets fluctuating within the normal error range.

From the last three rows of Table 3, it can be inferred that the AM method only has
an effect when either the Polymorphic Clustering module in Stage 1 or the AM method
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in Stage 2 exists, or both modules are present. This is because lossrank depends on the
AM method, and loss f ocal is heavily influenced by the Polymorphic Clustering module.
However, due to the negative impact of the Polymorphic Clustering module on the CUB200-
2011 and Stanford Cars datasets, its effectiveness in conjunction with the AM method and
DL function can achieve the best results on other scene datasets. Therefore, we consider
optimizing the AM method and DL function in subsequent work to achieve better results
in fine-grained image classification tasks in other scenes.

In summary, our DL function is a plug-and-play loss function that adds icing on the
cake to the performance of our PCAM-Frame in fine-grained image classification tasks in
insect scenes.

4.4. Hyperparameters Ablation Study

The discussion in the previous section about the performance of each module is
not sufficient to fully explain the motivation behind the selection of the parameters and
their default values when designing the PCAM-Frame. Since α in Stage 1 and β and γ in
Stage 3 do not influence each other, we will conduct separate experiments in this section
to discuss the values of the α parameter in the Polymorphic Clustering module in Stage 1
and the β and γ parameters in the Approximate Masking module in Stage 3. This will help
illustrate the reasons for choosing these parameters and the practical significance of their
default values.

4.4.1. Analysis of Hyperparameter α in the Polymorphic Clustering Module of Stage 1

Before feeding the image samples from the dataset into the feature extraction network
Basenet, we first use the U2Net segmentation network to perform insect object segmenta-
tion on the insect images using the segmented insect images as clustering indices. After
obtaining the clustering results, the original images are reclassified. This operation aims
to distinguish between different life stages of insects, and the number of morphologies
specifically needs the hyperparameter α to represent. The selection of the specific default
value needs to be validated by experiments. Since the Polymorphic Clustering operation in
Stage 1 is only effective for insect scene datasets, we only conduct ablation experiments
on the parameter α on insect datasets. Here, the hyperparameter β in the Approximate
Masking module is set to the default value of 3, and the hyperparameter γ is set to the
default value of 150 in the experiments. The experimental results are shown in Table 4.

Table 4. Hyperparameter analysis of α on Insecta and IP102.

Parameter Value (α) Module (Basenet:Swin-Base) Acc(%)/Insecta Acc(%)/IP102

1 Stage1 + Basenet 58.8 52.9
1 Stage1 + Basenet + Stage3 58.6 52.2
2 Stage1 + Basenet 60.7 (+1.9) 53.9 (+1.0)
2 Stage1 + Basenet + Stage3 61.6 (+3.0) 54.7 (+2.5)
3 Stage1 + Basenet 60.8 (+2.0) 53.0 (+0.1)
3 Stage1 + Basenet + Stage3 61.0 (+2.4) 53.4 (+1.2)
4 Stage1 + Basenet 56.4 (−2.4) 51.8 (−1.1)
4 Stage1 + Basenet + Stage3 56.7 (−1.9) 51.7 (−0.5)
5 Stage1 + Basenet 54.7 (−4.1) 52.0 (−0.9)
5 Stage1 + Basenet + Stage3 55.1 (−3.5) 51.7 (−0.5)

The numbers in parentheses indicate the impact of the individual modules of PCAM-Frame on the accuracy of
Basenet on the insect datasets.

Continuing from Table 4, the average improvement in model classification perfor-
mance also reached the highest average value when α = 2. This may be because most
of the samples in the insect classes in the two insect datasets are divided into two life
stages. For example, Danaus plexippus, whose images in the Insecta dataset consist of two
life stages: larvae and adults. Therefore, when α = 2, clustering them into two categories
achieved the highest accuracy improvement. At α = 3, there is also an improvement in
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accuracy, possibly because some categories have samples with three or more different life
stage morphologies. When α is greater than 3, the accuracy decreases. This is because there
are too many clustering centers, exceeding the number of life stage morphology categories
in the insect sample set, resulting in misalignment during final classification.

4.4.2. Analysis of Hyperparameters β and γ in the Approximate Masking Method of
Stage 3

Since the Polymorphic Clustering module in Stage 1 will have a negative impact on
fine-grained image classification in non-insect scenes, we will not include the relevant
modules from Stage 1 in the ablation experiments in this section. The hyperparameter β
represents the number of approximate classes the model masks in the Approximate Masking
Module, and the hyperparameter γ represents the degree to which the model focuses on
the same region between approximate classes simultaneously in the Approximate Masking
Module. Since we use heatmaps to represent the model’s attention to regions in practical
coding work, the value of our hyperparameter γ is between 0 and 255. The influence of
hyperparameters β and γ on the model’s accuracy on the Insecta, IP102, CUB200-2011,
and Stanford Cars datasets is shown in Figure 7. The Basenet of all experiments is Swin-
Base, and the experiments on Insecta and IP102 datasets include Polymorphic Clustering
operation in Stage 1. However, CUB200-2011 and Stanford Cars datasets have negative
returns on Stage 1 of the experiment, so only Stage 3 operations are conducted for them.
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Figure 7. Hyperparameter analysis of β and γ on all four datasets. Blue represents lower accuracy
than Basenet without adding Stage 3, and the closer to blue means the lower accuracy of the model
at that parameter value. On the contrary, the red represents higher accuracy than Basenet without
adding Stage 3, and the closer to red means the higher accuracy of the model at that parameter value.

From the 3D confusion matrix plot in Figure 7, we can clearly observe that as β
increases from 1 to 3, the degree of accuracy improvement of PCAM-Frame on the four
datasets gradually rises, reaching its peak at β = 3. Beyond β = 3, there is no significant
change in accuracy, and further increases in β would lead to a substantial increase in
computational complexity for the Polymorphic Clustering module, which is not conducive
to the model’s subsequent improvement. On the other hand, the value of γ has a greater
impact on model performance. When γ is less than 110, the model’s performance is
lower than the original network, as γ is too small, resulting in too many masked regions
where the model cannot capture useful classification information from the remaining
image areas. When 110 < γ < 150, the model’s accuracy exceeds that of Basenet, and at
γ = 150, the model’s accuracy reaches its peak. However, when γ exceeds 150, the masked
regions become too few, causing negative effects on the model’s discrimination between
approximate classes, resulting in a gradual decline in performance, even lower than that of
Basenet. In summary, with β = 3 and γ = 150, the Approximate Masking Module achieves
the highest accuracy improvement. Therefore, the default values of β and γ used in our
comparative experiments are set to 3 and 150, respectively.
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5. Discussion

Fine-grained image classification in insect scenes is a problem with higher complexity.
As we can see visually, individual insects often evolve color textures that are highly similar
to the surrounding vegetation according to the ecological environment they live in, making
them more difficult to capture compared to other individual animals. This is the first
acute challenge. What is more, unlike other animals, insects do not just change in size
or proportion of body parts during the transition of each life stage. There are often no
visual similarities between different life stages, which is the most difficult challenge in
insect classification.

These two challenges cannot be solved by a single network model and require addi-
tional human processing. However, spending a lot of manpower and money on anchoring
and life stages is contrary to the purpose of our deep learning technology. We need an
automated framework to transfer existing techniques from other domains or come up with
new improvements to solve challenges in insect scenario.

As the above experimental results show, our PCAM-Frame has achieved good per-
formance in the insect scene, which is the effectiveness of our proposed targeted solutions
to the above two acute problems. Specifically, the PCM in Stage 1 of our PCAM-Frame
plays a positive role, which roughly segments the insect individuals in the insect image
samples and isolates the influence of the environmental background noise on the clustering
operation. The combination of the two operations allows us to automatically distinguish
the insect images according to the life stage form. The insect images are labeled with the
life stage labels to avoid confusing the class features of insects with different life stage
samples without visual association. For AMM in Stage 2, according to the experimental
results, it shows a certain degree of universality, and it is still possible to be transferred to
fine-grained image classification tasks in other scenes. This is because the AM method is
not proposed for the unique difficulties of insects. This problem of final classification of
approximate classes is likely to be encountered in many fine-grained image classification
scenarios, which is also confirmed by the ablation experiments in Table 3.

In the process of practical application, there are still some potential challenges that
our PCAM-Frame will face soon. In the process of actual use, new insect samples will
be registered in real time, and registered unqualified insect samples will also be removed
in real time. After new samples are registered, new class features are brought, but also a
sample imbalance problem is generated, although PCAM-Frame can rely on the DL function
of Stage 3 to alleviate this problem dynamically. However, before the unqualified insect
sample is removed, it has already brought pollution to the model, and these misguidance
parameters cannot be accurately removed from the model, and the model is not easy to
retrain in the process of removing the wrong sample, which is the limitation of our PCAM-
Frame framework. Therefore, we subsequently consider adding a sample screening module
to Stage 2 of PCAM-Frame to dynamically eliminate those unqualified samples according
to the sample evaluation after the samples are input into the network, so as to keep the
model from being contaminated during the training process.

6. Conclusions

This paper proposes a training framework called PCAM-Frame for insect image
fine-grained classification tasks, addressing the challenges caused by the significant mor-
phological differences across multiple life stages within insect categories and the large
amount of confusion between similar insect categories, and to meet the adaptation of main-
stream fine-grained image classification networks to insect scenes. Built upon the backbone
network (Basenet), the PCAM-Frame framework conducts primary target segmentation
and polymorphic clustering before inputting into the network, allowing Basenet to learn
intra-class life stage morphological characteristics. After extracting network output features,
the framework employs approximate masking of confusing regions between similar classes
to mask out invalid features and enhance the weight of detailed features. Finally, multiple
loss functions are combined to ensure the model converges optimally. The PCAM-Frame
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structure is well organized, easy to deploy, and can be flexibly adjusted according to the
characteristics of Basenet and the classification task. Excellent results have been achieved
on the Insecta and IP102 insect image datasets. We demonstrate that our PCAM-Frame
brings a good adaptation to mainstream fine-grained image classification networks in insect
scenarios. We conducted thorough ablation experiments on the framework’s stages and
hyperparameters, fully validating and discussing the actual effects of each stage of the
PCAM-Frame and the rationale behind the default parameter settings.

In the future, we plan to incorporate some data augmentation operations during
polymorphic clustering to maintain a more balanced distribution of samples for each
morphological form of individual insect classes. Additionally, based on the best perfor-
mance of several Basenet structures, we try to design a feature extraction network specially
suitable for our PCAM-Frame to achieve better results in fine-grained insect image clas-
sification tasks. Furthermore, we will optimize the design of loss functions to find new
function structures that not only ensure the model converges optimally but also accelerate
convergence speed.
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