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Abstract: In recent years, there has been increasing interest in the conversion of images into audio
descriptions. This is a field that lies at the intersection of Computer Vision (CV) and Natural Language
Processing (NLP), and it involves various tasks, including creating textual descriptions of images and
converting them directly into auditory representations. Another aspect of this field is the synthesis
of natural speech from text. This has significant potential to improve accessibility, user experience,
and the applications of Artificial Intelligence (AI). In this article, we reviewed a wide range of image-
to-audio conversion techniques. Various aspects of image captioning, speech synthesis, and direct
image-to-speech conversion have been explored, from fundamental encoder–decoder architectures
to more advanced methods such as transformers and adversarial learning. Although the focus of
this review is on synthesizing audio descriptions from visual data, the reverse task of creating visual
content from natural language descriptions is also covered. This study provides a comprehensive
overview of the techniques and methodologies used in these fields and highlights the strengths and
weaknesses of each approach. The study emphasizes the importance of various datasets, such as MS
COCO, LibriTTS, and VizWiz Captions, which play a critical role in training models, evaluating them,
promoting inclusivity, and solving real-world problems. The implications for the future suggest
the potential of generating more natural and contextualized audio descriptions, whereas direct
image-to-speech tasks provide opportunities for intuitive auditory representations of visual content.

Keywords: text-free image; audio description; image captioning; text-to-speech; image-to-speech;
text-to-image; synthesis; data generation; Computer Vision; Natural Language Processing;
Artificial Intelligence

1. Introduction

In the modern era, where visual information is prevalent, accessibility is more impor-
tant than ever before. Since over two billion people suffer from visual impairment globally,
it is vital to ensure equitable access to visual content [1].

Audio description is essential for accessibility, especially for visually impaired people.
This is essential for inclusion because it guarantees that the information supplied visually
may also be accessed aurally. The following are the main arguments as to why audio
description is crucial for accessibility:

• Equal access to information: An audio description guarantees an equal chance for
individuals with visual impairments to view visual media such as live events, TV
shows, films, and instructional videos.

• Social inclusion: The audio gives visually impaired persons a sense of community and
belonging by allowing them to take part in common cultural events and recreational
events, including athletic events, art exhibitions, and museum tours.
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• Independent navigation: For the blind or visually impaired in public spaces, audio
description is a crucial part of independent navigation. This makes it easier for people
to walk safely and offers insightful information about their surroundings.

• Accessibility in the learning process: In educational contexts, audio description is a
method used to deliver visual elements such as charts and graphs. It is crucial that
visually impaired students participate in their studies and be completely incorporated
into various topics.

• Employability: People with visual impairments must have access to job descriptions
that are easy to read. This promotes inclusion and equal employment opportunities
by allowing individuals to interact with visual presentations, diagrams, and other
work-related materials.

Converting image data into audio descriptions is useful not only for people with
visual impairments but also to improve usability for a wider audience:

• Multitasking and convenience [2]: Audio descriptions provide a convenient alternative
for people who may be working in multitasking mode or cannot focus on visual content,
allowing them to perceive information by ear while engaged in other activities.

• Language diversity: People who speak different languages or have different levels
of proficiency in the language of visual content can benefit from audio descriptions
because they provide an oral explanation that overcomes language barriers [3].

• Learning styles: Individuals differ in how they absorb information, and some may
gain more or prefer auditory knowledge [4]. Audio descriptions are provided for
people who retain information better by listening than by seeing.

Essentially, audio description serves as a bridge between the visually impaired and
the outside world. This goes beyond being accessible. This is the basic requirement for
building an inclusive society in which all people, regardless of their abilities, can fully
participate in all areas of life.

The integration of Computer Vision (CV) and Natural Language Processing (NLP) is
required to convert image data into audio descriptions. Through this collaboration between
NLP and CV technologies, individuals with visual impairments can fully comprehend
visual content and transform it into audio descriptions. One of the main advantages of
this integration is the intelligent interpretation of data. NLP provides a linguistic context
for processing visual content in a CV, which allows for a deeper and more advanced
understanding of images.

The article provides a comprehensive, up-to-date, and insightful study of the current
state and future directions of Artificial Intelligence (AI) technologies related to image
captioning, Text-to-Speech (TTS), and new Image-to-Speech and Text-to-Image areas, as
shown in the diagram in Figure 1. The study discusses different datasets specific to indirect
and direct Image-to-Speech tasks, emphasizing their unique characteristics and applications.
The article recognizes the role of datasets in model training and evaluation and highlights
their importance in various aspects of research. It provides valuable information for
researchers, practitioners, and developers in these fields.

TEXT-TO-IMAGE

IMAGE CAPTIONING

IMAGE-TO-SPEECHTEXT-TO-SPEECH

Figure 1. Diagram showing relations between tasks of: image captioning, text-to-speech, image-to-
speech, and text-to-image.
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The first section of this article explains the symbiotic relationship between NLP and CV
in the context of converting visual data into meaningful audio descriptions and provides
examples of successful applications of AI-based virtual assistance. In the second section, a
structured taxonomy of methods is developed, categorizing them based on their ability to
handle different types of data, such as vision, text, and sound. The first subsection begins
with image captioning, a fundamental task in AI, where visual understanding intersects
with linguistic expressions. Next, we explore Text-to-Speech technologies, following their
evolution from traditional synthesis methods to the emergence of neural TTS based on
deep learning techniques. We also discuss recent studies on Image-to-Speech systems
that enable computers to produce spoken descriptions from images without the need for
accompanying text. In the fourth subsection, we examine models in the developing field of
Text-to-Image conversion that synthesize visual content from textual descriptions. Finally,
the third section explores and compares datasets critical to three vital areas of AI: image
captioning, Text-to-Speech synthesis, and Image-to-Speech tasks.

2. Integration of Natural Language Processing (NLP) and Computer Vision (CV)
2.1. Explanation of the Symbiotic Relationship between NLP and CV

The rapid development of deep learning algorithms is one of the main drivers of
the convergence of language and visual processing in the modern era [5,6]. Advances in
deep learning have raised the bar for both Computer Vision (CV) and Natural Language
Processing (NLP), with each area showing impressive growth in different tasks [7]. CV
has advanced significantly in object detection, semantic segmentation, and visual-content
classification. NLP has also seen growing interest, especially in large-scale unlabeled
corpora used for unsupervised pre-training of language models.

To address complex tasks, there is currently growing interest in integrating linguistic
and visual information, thus bridging traditionally independent domains. Approaches
to this integration task should provide a deep understanding of the textual or visual
content. These methods must translate textual content using visual cues to distinguish it,
identify objects and reason relationships, and create grammatically correct descriptions
of visual content. Overcoming these obstacles could lead to practical applications such
as assisting blind people; automatic monitoring; self-driving cars; facilitating human–
computer interactions; city navigation; and providing a thorough testing ground for CV
and NLP systems [7].

2.2. Importance of Joint Processing in Converting Visual Data to Meaningful Audio Descriptions

The conversion of visual data into coherent and meaningful audio descriptions relies
heavily on collaborative processing, particularly the joint integration of NLP and CV
technologies. Audio description is a means for people with visual impairments to access
the visual elements of various types of activities, including theatre, media, and visual arts,
where imagery plays an important role. Using concise, vivid, and imaginative language,
audio descriptors ensure that visual information is accessible to segments of the population
to which it may be inaccessible or only partially accessible [8,9]. The purpose of the audio
description technique is to clearly and concisely convey important visual aspects such as
actions, surroundings, gestures, facial expressions, and other details that contribute to a
deeper understanding of the situation [10]. This goes beyond mere narration.

Hansjorg Bittner [11] noted that the visual elements covered by audio description
include:

• Form: Includes characters, places, words, or any recognizable shape or object.
• Motion: Refers to any state or sign of motion, including actions and the passage

of time.
• color: Includes the hue and skin tone of the characters.
• Sound: Refers to sounds that can only be discerned through visual cues.
• Camera Perspective: Includes aspects such as point of view, scale, bird’s eye view, and

camera special effects.
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• Supporting Information: Consists of extraneous information and details such as
changes in information.

The equal-access principle is the foundation of audio description. This is predicated on
the fundamental idea that everyone ought to have equal access to visual content perception
and understanding regardless of their level of visual ability. To ensure that individuals
with visual impairments can participate in the visual narrative and experience emotions,
subtleties, and nuances provided by visual content, audio description aims to improve the
non-visual experience rather than replace the visual experience [12].

2.3. Examples of Successful AI-Powered Visual Assistance Applications

The effective integration of Artificial Intelligence (AI) in transforming visual data into
meaningful auditory descriptions has been demonstrated by several successful examples
that particularly help people with visual impairment. Consider the various functional-
ities and attributes inherent in these tools and systematically categorize them for ease
of understanding.

2.3.1. Object Recognition and Text-to-Speech

• Seeing AI (Microsoft) [13], a free app designed for blind and visually impaired people,
uses Artificial Intelligence (AI) to describe the surroundings audibly. Its features
include instant text voicing, document text recognition, barcode scanning, facial
recognition with age and gender estimation, currency recognition, scene description,
audio-augmented reality for space exploration, indoor navigation, color identification,
handwriting reading, light estimation, and integration with other image recognition
applications. This multifaceted tool allows users to easily navigate their surroundings.

• Envision AI [14], an award-winning Optical Character Recognition (OCR) app de-
signed for the visually impaired, uses AI and OCR to audibly interpret the visual
world, promoting independence. With full spoken language support, it quickly reads
a text in 60 languages, scans documents, recognizes PDFs and images, interprets hand-
written notes, and describes the scenes. The app also detects colors, scans barcodes
for product information, and recognizes nearby people and objects. Envision allows
the sharing of images and documents from different applications and provides voice
descriptions to enhance accessibility.

• TapTapSee [15] is a specialized application designed to assist blind or visually impaired
people in identifying objects during their daily activities. Users can take pictures
by tapping on any part of the screen, which makes it easier to photograph two-
dimensional or three-dimensional objects from different angles. The app then provides
voice identification depending on VoiceOver activation. Recognized for its usefulness,
TapTapSee has received notable awards, including the American Foundation for the
Blind 2014 Access Award Recipient and RNIB (Royal National Institute of Blind People)
recognition as an App of the Month in March 2013. The application includes features
such as image recognition; the ability to repeat the last identification; uploading;
saving images from a photographic film with appropriate definitions; and sharing
the results via text messages, email, or social networks. Developed by CloudSight
Inc., a Los Angeles-based technology company specializing in image captioning and
understanding, TapTapSee is a sophisticated solution that promotes the independence
of the visually impaired.

Additionally, applications like Aipoly Vision [16] and iDentifi [17], which are not
currently listed in application markers, were discovered on the Internet.

2.3.2. Navigation and Location Assistance

• BlindSquare [18], an innovative navigation solution for people with visual impair-
ments, combines GPS, compass, and FourSquare data to provide comprehensive
assistance indoors and outdoors. Developed in collaboration with insights from the
blind community, the app uses algorithms to extract relevant information transmitted
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through high-quality speech synthesis. Enabling voice commands as a premium
service increases user control. BlindSquare is a universal GPS solution, offering step-
by-step instructions and searching for detailed information regarding nearby locations
and compatibility with other navigation applications. Acting as a four-square client,
the application supports registration and related actions. It is a paid application; it
supports 25 languages; and it has received awards such as the GSMA (Groupe Speciale
Mobile Association) Global Mobile Awards 2013 for the best mobile product or service
in the field of healthcare, BlindSquare.

• Aira [19] is a visual translation placement service that provides real-time communica-
tion between visually impaired people and professionally trained visual translators
through the Aira Explorer application. The application is accessed by pressing a button
on the main screen; assisting with requests 24/7; and increasing independence and
efficiency in describing, reading, explaining, and navigating in various environments.
Live video streaming includes GPS location detection, which allows agents to interact
with the user’s environment through an integrated dashboard that includes web data,
maps, location tracking, search engines, text messages, and rideshare integration. Aira
Access distributes the service to organizations that are members of the Aira Access
network, allowing visually impaired people to use the service for free on partner sites,
contributing to accessibility and inclusivity.

2.3.3. Face Recognition and Identification

NoorCam MyEye [20] is an advanced wearable voice-activated AI assistive technology
designed for various levels of vision loss. Designed to be unobtrusive and easy to carry, the
device works offline, reducing data privacy concerns and providing adaptability to different
environments. The high-precision laser guidance used by an intelligent camera allows for
the transmission of visual information in real-time, including text reading, face recognition,
product identification using barcode scanning, checking paper money denominations, and
surface color recognition. This comprehensive solution is a portable and effective means
of helping people with visual impairments by offering instant and accurate information
thanks to innovative AI functions.

2.3.4. Assistance from Sighted Volunteers

Be My Eyes app [21] is a comprehensive tool that combines three different functions to
help people with visual impairment. Used by more than half a million people worldwide,
the app connects with an extensive network of volunteers, who can provide visual descrip-
tions in 185 languages. Winning awards, such as the 2021 Apple Design Award for Best
Social Impact App and inclusion in Time magazine’s 2023 Best Inventions list, Be My Eyes
demonstrates a significant contribution to inclusion and empowerment on a global scale.

2.3.5. General Visual Assistance

Lookout (by Google) [22], an application for auxiliary vision, uses CV to improve the
efficiency of people with low vision or blindness. Developed in consultation with the blind
and visually impaired community, the app is in line with Google’s commitment to making
information universally accessible. Offering six modes, including the newly introduced
image mode for detailed image description and question-based interaction (in English only
in the US, UK, and Canada), Lookout facilitates tasks such as text viewing and presentation
by ear (text mode), quick identification of packaged products using labels and barcodes
(food label mode), capturing entire pages of text or handwriting (document mode), the
quick identification of banknotes (currency mode supporting US dollars, Euro and Indian
Rupees), and a research mode (beta version) providing information about the surroundings.
Supporting more than 20 languages, Lookout is compatible with Android devices running
on Android 6 and above, with a recommended RAM of 2 GB or more.
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2.3.6. Wearable Devices

CyberEyez [23] serves as a wearable magnification solution specifically designed
for people with low vision, covering conditions such as macular degeneration, retinitis
pigmentosa, nystagmus, stroke, and traumatic brain injury (TBI). This technology uses
cost-effective and easily accessible equipment and smartphones, offering an affordable and
adaptable solution to achieve various life goals in educational, professional, and everyday
contexts. The system combines a virtual reality headset with Bluetooth joystick remote
control, facilitating activities such as zooming, gaming, and virtual reality experiences.
The implementation of this innovative solution is characterized by its cost-effectiveness:
options such as Google Cardboard headsets are paid.

Eyesynth’s NIIRA smart glasses [24] represent an innovative solution for individuals
with blindness and poor vision. These glasses use 3D technology to enable users to identify
shapes, measure depths, and locate objects precisely. They employ bone conduction audio
and transmit sound through the skull to free the ears to hear the environment. With a
battery life of up to 10 h, the NIIRA ensures continuous operation. It offers two modes:
tracking and panoramic, allowing intuitive perception of surroundings. NIIRA adapts
to individual needs and provides solutions for both partial and complete vision loss. It
incorporates real-time audio processing, which operates even in complete darkness.

eSight glasses [25] are innovative wearable devices designed to assist individuals
with macular degeneration and other visual impairments. The glasses feature a small
high-definition camera that captures the user’s environment, and advanced algorithms
optimize and enhance footage in real-time. The enhanced image is then displayed on OLED
screens, providing users with up to 20/20 vision enhancements. These glasses operate
wirelessly and are hands-free, thus allowing users to move freely. With a battery life of up
to 3 h and touch controls for features, such as zoom and contrast adjustment, users can
easily engage in daily activities indoors and outdoors.

Sight Plus [26] is a wearable low-vision device designed to help individuals with
various visual impairments independently perform daily activities. This device is bene-
ficial for patients with central vision loss, such as those affected by age-related macular
degeneration (AMD) or Stargardt’s disease, as well as for those with conditions that affect
the entire visual field, such as albinism or optic neuritis. Unlike traditional reading aids,
Sight Plus offers portability and allows users to read comfortably anywhere and at any
time. It provides magnification capabilities, enabling users to see faces, enjoy television
shows and movies from anywhere in the room, engage in online activities such as viewing
whiteboards and screens, and perform work or study tasks. The hands-free design of the
device facilitates the enjoyment of hobbies and crafts as well as the playing of musical
instruments. Sight Plus supports exploration and travel, making it easier for users to
navigate their surroundings and capture images to revisit memories later.

NuEyes Smartglasses [27] provide innovative solutions for people with visual im-
pairments. These compact wearable devices, which weigh only 102 g, offer a powerful
solution for enhancing vision and connectivity. The glasses feature a 1080p display that
provides a 43-degree field of view. This allows users to stay connected to loved ones
without requiring cumbersome equipment. Removable visual prosthetics keep hands free
and assist visually impaired individuals in seeing again, enabling them to participate fully
in everyday activities. The previously mentioned NoorCam My Eye [20] is a wearable
Artificial Intelligence technology that can be activated by voice.

Tailoring multimodal solutions to the diverse needs of visually impaired individuals is
crucial. Future research directions may include adaptable output options (e.g., customizable
audio description detail, braille output, and haptic feedback) and individually adaptable
input methods (e.g., voice commands, gesture-based controls) tailored to individual needs.
Nevertheless, the development of these user-centered designs will need to include ex-
tensive collaboration with individuals across the spectrum of visual impairment. Only
then can we develop solutions with customizable output modalities (e.g., varying levels
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of audio description verbosity, braille output options) and flexible interaction methods to
accommodate user preferences and abilities.

2.3.7. Types of Hardware

Hardware used for AI model training and inference includes a vast array of options.
However, mostly Nvidia’s CUDA is used, and the hardware can be split into the following
two groups:

• GPUs (Graphics Processing Units): GPUs remain the workhorse of most deep learning
applications, including generative AI, due to their parallel processing capabilities.
Top-of-the-line options include examples such as NVIDIA A100 and H100 Tensor Core
GPUs, which are designed specifically for AI and scientific workloads. GPUs used
widely by researches for either intermediate or more managable experiments include
NVIDIA RTX 30 and 40 series—high-end consumer GPUs with substantial power for
generative models.

• Specialized AI Accelerators: These chips offer even greater efficiency and perfor-
mance for specific AI workloads. One popular option is Google TPUs (Tensor Pro-
cessing Units), optimized for Google’s TensorFlow framework and commonly used
in Google Cloud. Graphcore IPUs (Intelligence Processing Units) are designed for
flexibility and handling large, complex models. Additionally, AWS Trainium and In-
ferentia, Amazon’s custom AI accelerator chips, may be a viable option at the time of
the writing.

With considerations for Text, Image, and Speech, the following requirements need to
be taken into consideration:

• Model Size and Complexity: Larger, more complex generative models require more
powerful hardware with higher memory capacity.

• Image Tasks: Models for image generation often demand higher GPU memory
(VRAM) compared to purely text-based models.

• Speech Tasks: Generating realistic speech can be computationally intensive and
might require specialized speech-oriented hardware or careful optimization for
real-time applications.

• Cloud vs. Local: Cloud-based solutions (e.g., Google Colab, AWS instances) offer
access to powerful hardware without upfront investment but might incur recurring
costs. Local hardware allows for full control and can be more economical for very
frequent use.

Selecting appropriate generative AI hardware for text, image, and speech applica-
tions requires careful consideration. GPUs, particularly high-performance options like
the NVIDIA A100, H100, RTX 30, and 40 series, offer versatility for most deep learning
tasks. For researchers requiring even greater efficiency or working with extremely large
models, specialized AI accelerators like Google TPUs, Graphcore IPUs, or Amazon’s
Trainium and Inferentia provide tailored solutions. Model size and complexity are key
factors in hardware selection. Image generation tasks generally demand higher GPU
memory, while generating realistic speech might necessitate specialized hardware or
optimization. Additionally, researchers must strategize between cloud-based solutions,
offering access to powerful hardware without upfront costs, and investing in local hard-
ware, which grants full control and might be more cost-effective for heavy usage. As the
field of AI hardware continues to evolve, staying updated on the latest developments
will ensure researchers make the most informed hardware choices for their generative
AI projects.

Together, these apps represent a powerful step towards a more inclusive and ac-
cessible future. Using the capabilities of AI, developers continue to overcome barriers,
making the world more convenient for navigation and understandable to people with
visual impairments. As technology continues to evolve, the potential for even more
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revolutionary visual aid innovations remains on the horizon, promising a future in which
accessibility has no bounds.

3. Dynamics of Vision, Text, and Sound in Artificial Intelligence

The pursuit of natural and effective human–computer interactions necessitates
an interdisciplinary approach that integrates language, vision, and human behavior.
Studies exploring “analysis by synthesis” provide a compelling case study. This method-
ology leverages Bayesian approaches and predictive models to understand perception,
as evidenced by research on deciphering unconventional indirect requests, which rely
heavily on pragmatic inferences [28]. Beautemps et al.’s work exemplifies how building
detailed models of the human cognitive process, in this case, the role of the tempo-
ral lobe in processing indirect requests, can improve the accuracy of the analysis by
synthesis approach.

Furthermore, Vinciarelli et al. (2015) highlight the importance of modeling, ana-
lyzing, and synthesizing human behavior across diverse interaction scenarios (human–
human and human–machine) for designing intuitive AI systems [29]. Their work em-
phasizes the role of various methodologies, including motion tracking, Computer Vision,
and signal processing, in detecting behavioral cues. Additionally, Vinciarelli et al. dis-
cuss the need for analytic, descriptive, predictive, and classification models to effectively
analyze interpersonal influence. Evaluating these models across standardized datasets
and comparing their performance would provide valuable insights into their relative
strengths and weaknesses in different contexts.

This emphasis on integrating diverse sensory modalities is further highlighted by
Nuske et al.’s (2022) exploration of audio-visual speech synthesis with sensor measure-
ments [30]. Their work exemplifies the need for understanding how humans integrate
auditory and visual cues during speech perception. Nuske et al. specifically investigate
techniques like the functional modeling of overlapping temporal processes and alter-
native denoising methods for Mel-frequency cepstral coefficients (MFCCs) and Linear
Predictive Cepstral Coefficients (LPCCs)—acoustic features crucial for speech synthesis.
Evaluating such methodologies across various datasets and comparing them to estab-
lished approaches would solidify their effectiveness in generating natural-sounding and
engaging speech for human–robot interaction.

In conclusion, this research highlights the promise of interdisciplinary approaches
that combine language, vision, and human behavior modeling for advancing human–
computer interactions. Further research should prioritize case studies that showcase
the effectiveness of specific methodologies and include comparisons across standard
datasets to assess their generalisability and performance in various contexts.

In the continuation of the paper, we illustrate the proposed taxonomy of this inter-
disciplinary field and present concrete approaches in this domain.

We illustrate the overall categorization of reviewed approaches in Figure 2. Due
to the high data-type variability involved in this study, we group these methods on
the top level on the input–output data-type basis. At the mid-level, we analyze the
commonly proposed methodology patterns that are often found in the relevant literature
and we organize these terms into colored sub-groups. On the bottom level, we then
gather different technique types, where the colored blocks indicate the relation of each
technique with the sub-group from the mid-level.
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Figure 2. Proposed taxonomy of reviewed techniques operating with text, sound, and vision data.
On the top level, we divide the methods based on the produced input–output data pairs, and then
in the middle (feature) level, we divide each group into representation-level sub-groups. Finally,
we collect and list commonly used techniques in each sub-group, including typically used models,
architectures, and mechanisms at the bottom (technique) level. We use the same color annotations in
the middle and bottom levels to annotate which techniques at the bottom belong to which mid-level
feature representation sub-group.

3.1. Methods and Techniques in Image Captioning

The term “Image-to-Text conversion” encompasses the broader concept of extracting
meaning or data from an image. This can involve a range of activities, including object
identification, scene understanding, image classification, and the creation of text labels or
descriptions appropriate to the content of the image. It also includes all the procedures that
convert visual data into textual data.

In the context of this article, image captioning is considered. Image captioning is one
of the major research areas in Artificial Intelligence (AI) where image understanding and
linguistic description intersect. A fundamental aspect of image understanding involves
detecting and recognizing objects, understanding scene type or location, and understanding
object properties and their interactions. Forming coherent sentences requires mastery of
both the syntactic and semantic aspects of language [31].

Various techniques and methods have been developed to solve the Image Captioning
problem. This section will give an overview of methods for creating image captions.

1. The encoder–decoder architecture is the foundation of the majority of image cap-
tioning models. To extract visual information from images, Convolutional Neural
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Networks (CNNs) are used as encoders, and Recurrent Neural Networks (RNNs)
or Transformers are used as decoders to create captions. This framework has been
widely used in early image captioning models because of its straightforward and
efficient construction [31–35].
Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) are types of
RNNs with gating mechanisms to control the flow of information. They address the
vanishing gradient problem and are commonly used in sequence-to-sequence tasks
such as image captioning, thus effectively capturing sequential dependencies [32].

2. When producing each word in a caption, Attention Mechanisms allow the models to
concentrate on particular areas of an image. This enhanced the capacity of the model
to represent intricate linkages and features [32,36,37].

3. Transformer-based models have been used for image captioning, motivated by the
way transformers perform well in Natural Language Processing (NLP) tasks. They
effectively and efficiently capture long-range relationships [34,38,39].

4. Reinforcement Learning was used to fine-tune the image captioning models. The
model is trained to maximize the reward signal, which is often computed based on
the quality of the generated captions. Moreover, it allows for the optimization of
non-differentiable metrics and improves caption quality [32,40–42].

5. Adversarial Training: Generative Adversarial Networks (GANs) are employed to
improve the realism and diversity of generated captions. A discriminator was trained
to distinguish between real and generated captions [32,42–45].

6. Controllable Image Captioning: Models are designed to generate captions with spe-
cific attributes or styles, allowing for control over the content of the generated cap-
tions [35,46].

The study of Image-to-Text conversion in AI reveals a complex landscape. Creating
image captions, the most important task in this field requires a subtle understanding of
image content and linguistic subtleties. Delving deeper into the methodology of caption
creation, the underlying encoder–decoder architecture utilizes CNN as an encoder and
RNN as a decoder. Attention Mechanisms enhance descriptiveness by focusing on specific
regions of the image during word generation. Transformer-based models effectively capture
long-range connections, and reinforcement learning optimizes undifferentiated metrics.
Adversarial learning using GANs enhances realism, and supervised image captions allow
for customized results. This highlights that image captioning is a symphony of techniques
harmonizing visual perception and linguistic expression in AI.

3.2. Evolution of Text-to-Speech (TTS) Technologies and Techniques

Several AI techniques are employed for TTS systems, enabling machines to convert
written text into spoken words. Text-to-Speech conversion is typically viewed as a two-
stage process. First, an abstract basic linguistic representation of the text is created using
phonemes, accent symbols, and syntactic structure markers. Subsequently, a speech path
model (synthesizer), controlled by a set of rules, converts the sequence of phonemes into
sound [47].

In [48], Taylor reviewed the three main synthesis methods, collectively known as first-
generation methods, that dominated until the late 1980s. Common problems arise when
Formant, Classical Linear Prediction, and Articulatory Synthesis are used. They all rely on
the same or comparable sources to produce speech signals with a certain value but do not
perform well in recreating natural-sounding speech. The uniqueness of the source, which
is influenced by frequency and vocal effort, limits the authenticity of “average” models,
making them more difficult to create and acceptable to all speakers. In addition, because of
their interdependence, modeling the source and filter as independent entities is insufficient,
resulting in complex source models when moving from one speech to another.

Researchers at the now-defunct ATR (Advanced Telecommunications Research) Trans-
lational Telephony Laboratory in Kyoto, Japan developed CHATR (Collected Hacks from
ATR) in the mid-1990s as a breakthrough technology for Concatenative Speech Synthesis.
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This technology was first described in 1994 [49,50], and in 1996 [51,52], a website appeared
with a corpus containing 1537 samples of synthesized speech from that era. Although
this was not the first Concatenative Speech Synthesis system, it was the first to use raw
waveform segments directly, without the use of signal processing. This major change not
only simplified the synthesis process but also allowed for the use of very high-quality
recordings—some even stereo—that accurately captured all the subtleties of the recorded
people’s voices and speech patterns. This made it possible to replace the unnatural sound
of parametric synthesis and produce a remarkably realistic-sounding speech. Nevertheless,
Concatenative TTS requires an impressive collection of recordings to capture all the possi-
ble combinations of speech units to produce words. Another disadvantage is that, since
combining can decrease the fluency of stress, emotion, prosody, etc., the resulting voice can
be less natural and emotional [53].

To overcome the shortcomings of Concatenative TTS, an alternative known as Statis-
tical Parametric Speech Synthesis (SPSS) was developed in the late 1990s [54,55]. Using
a stochastic time-series model, SPSS models acoustic features based on data. Known as
HMM-based speech synthesis, SPSS uses Hidden Markov Models (HMMs) to encode
various linguistic parameters, in addition to phoneme sequences. Similar to unit selection
methods, SPSS uses linguistic information to determine acoustic parameters from HMMs
to drive a vocoder, which is a rudimentary speech production model that generates speech
signals using vocal and excitatory characteristics [56–62]. Compared to previous TTS sys-
tems, SPSS offers the following advantages. First, the reproduced sounds are more realistic.
Second, it provides versatility in terms of changing the parameters that control generated
speech. Third, the number of data required is smaller because fewer recordings are required
than in Concatenative Synthesis. However, SPSS has disadvantages; examples of artefacts
that can affect the intelligibility of the generated speech are noise or muffled audio. In
addition, synthesized speech can sound artificial and merely like an impersonation of
human-recorded speech [63].

The first attempts to integrate deep neural networks into SPSS, such as deep neural
network (DNN) [63,64] and recurrent neural network (RNN)-based models [65–67], were
made in the early 2010s as neural networks and deep learning evolved rapidly [62]. These
models, adhering to the SPSS paradigm, use neural networks instead of an HMM to predict
acoustic aspects based on linguistic information. Later, Wang et al. [68] proposed the
generation of acoustic features directly from phoneme sequences, which was the first study
on end-to-end speech synthesis.

Taylor [48] highlighted the prevalence of Unit Selection Synthesis as the leading
technique in contemporary TTS systems. Unit selection, an extension of Concatenative
Systems, addresses significant challenges in managing large databases of speech units,
expanding prosodic control beyond fundamental frequency (F0). It also aims to mitigate
distortions that arise from signal processing. Having a diverse set of speech units with
variations in prosody and other characteristics for each linguistic type is the fundamental
notion behind unit selection. The method is expanded to incorporate variations such
as stressed and unstressed versions, phrase-final and non-phrase-final versions, or other
linguistic elements like pitch variations, rather than only recording one version for each
diphone. The result is a richer database of units. This is a change from Concatenative TTS,
which followed the old paradigm of having a single example (unit) for every diphone.

Neural network-based Text-to-Speech synthesis (neural TTS) is a recent innovation in
deep learning that builds speech synthesis models based on deep neural networks. The first
neural TTS models appeared in 2016 with the release of WaveNet [69], which presented a
way to generate speech signals based on direct linguistic features. Thus, speech signals can
be generated directly from text using fully end-to-end TTS systems, such as Tacotron [70],
ClariNet [71], FastSpeech 2s [72], and EATS [73]. Neural-network-based speech synthesis
has significant advantages over earlier TTS systems based on Concatenative and SPSS.
These advantages include improved speech quality in terms of naturalness and intelligibility
as well as a reduced need for feature development and human speech preprocessing [62].
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Transformer models, exemplified by GPT [74,75] and BERT [76], have also made
substantial inroads into TTS. Their contextual understanding of language and ability to
generate speech based on text inputs mark a promising avenue for more contextually
accurate and natural speech synthesis.

AI’s capabilities have extended to voice cloning, allowing for the replication and
customization of specific voices. By learning from minimal voice samples, AI models can
synthesize speech in designated voices, fostering personalization and adaptability [77–79].

These methods have continually evolved, to generate more natural, human-like speech.
The combination of deep learning, neural networks, and the application of advanced
linguistic and acoustic models has significantly improved the quality of synthesized speech,
making TTS systems more efficient and natural-sounding.

3.3. Advancements in Image-to-Speech Systems

Image-to-Speech is a relatively new task that combines image and speech processing.
Some of the works on this topic are performed using separate techniques for Image-to-Text
and Text-to-Speech [80–83]. However, the task of direct Image-to-Speech conversion is also
being worked on.

Hasegawa-Johnson et al. [84] first introduced an Image-to-Speech task to create spoken
descriptions of images without relying on text. They divided the process into two stages:
the first stage generates speech units (like phonemes) from the image, and the second stage
synthesizes speech from these units. Their method heavily relies on image descriptions in
terms of sound sequences to train the first stage. They compared three ways of obtaining
these sound units, but only the one based on native language phonemes showed reasonable
performance, limiting the system’s applicability to unwritten languages.

Hsu et al. [80] used an audio-visual model to learn linguistic units from visually
grounded speech. They applied these learned speech units to the Image-to-Speech task,
achieving reasonable performance. Effendi et al. [85] took a different approach, using a
self-supervised model to learn speech unit representations without paired image-speech
data. Their model’s encoder–decoder architecture allowed it to synthesize speech from
predicted speech units by the Image-to-Speech model. Both approaches surpassed the
pseudo-phone-based method used in the earlier work.

Xinsheng Wang et al. [86] pioneered an end-to-end method for generating spoken
descriptions of images. Their groundbreaking work showcased the feasibility of creating
spoken image descriptions without relying on text or intermediate speech units.

In their work on “Audio description from an image by modal translation network”,
Ning et al. [87] introduced an Image-to-Audio-Description (I2AD) task crucial for various
applications. They constructed three substantial audio caption datasets to delve into this
task. Their Modal Translation Network (MTNet) aimed to address I2AD by exploiting
the inherent relationship between images and audio, translating image information into
audio features. This network included an audio generation sub-network utilizing a 1D
convolution kernel with holes to model complex phoneme relationships, ensuring natural
and understandable audio descriptions.

In a text-free Image-to-Speech process, the approach centers on generating spoken
descriptions or interpretations of images without relying on accompanying text. This
process typically involves various techniques within Computer Vision and speech synthesis.

The development of such AI systems often involves labeled datasets for training
and optimizing the models to perform accurately. These datasets typically contain pairs
of images and corresponding text or speech descriptions, allowing the AI to learn the
relationship between the visual content and its textual description.

3.4. Image Generation Based on a Text Description

While most of the article was devoted to synthesizing audio descriptions from visual
input data, there is growing interest in the inverse problem of generating visual content
from natural language descriptions. This area is often called “Text-to-Image generation”.
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Because an infinite number of images can be associated with a single verbal descrip-
tion, Text-to-Image generation is multimodal. The challenge is to capture different visual
interpretations that can arise from the same input text. Deep learning, namely, generative
adversarial networks (GANs) and specialized Text-to-Image techniques based on diffusion
models, can address this complexity. Transformers play a vital role in this field [88].

GANs are typically used for Text-to-Image generation. In a GAN, the generator creates
images using random noise as input, whereas the discriminator assesses how well these
created images resemble real images [89].

Agnese et al. summarized GAN-based Text-to-Image synthesis into two types, Simple
GAN (Conditional GAN) frameworks and Advanced GAN frameworks, and proposed
a taxonomy that divides advanced GAN-based Text-to-Image synthesis frameworks into
four categories [90]. The categories are:

• Semantic enhancement GANs (DC-GANs, GAN-INT, GAN-CLS, GAN-INT-CLS,
Dong-GAN, Paired-D GAN, and MC-GAN);

• Resolution enhancement GANs (StackGAN, StackGAN++, AttGAN, obj-GANs,
HDGAN, and DM-GAN);

• Diversity enhancement GANs (AC-GANs, TAC-GAN, Text-SeGAN, MirrorGAN, and
Scene Graph GAN);

• Motion enhancement GANs (ObamaNet, T2S, T2V, and StoryGAN).

Each category addresses a specific aspect of Text-to-Image synthesis and includes
common frameworks that use GANs to solve these problems.

GANs have been successful in generating images; however, they suffer from unstable
training [91]. Diffusion models offer a significant advantage in Text-to-Image tasks com-
pared with GANs because of their ability to address such issues. Diffusion models offer
a more consistent training experience and can produce high-quality digital images with
greater variation and quality. Furthermore, diffusion models have been demonstrated to
effectively maintain the global content of input images, enabling simultaneous diffusion
models capable of learning both explicit information and abstract aesthetics at the same
time [92].

Transformer architectures, which were formerly prominent in NLP applications, have
spread to the field of Text-to-Image synthesis. Transformers can be used to handle various
multimodal tasks, as demonstrated by models such as DALL-E. Transformers excel at
capturing contextual nuances by encoding textual information and creating images within
a cohesive framework. This allows for a more precise and contextually relevant image
synthesis based on textual prompts [93].

As Text-to-Image creation techniques continue to be investigated, one more important
component is the use of prompt modifiers. Prompt modifiers play a crucial role in Text-
to-Image generation by allowing users to enhance the quality and specificity of generated
images. These modifiers enable users to influence various aspects of generated images,
including style, content, and overall outcome, by adjusting the text prompt provided to
the generative model [94]. The six types of prompt modifiers identified in the taxonomy
presented by Oppenlaender [95] are as follows:

• Subject terms: Denotes the subject of the image.
• Style modifiers: Indicates a specific artistic style for the image.
• Image prompts: Provides a reference image to convey the desired style or subject.
• Quality boosters: Terms intended to enhance the quality of generated images.
• Repeating terms: Repetition of subjects or style terms to reinforce desired elements.
• Magic terms: Terms that are semantically different from the rest of the prompt, aiming

to produce unexpected or surprising results.

Text-to-Image synthesis is a field that uses a variety of techniques such as transformers,
diffusion models, and GANs. While GANs, which are popular but prone to instability
during training, have been categorized under several different headings, diffusion models
provide steady training and better image quality. Transformers have switched from NLP
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to Text-to-Image tasks, demonstrating flexibility in models such as DALL-E. Furthermore,
prompt modifier integration allows users to fine-tune output images by modifying text
prompts and impacting style, content, and quality.

3.5. Ethical Considerations and Potential Unintended Consequences

The technologies presented in the paper, while offering great potential benefits, also
raise concerns about unintended consequences. These include the potential for facilitating
the spread of deepfakes and misinformation, the perpetuation of biases within the mod-
els, threats to privacy and data security, the creation of new accessibility barriers if not
designed inclusively, and the possible devaluation of human artistic skills due to the ease
of generating realistic content. Proactive measures must be taken to mitigate these risks,
including ethical research, bias detection tools, robust privacy frameworks, and inclusive
design principles.

3.6. Challenges and Opportunities

The rapid advancement of these AI technologies necessitates the careful consideration
of their ethical implications. Further development must prioritize privacy and data security,
particularly when handling sensitive personal images and descriptions. Future work will
involve the development of robust privacy protocols, including transparent data collection,
secure storage, and user-controlled access mechanisms. Additionally techniques like
differential privacy and federated learning to protect individual data while training models
will most likely be more and more applied in the future. Furthermore, a critical examination
of potentially unintended consequences, such as the perpetuation of biases or the ability to
synthesize misleading content, will be needed in order to mitigate these risks.

4. Overview of Existing Image Captioning, Text-to-Speech, and
Image-to-Speech Datasets
4.1. Image Captioning Datasets

Image captioning datasets are specifically formed to address the task of creating text
descriptions or captions for images. This section will give an overview of some image
captioning datasets.

The SBU (Stony Brook University) Captioned Photo Dataset is a web-based collection
of over 1 million images retrieved from the Internet, each accompanied by visually relevant
text descriptions. The dataset was created through a long process involving queries to Flickr
with a large number of query term pairs (objects, attributes, actions, things, and scenes).
This initial set of photos with corresponding text is then filtered to ensure the relevance and
visual expressiveness of the descriptions. Filtering criteria include the observed length of
the visual descriptions, the presence of at least two words from predefined term lists, and
the inclusion of at least one prepositional word indicating visible spatial relationships (e.g.,
“at”, “under”). The resulting SBU Captioned Photo Dataset serves as a valuable resource for
captioning methods by providing a diverse set of images with visually meaningful textual
descriptions [96].

The Flickr8k dataset is a collection of 8092 images from Flickr, each accompanied by
five crowdsourced captions. The images in this set are about people or animals performing
some action and were selected from six different Flickr groups to depict different scenes
and situations. The captions in this dataset are shorter and focus more on the main aspects
of the image. The Flickr8k dataset is a unique resource for image description and has been
widely used in sentence-based image annotation and search [97].

The Flickr30k dataset is a large-scale benchmark dataset for research in image cap-
tioning and multimodal technologies. It consists of 31,783 images collected from the Flickr
website, each accompanied by five descriptive captions written by different annotators.
The captions are written in English and describe the content of the image from different
perspectives, resulting in a diverse set of descriptions for each image. This dataset has been
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widely used for training and evaluating image captioning models, as well as for research in
multimodal learning and Natural Language Processing [98].

The Microsoft Common Objects in COntext (MS COCO) dataset is a large-scale dataset
for recognizing, segmenting, and captioning images. It contains 328,000 images with over
2.5 million labeled instances of 91 common object categories. This database was created to
achieve excellence in object recognition by addressing the issue of object recognition in the
context of the broader issue of scene understanding. Objects are labeled by segmenting each
instance to help localize the object accurately. Numerous crowd workers participated in
the creation of the dataset and utilized new user interfaces for category detection, instance
spotting, and instance segmentation [99].

The Microsoft COCO Captions dataset is a collection of human-created captions for
images contained in the MS COCO dataset. The set contains over 1.5 million captions for
more than 330,000 images. The captions were collected using Amazon’s Mechanical Turk
and followed certain guidelines to describe important parts of a scene without including
irrelevant details or future/past events [100].

SentiCap dataset is designed to generate sentiment-enriched image descriptions. The
crowdsourced dataset involves rewriting image captions based on objective descriptions
from MS COCO with the inclusion of affective norms for English words selected by workers.
Adjective–noun pairs collected from online image captions are labeled positive or negative
sentiments. The dataset is tested for quality using an Amazon Mechanical Turk task
that evaluates the descriptiveness and appropriateness of sentiment. By focusing on the
viewer’s objective emotional response to images, SentiCap provides a unique resource
for learning models for creating emotionally expressive image captions, bridging the gap
between visual content and semantic connotations in language [101].

The Conceptual Captions dataset is a large-scale database of image caption annotations
containing approximately 3.3 million image-caption pairs. Its uniqueness lies in the fact that
images and their raw descriptions are collected from the web, providing a wider variety of
styles than other curated datasets. The dataset was created programmatically using the
Flume pipeline, which processes billions of Internet pages in parallel and includes image
and text filtering steps to ensure the resulting captions are clean, informative, fluent, and
learnable. This dataset was used to evaluate several image caption creation models [102].

The VizWiz-Captions dataset is the first publicly available dataset dedicated to im-
ages taken by blind people. This dataset is based on existing data collected from users
of the VizWiz mobile application and consists of 39,181 publicly available images, each
accompanied by five captions. Images were sent by users who recorded verbal questions
to obtain descriptions of the images or answers to their questions from remote people.
Signature crowdsourcing on Amazon Mechanical Turk was used to create the dataset,
with an adaptation of a task interface developed in the vision community. The interface
encouraged crowdsourcing participants to describe all of the relevant parts of an image to
a blind person, avoiding speculation about content and appropriately addressing image
quality issues. The dataset addresses real-world image conditions faced by blind photogra-
phers and provides a valuable resource for the development of more generalized Computer
Vision algorithms. The collection includes redundant captions for quality control, resulting
in 195,905 captions post-processed, including spell checking. The goal of the dataset is
to contribute to the understanding of real user needs and concerns when creating image
captions, beyond the far-fetched parameters of existing datasets [103].

The Localized Narratives dataset is a multimodal image annotation dataset designed
to bridge vision and language. In this unique database, annotators describe images using
their voice while simultaneously using the mouse to point to areas of interest in the image.
The synchronization of voice description and mouse pointing allows each word in the
description to be localized to a specific region of the image. This dense visual reference
is represented as a segment of the mouse trace for each word, representing a unique and
valuable form of annotation. The dataset includes annotations for 849,000 images covering
all COCO, Flickr30k, and ADE20K, and 671,000 images from Open Images datasets. The
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annotations are in the public domain. Each annotation record contains information such as
dataset and image identifiers, annotator identifiers, image captions, temporal characteristics
of spoken words, mouse movement trace segments, and the relative URL path to the
corresponding OGG (Ogging) voice recording. The dataset aims to facilitate research at
the interface of vision and language, offering a rich source of information for tasks such as
image captioning and the accurate spatial localization of language [104].

The TextCaps dataset is a resource for exploring the task of creating image captions
with reading comprehension in mind. The dataset, consisting of 145,000 captions for
28,000 images, aims to address the shortcomings of existing image captioning approaches
by focusing on understanding written text and incorporating it into image descriptions. The
challenge is to recognize text, relate it to the visual context, and decide how to incorporate
text into captions. This involves spatial, semantic, and visual reasoning between several
textual tokens and visual entities such as objects in images. The dataset is designed to
test the reading abilities of image captioning models and provides an opportunity to train
image captioning models to efficiently process and incorporate information from text into
images [105].

The LAION (Large-scale Artificial Intelligence Open Network) COCO dataset is the
world’s largest collection of generated high-quality signatures for publicly available web
images, comprising 600 million signatures. Built as an ensemble of BLIP (Bootstrapping
Language-Image Pre-training) L/14, CLIP (Contrastive Language–Image Pretraining) (L/14
and RN50x64) versions and a fine-tuned T0 model, the dataset is designed to study the
complementarity of synthetic captions with the five billion natural captions in Laion5B.
The captions are generated for images from the English-speaking subset of Laion5B and
are published in the public domain for research purposes. The method involves several
steps, including caption generation, ranking, and grammatical correction. Human experts
found that the BLIP and CLIP ensemble can generate signatures with a quality close to
human-written MS COCO signatures. The dataset is provided as parquet files including
original signatures, URLs, best signatures, and alternative signatures with lower CLIP-like
scores. Researchers can download the dataset to study the impact of synthetic captions on
trained models and explore the potential of this large-scale captioning resource [106].

Image captioning datasets are crucial for advancing Computer Vision and Natural
Language Processing. A comparison of these datasets is shown in Table 1. MS COCO ex-
cels in large-scale, segmented images, while Flickr8k and Flickr30k offer insights into
sentence-based annotation. Conceptual Captions provides diverse, web-based pairs;
VizWiz-Captions focuses on inclusivity; and TextCaps emphasizes reading comprehension.
Localized Narratives introduces dense visual grounding, and SentiCap explores senti-
ment enrichment. SBU Captioned Photo Dataset offers diverse, web-sourced descriptions.
LAION COCO, with 600 million synthetic captions, presents a unique opportunity to
study complementarity with natural captions. Together, these datasets drive advancements,
catering to various vision-language aspects and fostering AI system development.

Table 1. Comparison of image captioning datasets.

Dataset Source Volume of Images Volume of
Captions Annotation Style Purpose (Usage)

SBU Captioned
Photo Dataset [96] Web-based, Flickr Over 1 million Over 1 million Visual relevance,

filtering
General image

captioning

Flickr8k [97] Flickr 8092 8092 × 5 Crowdsourced,
main aspects

Sentence-based
image annotation,

search

Flickr30k [98] Flickr 31,783 31,783 × 5 English captions,
diverse

Image captioning,
multimodal

learning, and
natural language

processing



Electronics 2024, 13, 1726 17 of 25

Table 1. Cont.

Dataset Source Volume of Images Volume of
Captions Annotation Style Purpose (Usage)

MS COCO [99] Internet, crowd
workers 328,000 Over 2.5 million

labeled instances
Object recognition,
and segmentation

Image captioning,
object recognition,
and segmentation

MS COCO
Captions [100] MS COCO dataset over 330,000 Over 1.5 million Human-created,

guidelines
Caption quality,

scene description

SentiCap [101] MS COCO dataset Several thousand Over 2000 Sentiment-
enriched captions

Emotionally
expressive image

captions

Conceptual
Captions [102]

Web-based, Flume
pipeline

Approximately
3.3 million

approximately
3.3 million

Image and text
filtering, diverse

styles

Evaluating Image
caption creation

models

VizWiz-
Captions [103] VizWiz mobile app 39,181 39,181 × 5 Captions for blind

users

Real-world image
conditions for

blind
photographers

Localized
Narratives [104]

MS COCO,
Flickr30k,

ADE20K, Open
Images

849,000 + 671,000 Voice descriptions
with mouse traces

Vision and
language research,
image captioning

TextCaps [105] Open Images v3
dataset 28,000 145,000 OCR system and

human annotators

Reading abilities of
image captioning

models

LAION
COCO [106]

Publicly available
web-images,

English subset of
Laion-5B

600 million 600 million Synthetic captions

Large-scale
captioning
resource,

complementarity
study

4.2. Text-to-Speech Datasets

Text-to-speech (TTS) systems rely heavily on diverse datasets for training and eval-
uating the performance of voice synthesis models. Several prominent datasets have
emerged as crucial resources in this domain, each offering unique characteristics and
diverse speech samples.

The LJ Speech Dataset is a public domain collection for TTS research. It includes
13,100 short audio clips of a single speaker reading excerpts from non-fiction books pub-
lished between 1884 and 1964. The dataset totals about 24 h and includes transcriptions
and normalized transcriptions that expand numbers and units to full words. The audio,
recorded in 2016–2017 as part of the LibriVox project, is presented in single-channel 16-bit
PCM (Pulse Code Modulation) WAV format with a sampling rate of 22,050 Hz. Each 1 to
10-s clip is segmented by silence in the recording. In the dataset: total number of words
(225,715), total number of characters (1,308,678), number of individual words (13,821). No-
tably, some abbreviations in the text are expanded, and 19 transcriptions contain non-ASCII
characters [107].

The LibriTTS corpus, designated as SLR60, is a significant resource in the field of
speech research, licensed under CC BY 4.0. Designed for TTS research, it includes approxi-
mately 585 h of English speech sampled at 24 kHz. Created by Heiga Zen in collaboration
with the Google Speech and Google Brain teams, LibriTTS is an extension of the LibriSpeech
corpus [108] derived from mp3 audio files (LibriVox) and text files (Project Gutenberg).
Features include a 24 kHz sampling rate, sentence-level segmentation, the inclusion of both
original and normalized texts, and the exclusion of utterances with significant background
noise. In addition, LibriTTS features the ability to extract contextual information from
neighboring sentences, which enhances its suitability for prospective TTS research [109].
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The RyanSpeech corpus is a speech dataset designed for research on automated TTS
systems, fulfilling the need for a high-quality publicly available corpus of male speech in
a conversational setting. The set contains over 10 h of speech recorded at 44.1 kHz by a
professional male voice actor, making it suitable for developing TTS systems in real-world
applications. RyanSpeech is the first publicly available TTS corpus with a male voice
actor in a conversational environment. Its creation was carefully crafted, involving data
collection from various text resources; sentence segmentation; text normalization; and
post-processing steps such as silence pruning and audio amplitude normalization. The
corpus includes sentences from the Ryan Chatbot, Taskmaster-2, and LibriTTS datasets,
covering a variety of conversation topics. The dataset is provided under a CC BY-NC-ND
(Creative Commons Attribution NonCommercial NoDerivs) license along with trained
models to facilitate further research and development on TTS [110].

The SOMOS (Samsung Open Mean Opinion Scores) dataset presented by Giorgia
Magnati et al. is a pioneering contribution to the evaluation of neural TTS synthesis. It is the
first extensive Mean Opinion Scores (MOS) dataset specifically designed for the evaluation
of state-of-the-art TTS systems. Composed of 20,000 synthetic utterances derived from
the widely used LJ Speech dataset, SOMOS includes a diverse set of TTS systems (from
001 to 200) with different acoustic models and prosody. The dataset utilizes the LPCNet
vocoder to evaluate the naturalness of speech to ensure the consistency of acoustic features.
Example sentences illustrating problems in aspects such as prosody, rhythm, accent, pauses,
and pronunciation provide valuable information. Crowdsourced MOS evaluations on
Amazon Mechanical Turk contribute to the reliability of the dataset. SOMOS serves as a
critical resource to stimulate progress in TTS synthesis evaluation and refine the evaluation
of acoustic models [111].

The CVSS (Common Voice Speech-to-Speech) dataset is a feature-rich and compre-
hensive corpus of multilingual-to-English Speech-to-Speech translations. CVSS, which
includes sentence-level parallel translations from 21 languages into English, is based on
the Common Voice speech corpus and the CoVoST 2 Speech-to-Text translation dataset.
Two versions are available for each language pair: CVSS-C contains synthetic translations
performed by a sequential canonical speaker’s voice, which provides highly natural and
clean translations and is ideal for user-oriented applications. In contrast, CVSS-T provides
translated speeches with voices transferred from the source speeches, which preserves the
similarity of voices across languages. The dataset of about 1900 h of speech is synthesized
using state-of-the-art Text-to-Speech models trained on the LibriTTS corpus. Along with
the translated speech, the CVSS includes normalized translation text, which helps in train-
ing the models and standardizing the scores. This corpus serves as a valuable resource
for advancing research in multilingual Speech-to-Speech translation, offering different
approaches to modeling and preserving the speaker’s voice in different languages [112].

The AISHELL-3 corpus is a large-scale and highly accurate multilingual Mandarin
speech dataset designed for training multilingual TTS systems. The corpus contains
about 85 h of emotionally neutral recordings from 218 Mandarin speakers totalling
88, 035 utterances and includes explicit annotation of auxiliary attributes such as gender,
age group, and native accent. With professional speech annotation and careful transcription
quality control, the transcription accuracy exceeds 98%. The corpus serves as a valuable
resource for developing robust synthesis models, and the underlying system includes a
speaker verification model to achieve high voice similarity [113].

HUI-Audio-Corpus-German is a significant open-source dataset designed for TTS
applications and aims to address the inherent weaknesses of existing datasets. The dataset
is created using a processing pipeline that emphasizes high-quality audio and transcription
alignment to reduce the manual labor required to create the dataset. Achievements include
meeting a minimum duration of 20 h per speaker, providing a sampling rate of 44.1 kHz,
normalizing text and audio loudness, and keeping the average audio length within specified
limits. In addition, the dataset includes punctuation related to pronunciation and preserves
capitalization in transcripts. Special attention to text normalization is paid via the automatic
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checking of digits, abbreviations, and special characters, as well as the careful manual
analysis of transcript samples. The characteristics of the dataset make it a valuable resource
for the development of TTS research, especially for the German language, under strict
quality and harmonization requirements [114].

The KazakhTTS dataset is a high-quality open-source speech synthesis dataset for the
Kazakh language. Developed to address the problem of language resource scarcity, the
dataset contains about 42,000 segments totalling 93 h of transcribed audio recordings made
by two professional speakers (a female and a male). This is the first publicly available large-
scale dataset designed to advance Kazakh TTS applications in both academic and industrial
settings. To create the dataset, texts were collected, read, and carefully segmented with
audio and text alignment by native Kazakh speakers using the Praat toolkit. The speakers,
selected by listening, recorded the articles in a relaxed environment at their natural pace,
following orthoepic rules. Evaluation with end-to-end TTS models demonstrated the
reliability of the dataset, providing an MOS above 4 for both speakers. The dataset, training
recipe, and pre-trained TTS models are freely available [115].

There are also well-known datasets like LibriSpeech [108] and Mozilla Common
Voice [116], which are known primarily as Automatic Speech Recognition (ASR) datasets
rather than TTS datasets. Despite this, in some cases, these datasets can be used for
TTS research.

The discussed Text-to-Speech datasets play a key role in the development of speech
synthesis research and development. A comparison of these datasets is shown in Table 2.
Each dataset, whether for specific languages, communication scenarios, or evaluation
purposes, contributes to the collective development of TTS technology, offering valuable
resources for both researchers and developers.

Table 2. Comparison of Text-to-Speech datasets.

Dataset Source Volume Purpose (Usage)

LJ Speech [107]
Non-fiction books published

between 1884 and 1964,
LibriVox project

24 h Research in TTS, voice
synthesis models

LibriTTS (SLR60) [109] LibriSpeech, Project
Gutenberg 585 h TTS research, contextual

information extraction

RyanSpeech [110] Ryan Chatbot, Taskmaster-2,
and LibriTTS datasets 10 h Development of TTS systems

SOMOS [111] Derived from LJ Speech,
LPCNet vocoder 20,000 synthetic utterances Evaluation of TTS synthesis,

refinement of models

CVSS (Common Voice
Speech-to-Speech) [112]

Common Voice speech corpus,
CoVoST 2 Speech-to-Text

translation dataset
1900 h Multilingual

Speech-to-Speech translation

AISHELL-3 [113]
Emotionally neutral

recordings from 218 Mandarin
speakers

85 h Training multilingual TTS
systems

HUI-Audio-Corpus-
German [114] LibriVox Minimum 20 h per speaker TTS research, especially for

German

KazakhTTS [115] Manually extracted articles
from news websites 93 h Advancing Kazakh TTS

applications

4.3. Image-to-Speech Datasets

As mentioned in the section on Image-to-Speech techniques, most of the works are
carried out using a combination of Image-to-Text and Text-to-Speech techniques, and the
same is true for datasets. Nevertheless, some datasets can be used for direct Image-to-
Speech tasks.

Places Audio Captions: Featuring images with associated audio captions describing
scenes and objects [117].
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Spoken ObjectNet: Contains images with corresponding spoken descriptions focusing
on object recognition and scene understanding [118].

Localized Narratives: Provides images with localized, descriptive narrations capturing
various aspects of scenes [104].

Flickr Audio Caption: Annotated images from Flickr paired with human-recorded
audio descriptions [119].

SpokenCOCO: Images from the COCO dataset with spoken captions describing the
visual content [80].

These datasets serve as fundamental resources, each emphasizing a specific aspect
of the Image-to-Speech paradigm. A comparison of Image-to-Speech datasets is shown
in Table 3. They enable the training and evaluation of models aimed at converting visual
data into comprehensive auditory descriptions, catering to diverse scenes, objects, and
contextual information.

Table 3. Comparison of Image-to-Speech datasets.

Dataset Source Volume of Spoken Captions Purpose (Usage)

Places Audio Captions [117] Places 205 image dataset Over 400k Image-to-Speech tasks, scene
understanding

Spoken ObjectNet [118] ObjectNet dataset 50,273 Image-to-Speech tasks, object
recognition

Localized Narratives [104] MS COCO, Flickr30k,
ADE20K, Open Images 849,000 + 671,000 Research at the interface of

vision and language

Flickr Audio Caption [119] Flickr 8k 40,000 Image-to-Speech tasks,
diverse image descriptions

SpokenCOCO [80] MS COCO Approximately 600,000 Image-to-Speech tasks,
diverse image descriptions

5. Conclusions

To summarize, the article examines the complex process of converting images to audio
descriptions in the fields of image captioning, Text-to-Speech synthesis, and Image-to-
Speech conversion. While the focus was primarily on generating audio descriptions from
visual data, a brief review of the inverse process, known as “Text-to-Image generation”, was
also conducted. The key findings highlight the variety of methodologies used, ranging from
traditional encoder–decoder architectures to advanced techniques involving transformers
and adversarial learning. The study of datasets such as MS COCO, LibriTTS, and Localized
Narratives highlights their key role in training and evaluating models for image captioning
and Text-to-Speech synthesis. In addition, the discussion of the tasks of directly converting
images into speech and generating images from textual descriptions reveals promising
developments in this rapidly growing field.

The value of the conversion coefficient of images into audio descriptions for the
future is huge. The integration of advanced technologies, including transformer models
and neural networks, suggests a move towards more natural, contextually rich sound
descriptions. The emergence of direct Image-to-Speech tasks opens up new opportunities
for creating comprehensive and intuitive auditory representations of visual content. This
evolution has significant implications for accessibility, improving the user experience for
people with visual impairments, and expanding the scope of Artificial Intelligence (AI)
applications in various fields.

To move this field forward, researchers are encouraged to explore new architectures
that take advantage of transformer models and neural networks for more accurate and
contextually rich transformation of images into audio descriptions. As the tasks of direct
Image-to-Speech conversion gain momentum, there is a need for data sets specially de-
signed for this purpose, reflecting the nuances of translating visual information into natural,
expressive auditory descriptions.



Electronics 2024, 13, 1726 21 of 25

In addition, interdisciplinary collaboration between Computer Vision and Natural Lan-
guage Processing communities can contribute to a holistic understanding of the challenges
and opportunities of converting images into audio descriptions. Ethical considerations, es-
pecially in datasets and models, should be the focus to ensure the responsible development
and implementation of AI systems.

In conclusion, the transition from images to audio descriptions is constantly evolving,
promising a future in which AI systems seamlessly transform visual content into mean-
ingful and inclusive auditory experiences. By solving current problems and exploring
innovative approaches, this area can make a significant contribution to both technological
progress and social well-being.
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