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Abstract: Edge devices employing federated learning encounter several obstacles, including (1) the
non-independent and identically distributed (Non-IID) nature of client data, (2) limitations due to
communication bottlenecks, and (3) constraints on computational resources. To surmount the Non-
IID data challenge, personalized federated learning has been introduced, which involves training
tailored networks at the edge; nevertheless, these methods often exhibit inconsistency in perfor-
mance. In response to these concerns, a novel framework for personalized federated learning that
incorporates adaptive pruning of edge-side data is proposed in this paper. This approach, through a
two-staged pruning process, creates customized models while ensuring strong generalization capa-
bilities. Concurrently, by utilizing sparse models, it significantly condenses the model parameters,
markedly diminishing both the computational burden and communication overhead on edge nodes.
This method achieves a remarkable compression ratio of 3.7% on the Non-IID dataset FEMNIST,
with the training accuracy remaining nearly unaffected. Furthermore, the total training duration is
reduced by 46.4% when compared with the standard baseline method.

Keywords: federated learning; personalized models; adaptive model pruning; Non-IID; sparse
models

1. Introduction

Privacy protection, shortened user query times, and personalized services are driv-
ing the deployment of neural networks from central servers to edge devices. Federated
learning (FL) is a distributed machine learning method that operates under the premise
of privacy protection [1]. However, conventional federated learning performs well only
under the assumption of independent and identically distributed (IID) data, showing poor
performance for Non-IID data [2]. Furthermore, the increasing complexity of deep neural
network structures poses bottlenecks for device computing power and communication,
making it challenging to migrate to edge computing nodes [3]. One-shot pruning, which
significantly reduces model parameters during initial training, allows the model to be
suitable for resource-constrained computing nodes. The combination of model pruning and
personalized learning streamlines network structures, improves computational efficiency
through sparse operations, reduces memory usage, and better caters to the lightweight
deployment needs of edge devices like smartphones.

While there is considerable research on federated learning and model pruning indi-
vidually, the integration of the two is limited. Current methods primarily focus on pruning
the global model without addressing Non-IID issues in practical applications. Existing
personalized learning approaches, such as clustering [4–6], knowledge distillation [7–9],
and meta-learning [10,11], incur additional computational costs and still exhibit unstable
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performance in resolving Non-IID problems. Existing pruning methods [12–14] need train-
ing to identify critical structures, providing no advantage in swiftly discovering winning
lottery tickets [15].

To address Non-IID, computational, and communication bottleneck challenges, this
paper proposes a personalized federated learning method with efficient adaptive prun-
ing based on edge-side data. The model’s training and pruning are divided into two
stages: initialization and adaptive pruning. The key innovations and contributions in this
paper include the following:

• Proposing and implementing a federated learning framework based on personalized
pruning. Existing research combining federated learning and model pruning tends to
focus on pruning the global model on the server, with insufficient discussion on the
heterogeneity of client-side models. This framework uses heterogeneous models to
address Non-IID problems while achieving good generalization effects;

• Introducing a mask decision algorithm based on internal layer characteristics, enabling
the fastest discovery of winning lottery tickets and reducing the time cost of one-shot
pruning in the initialization stage to one-tenth of the baseline method [16];

• Utilizing sparse models for effective parameter compression, significantly reducing
the computation and communication overhead of edge nodes. With almost unchanged
model accuracy, our method achieves a model compression ratio far below the baseline
method (3.8%) and a 46.4% improvement in training speed compared to the baseline
method [16].

2. Related Works
2.1. Personalized Federated Learning

FedAvg, proposed by McMahan et al. [17] in 2017, has been the prevailing approach
in federated learning. However, experimental findings suggest that data heterogeneity no-
tably hampers the convergence speed and accuracy of the FedAvg model, particularly in
the case of highly imbalanced Non-IID datasets [18]. Non-IID distributions may involve
label skew, feature skew, or quality skew [19]. Currently, there has been considerable re-
search on addressing this heterogeneity in training data, as discussed in papers [4–11,20–22].
Ma et al. [2] outlined various methods for tackling the Non-IID problem, including data-based
methods [20] such as data sharing, enhancement, and selection; model-based methods [21,22]
such as redesigning model update and aggregation as well as various optimization methods;
algorithm-based methods [10,11] such as meta-learning, multi-task learning, and lifelong learn-
ing; and framework-based methods [4–9] such as clustering learning, knowledge distillation,
and Base + Personalization layers.

To solve the Non-IID problem, Chen et al. [20] proposed representation augmentation
algorithm FRAug to perform client-personalized augmentation in the embedding space
to improve the training robustness against feature distribution shift. Vahidian et al. [23]
proposed an approach for a personalized global model to address the challenges posed
by heterogeneous and Non-IID data distributions. Ghari et al. [24] proposed a personal-
ized federated learning approach based on the random feature (RF) approximation for
multi-kernel learning and mathematically demonstrated its effectiveness in handling het-
erogeneous data.

However, personalized federated learning still faces challenges such as performance
instability [6] (most of the time, personalized model performance still lags behind the global
model) and higher computational complexity.

2.2. Model Pruning

The lottery ticket hypothesis (LTH) proposed by Jonathan et al. [15] states that a
randomly initialized dense neural network contains a highly sparse subnetwork, known as
winning tickets, capable of achieving superior performance when trained independently.
These winning tickets can be unearthed through iterative or one-shot pruning methods,
where parameters with the smallest magnitudes are systematically removed [25]. Since its
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inception, LTH has garnered significant attention and been extensively studied [12,25–27].
Zhang et al. [12] not only employed dynamical systems theory and inertial manifold theory
to theoretically substantiate the efficacy of the lottery ticket hypothesis, but also proposed a
practical, lossless pruning solution. In order to reduce the time consumption of the iterative
train–prune–retrain process associated with LTH, researchers have explored methods to
identify winning tickets early in the training process. You et al. [26] introduced Early-Bird
(EB) tickets in DNNs, which emerge very early in training, and used mask distance to draw
EB tickets. Building upon the EB strategy, Kim et al. [27] introduced Early-Time (ET) tickets
in SNNs and established a stopping criterion for training based on the evaluation of KL
divergence between class prediction distributions at various time intervals.

There are also filter pruning [13] and one-shot pruning methods [28]. As for methods
that combine model pruning and federated learning, Jiang et al. [16] introduced PruneFL,
a two-stage pruning framework combining with federated learning to achieve efficient
training. Huang et al. [29] proposed FedTiny, which incorporates adaptive batch normaliza-
tion (BN) selection and progressive pruning to mitigate bias in coarse pruning and to reduce
memory consumption in finer pruning. This method selects a less biased initial coarse-
pruned model by comparing BN measurements updated from clients, while our approach
achieves global mask determination with minimal computational cost. Jiang et al. [30]
introduced the Complement Sparsification (CS) algorithm, involving collaborative pruning
at both server and clients. While similar to our approach in Section 3.3, we utilize local
complementary aggregation for personalized model generation. Additionally, Deng et al.
presented TailorFL [31], tailoring personalized submodels considering resource capability
and local data distribution to enhance personalization performance amid system and data
heterogeneity.

This method focuses more on achieving performance on heterogeneous devices, while
our approach emphasizes balancing model accuracy and training time.

In summary, the current approach can also be optimized in the following aspects:

• Pruning methods designed to accelerate training speed often sacrifice significant
accuracy, failing to strike a balance between speed and precision;

• Simulations based on a single-machine approach to federated learning may not accu-
rately reflect the actual performance, disregarding communication costs in distributed
execution environments. This discrepancy between simulated results and real-world
performance could be substantial;

• Conventional pruning methods find it challenging to protect crucial weights (winning
ticket), while LTH-based pruning methods incur significant computational costs,
failing to strike a balance between computational costs and pruning effectiveness.

3. Personalized Federated Learning Algorithms with Edge-Side Pruning

To address the aforementioned challenges in practical federated learning, this section
introduces a personalized federated learning framework with edge-side pruning. Through
pruning on the edge, local model structures that align with the features of the local data are
obtained, thereby meeting the personalized requirements. Additionally, decision-making
from personalized models assists the central server in filtering out more important features
extracted from convolutional networks, thereby addressing the performance degradation
issue caused by Non-IID data.

3.1. Preliminaries

In the overall algorithm flow, federated learning is primarily divided into two stages:
the initialization stage and the adaptive pruning stage. This two-stage pruning framework
is derived from the work of Jiang et al. [16]. The process begins with the initialization
phase, where clients perform one-shot pruning based on local feature data. The server
then uses the pruning results to decide on potential winning lottery tickets. Subsequently,
in the adaptive pruning stage, local clients adjust the pruning based on training outcomes,
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either removing or adding back some weights until a certain level of balance is achieved.
The main operational process of the system is illustrated in Figure 1.

Figure 1. Overall workflow.

The parameter symbols and their corresponding meanings used in this system are
listed in Table 1. In this context, the client cn trains a local model θn on the local dataset
Dn, and its model parameters can be equivalently expressed as ωn(k) ⊙ mn(k). Here,
mn(k) represents a boolean tensor with the same shape as the weights in a given layer.
The acquisition and utilization of mn(k) is a focal point in this section.

Table 1. Preliminaries.

Notation Definition

⊙ Hadamard product

⊕ binary OR operation

n, N client index, total number of clients

k, K global training round, global epochs

θn local model for client n

θs(k) server model to client in k-th iteration

Dn local dataset for client n

ωn(k) param. weight for client n in k-th iteration

mn(k) param. mask for client n in k-th iteration

pn proportion of each client in the aggregation

thres mask/weight filtering threshold

gn(k) param. gradient for client n in k-th iteration

pos(g) index of a particular gradient

density(m, θ) function to calculate sparse model density

L(ω) loss function
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3.2. Adaptive Pruning for Local Training

In the federated learning process, the global model is aggregated from individual
client models, and the computation of the global model follows the principles outlined by
the following formula:

θs = arg min
mn ,ωn

1
n ∑

n
pnL(ωn) (1)

The performance of the global model is closely related to the performance of client
models. According to Equation (1), it can be assumed that, when the loss of each client
decreases, the aggregated global model loss will also decrease. Model pruning can be
employed to facilitate the rapid convergence of the model, necessitating the identification
of a suitable criterion for model pruning. One commonly used method involves performing
a Taylor expansion on the loss function L(ω):

δL = L(ωn(k + 1))− L(ωn(k))

= ∑
i

giδωi + ∑
i,j

1
2

Hi,jδωiδωj + O(ω3) (2)

gi =
∂L
∂ωi

, Hi,j =
∂2L

∂ωi∂ωj
(3)

In deep learning, it is impractical to compute the Hessian matrix Hi,j in each training
cycle due to the computational requirements (O(N2

ω) complexity, where N refers to param-
eter size). To simplify computations, the focus is primarily on the first term in Equation (2).
During model pruning, δωi represents all the weights in the model and can be expressed
using the following formula:

δωi = αkgn(k + 1)⊙ mn(k + 1) (4)

Therefore, it can be deduced that δL ≈ ∑i giδωi = αk ∑i g2
i (k). Therefore, we can

conclude that the rate of loss reduction in the model is primarily correlated with the
gradient information gi, and, the larger the retained gi, the more quickly the loss decreases.
This establishes the criteria in model pruning, determining whether a particular weight
should be pruned in the current pruning iteration.

According to the lottery ticket hypothesis [15], there exists a sparse subnetwork for
every model, and training this subnetwork does not compromise on time and accuracy
compared to the complete model. To quickly identify the winning lottery ticket in the ini-
tialization stage, initial pruning is performed on the client side. By horizontally comparing
the masks uploaded by various clients to the server, not only can the “winning tickets” be
more accurately filtered out, but the process is also faster. The initialization stage workflow
is shown in Figure 2.

Figure 2. Initialization stage.
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During the initialization phase, clients perform initial pruning on their local data. This
step immediately removes some redundant structures from the model, compressing the
model size. Starting training with a lightweight model from the beginning can effectively
reduce the time and computational costs of training. This process relies entirely on user
data on the client side, making it personalized from the start. After initial pruning, each
client sends the pruned weights and masks to the server. The server then decides the lottery
ticket network and sends it back to the clients.

Various methods were employed to decide the global sparse network. One simple
decision method is to set thresholds for parameters. For a particular weight, if the number
of clients retaining that weight exceeds the threshold, the weight is retained. The calculation
method is shown in the following formula:

ms = (∑
n

mn) > thresmask (5)

In addition to this method, an approach based on the distinctive characteristics of each
layer in the model is employed. Different methods are designed for selecting the lottery
ticket network at each layer. The process is illustrated in Algorithm 1. This method not
only safeguards specific weights, such as those in the input and output layers, but also
accelerates the identification of the lottery tickets, typically within three pruning rounds.
The Layerwise Pruning algorithm prunes really quickly: if the algorithm loops for over five
iterations, the model will become too sparse to train, so it is appropriate to set thresdensity
close to the density of the model after the algorithm loops for two or three iterations.

Algorithm 1 Layerwise Pruning

1: terminate = False
2: while not terminate do
3: clients do local pruning using Algorithm 2
4: clients send mask mn(k) to the server
5: for mn,layer in mn(k) do
6: if layer is input layer or output layer: then
7: ms,layer = (∑n mn,layer) > thresmask
8: else
9: ms,layer = m1,layer

10: for n=2 to N do
11: ms,layer = ms,layer ⊙ mn,layer
12: end for
13: end if
14: end for
15: density(ms; θs) =remained nodes/all nodes
16: terminate = density(ms; θs) < thresdensity
17: end while
18: return ms

Upon entering the adaptive pruning stage, a small sparse model is obtained on the
client side. For clarity, in the pruning process, we refer to the finest granularity of pruning
as “nodes.” Here, the deployed local pruning method is a combination of magnitude
pruning and first-order pruning. From the previous derivation (Equation (1)–(4)), it can be
deduced that δL ≈ αk ∑i g2

i (k). The sum of squared gradient value g2
i is a direct influencing

factor for rapidly reducing loss. Therefore, a three-step local pruning method is introduced,
as is shown in Figure 3: Firstly, the nodes with absolute values smaller than thresweight are
pruned, while protection is initially applied to nodes with larger absolute weight values;
Secondly, the formerly pruned nodes and the newly pruned nodes together make the
selection set; Thirdly, recover those nodes with relatively high gradients in the selection
set. By doing this, a balance has been achieved between considering magnitude and
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squared gradients. The local adaptive pruning algorithm workflow is primarily outlined in
Algorithm 2.

Figure 3. Local pruning algorithm.

Algorithm 2 Local Pruning

1: m̂n(k) = m̄n(k)⊕ (ωn(k) < thresweight)
2: mn(k) = ωn(k) ≥ thresweight

3: Selection Set G = {g2
j | gj in gn(k)⊙ m̂n(k)}

4: D = DecreasingHeapSort(G)
5: comp = average(D) = 1

|D| ∑D g2
j

6: G = D
7: for g2

j in G: do
8: if g2

j > comp : then
9: m̂n(k, pos(g2

j )) = 1

10: D ∪ g2
j

11: comp = average(D)
12: else
13: m̂n(k, pos(g2

j )) = mn(k, pos(g2
j ))

14: end if
15: end for
16: mn(k + 1) = m̂n(k)
17: return mn(k + 1)

Therefore, in each subsequent pruning iteration, the adaptive pruning algorithm will
either remove or reintroduce some nodes based on their importance. The selection is made
among nodes with small absolute weights and nodes that have already been pruned. In this
process, to avoid mistakenly pruning important nodes, pruned nodes with higher g2

i may
be reintroduced during the iteration. This approach makes it easier to recover winning
tickets when they are mistakenly pruned during the process, thus mitigating any potential
impact on model performance.

Because the gradient distribution of the model is unpredictable, it is difficult to decide
on a threshold for filtering squared gradients g2

i beforehand. Therefore, employing an
algorithm that can autonomously determine a suitable threshold for squared gradients is
advantageous. In the function for local pruning, the set D initially equals the union of all the
squared gradients of the entire selection set. As max(D) is repeatedly included back into D,
the average of D becomes larger. Meanwhile, max(D) gradually decreases in descending
order until they converge at a critical point. Through this approach, there is no need to set
a threshold manually, as the function will automatically determine the threshold.
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By combining the initial pruning described above with subsequent adaptive pruning
methods, the model’s size can be significantly reduced, its training speed can be accelerated,
and a dynamic balance in the pruning process can be achieved after several rounds.

3.3. Federated Learning Method based on Adaptive Pruning

In traditional federated learning approaches, both server and client models share
the same model structure. While this facilitates model aggregation, it compromises per-
sonalized features. To address the need for personalized models and cope with diverse
client data, individualized pruning is applied at each client during the federated learning
process. Each client submits personalized sparse parameters to the server, as illustrated in
the workflow in Figure 4.

Figure 4. Personalized federated learning workflow.

The method involves the following steps:
Step 1: After receiving models uploaded by clients, the server aggregates personalized

parameters from each model and sends the aggregated result, the global model, to all
clients. The aggregation process can be represented by Algorithm 3. Generally, thresmask is
chosen to be around N/2;

Step 2: Clients receive the global model and load it into local caches. Due to the adop-
tion of personalized pruning strategies, the sparse structure of local models differs from the
global model. To address the issue of merging parameters with different sparse structures,
a set of dense tensors is cached locally. These tensors are used to receive and merge local
parameters with global model parameters, as illustrated in the following formula:

ωlocal = ωs(k)⊙ ms(k) + ωn(k)⊙ m̄s(k) (6)

With this arrangement, the client would use the updated global model ωs(k) for
the weights included in both the global and local masks (i.e., in ms(k) ⊙ mn(k)), while
retaining the previous local model for the remaining of the locally significant weights (in
m̄s(k)⊙ mn(k));

Step 3: After receiving global parameters from the server, local training is conducted,
using the merged tensors to obtain new model parameters, which can be represented as
ωn(k + 1) = LocalTrain(ωlocal ⊙ mn(k)). In a pruning round, the pruning algorithm from
Algorithm 3 is executed after local training. Usually, the pruning frequency is set to once
per 50 or 100 local training epochs. After obtaining the resulting new mask mn(k + 1),
multiply it with the model parameters to obtain ωn(k + 1)⊙ mn(k + 1), which is then sent
to the server.
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Algorithm 3 Global Merge Algorithm

1: for n = 1 to N do
2: wn(k) = ωn(k)⊙ mn(k) + ωs(k)⊙ m̄n(k)
3: ∆ωn(k) = wn(k)− ωs(k)
4: end for
5: ∆ϖ = ∑n pn∆ωn(k)
6: ωs(k + 1) = ωs(k) + ∆ϖ
7: ms(k + 1) = (∑n mn) > thresmask
8: return ωs(k + 1)⊙ ms(k + 1)

This approach enables personalized pruning federated learning with different sparse
model structures on each client. While achieving the flexibility to aggregate various model
parameter shapes, this method also increases the computational requirements on local devices.

4. Experimental Results

All experiments were conducted using one central server (NVIDIA Tesla V100-SXM2
GPU) and five client devices (NVIDIA GeForce RTX 2080 GPU). Both the central server and
client CPUs were Intel(R) Xeon(R) Gold 6230 CPUs @ 2.10 GHz, with 80 cores. The exper-
iments utilized the FEMNIST Non-IID dataset for practical testing in federated learning.
The dataset consists of 193 different handwriting fonts, each from a different writer, with
28 × 28 images per writer categorized into 62 classes. The 193 writers were divided into
5 groups based on the number of clients (the first 4 groups with 38 writers each, and the
5th group with 41 writers), forming a Non-IID training set. thresmask is set to 4 in initial
pruning and 3 in adaptive pruning; thresweight is set to prune 30% of the nodes.

We employed a two-layer convolutional network (conv2) for adaptive pruning experi-
ments. The control groups included the PruneFL Prototype method provided by Jiang et al,
which is part of the work in paper [16], and the conv2 model with only initial pruning. Due
to the current lack of robust support for sparse computation on GPUs, the entire pruning
process was primarily conducted in a CPU environment. To simplify, we later refer to the
PruneFL prototype algorithm as simply ’PruneFL’.

4.1. Pruning Structural Evaluation

To assess the preservation of pruned nodes across various client models, we take a
specific layer of the model as an example. We visualize the model’s mask by rearranging
the parameters into a two-dimensional representation, creating a binary image based on
their 0–1 distribution. In the visualizations, we observe significant differences in the masks
formed after pruning on different clients due to the diverse distributions of client data.
Conversely, similar data distributions lead to more analogous masks.

As shown in Figure 5, masks in Figure 5a,b are the results of pruning based on data
from two different writers. After the same pruning rounds, Figure 5a achieves a 4.7%
node retention rate, while Figure 5b has only 12.2%. Individual writers exhibit stronger
personalized features, resulting in significant differences in the generated masks. On the
other hand, Figure 5c,d are pruned based on two sets of non-overlapping data from multiple
writers. As the personalized features are less distinct, the generated masks are more similar
(node retention rates of 8.4% and 8.6%, respectively).

Furthermore, although pruning based on a single client (PruneFL) has some effect,
it is not effective in filtering out the most important lottery tickets, as shown in Figure 6.
The pruning algorithm based on the mean of gradients is more prone to cutting off points
with outlier small gradient values. Pruning on a single client can achieve relatively low
pruning ratios after multiple iterations, but it does not effectively eliminate scattered noise
points with high gradient values in the mask. These noise points are mostly generated by
randomness and correspond to unimportant textures. These weights not only interfere
with the model’s primary tasks but also consume computational resources. By integrating
mask information from various clients, it becomes easier to discern the model’s effective
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structure. The masks generated by the Layerwise Pruning method are shown in Figure 7. It
can be observed that this method has essentially removed all the noise points in the mask,
further reducing model complexity.

Figure 5. Comparison of mask binary graph from different clients. (a,b) are pruned based on
data from two different writers. (c,d) are pruned based on two sets of non-overlapping data from
multiple writers.

Figure 6. Ineffective filtering with pruning on a single client.

Figure 7. Mask by Layerwise Pruning.
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4.2. Pruning Performance Evaluation

The model sizes and initial pruning times resulting from different pruning schemes
are presented in Table 2. The variation in model training accuracy across training epochs
is depicted in Figure 8, while Figures 9 and 10 illustrate the changes in model size and
training time over the course of epochs, respectively. “Conventional” here represents a
method that undergoes only initial pruning without subsequent iterative pruning. Table 3
provides a performance comparison of various federated learning algorithms that combine
model pruning, while Figure 11 contrasts the stability of performance among three adaptive
pruning methods.

Table 2. Results of various pruning schemes.

Method Rounds Retain Pct. Time Cost Final Pct.

PruneFL [16] 16 8.6% 306.2 s 13.4%

Threshold Pruning (ours) 1 71.7% 39.7 s 19.1%

Layerwise Pruning (ours) 2 15.7% 72.3 s 3.7%

Figure 8. Model accuracy vs. global epochs.

Figure 9. Model size vs. global epochs.

From Figure 8, it can be observed that, even with different initial pruning strategies,
the final models achieve similar levels of accuracy. The Threshold Pruning method has the
highest proportion of initially pruned and retained nodes (71.7% and 19.1%, respectively),
exhibiting the fastest increase in model accuracy across epochs. However, as indicated
in Figure 10, it also has the slowest training speed. While Layerwise Pruning retains a
slightly higher proportion of nodes in the initial pruning phase compared to the PruneFL
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method (15.7% vs. 8.6%), it demonstrates the highest efficiency in initial pruning. Layerwise
Pruning achieves 15.7% in only 2 pruning rounds, as opposed to PruneFL, which requires
16 rounds to reach 8.6%. Moreover, the final proportion of retained nodes in Layerwise
Pruning is significantly lower than in PruneFL (3.7% vs. 13.4%). Furthermore, Layerwise
Pruning exhibits the second-fastest increase in model accuracy across epochs and the fastest
training speed among the three adaptive pruning methods.

Figure 10. Training time vs. global epochs.

Figure 11. Stability of several adaptive pruning methods.

In Table 3, various federated learning methods incorporating pruning are compared.
Figure 11 shows the accuracy vs. training epochs of some of the algorithms. Although the
PruneFL algorithm reaches 70% and 80% accuracy in fewer training epochs, the time to
achieve 70% and 80% accuracy is actually longer due to the longer time consumed by
the initial pruning algorithm. Our method also surpasses iterative pruning in training
speed. Additionally, our method demonstrates a significantly higher level of stability
compared to Iterative Pruning, as illustrated in Figure 11, where Iterative Pruning shows
irregular performance drops. Contrasted with the one-shot pruning method SNIP, under the
same pruning ratio control of 3.7%, our method achieves a substantial improvement in
convergence speed, and its performance stability also surpasses SNIP. Compared to the
Conventional FL method without adaptive pruning, our approach introduces only a 6.6%
increase in training time while incorporating an adaptive pruning process. Our approach
achieves client-side pruning at minimal cost while incorporating personalized features,
allowing the model to adapt to various application scenarios and meet the requirements
for edge services.
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Table 3. Performance comparison of several FL Methods combined with pruning.

Methods acc Time for
70% acc/s

Time for
80% acc/s

Convergence
Time/s

Time for
10,000 r/s

Model
Retention

Ratio
Model

Size
Client

Memory
Usage

GPU
Memory

Usage

Layerwise 83.0% 549.97 2210.78 5161.72 13,816.69 3.7% 1760 KB 3.083 GB 1117 MB

PruneFL [16] 82.5% 747.79 3396.00 9277.19 23,766.16 8.6% 3024 KB 3.121 GB 1323 MB

SNIP [28] 84.0% 1419.31 4468.36 9654.30 15,099.10 3.7% 1760 KB \ 7619 MB

Iterative 84.3% 617.71 2036.17 9171.22 15,332.01 3.7% 1760 KB \ 7075 MB

Conventional 82.8% 909.75 3521.44 4586.73 12,959.22 8.6% 3024 KB 2.936 GB 1117 MB

We also conducted experiments to compare with the latest related work. In Jiang et al.’s
work “Complement Sparsification” [30] (referred to as CS below), the authors trained with
10 random users in each communication cycle of FL, simulating a scenario where only a
subset of users participate in training due to resource limitations and network fluctuations
in real FL processes. We replicated this experimental setup. The FEMNIST dataset consists
of data from 193 users, posing experimental challenges with 193 device setups. Therefore,
this experiment was conducted in a simulated environment. Additionally, initial pruning
was stopped when the model sparsity reached 55%, differing from the experimental setup
described earlier. Note that the code for the CS work has not been made publicly available,
and, although both the IC model used in CS and the conv2 model used in this paper are
CNNs, they are not identical. To facilitate better comparison, we designed a vanilla FL
control group using the same model (conv2) as in this paper, similar to CS. The IC model
in CS converged in 500 rounds. Hence, we first compared the performance of our work
and vanilla FL after the first 500 rounds of training. The accuracy vs. communication
rounds plot obtained from our experiments is shown in Figure 12. CS achieved a maximum
accuracy of 74.3% in 500 rounds, slightly lower than the 76.9% of the IC model’s vanilla
FL. Meanwhile, our method achieved an accuracy of 74.6% in 500 rounds, compared to
73.5% for conv2 vanilla FL, demonstrating better performance than vanilla FL in the first
500 rounds.

Figure 12. Model accuracy vs. communication rounds for conv2 trained with 10 random users in
each round.

In addition, although the IC model reached a maximum accuracy of 74.3%. When the
model sparsity exceeded 70%, the accuracy dropped to around 65%. At 80% sparsity, the ac-
curacy dropped to below 60%. In contrast, as is shown in Figure 13, our method achieved
slightly better performance than vanilla FL, even at 84.6% sparsity after 500 rounds, and the
sparsity gradually increased to nearly 90% in subsequent training processes without com-
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promising model accuracy compared to vanilla FL, demonstrating superior performance to
CS in this aspect.

Other recent works mentioned in this paper, such as FedTiny and TailorFL, are not
compared experimentally due to significant differences in experimental settings (such as
dataset, model, and pruning strategies) and the lack of publicly available code.

Figure 13. Model density vs. communication rounds.

5. Conclusions

In the practical application of federated learning, issues such as performance degrada-
tion due to Non-IID data distribution, high communication costs at edge nodes, and in-
sufficient edge computing power have become increasingly prominent. To address these
challenges, this paper proposes a personalized federated learning approach based on
edge-side adaptive model pruning. The federated learning framework contributes in two
ways: first, a novel initial one-step pruning is proposed to significantly reduce the model’s
complexity at the outset, enabling adaptation to the constrained conditions of edge nodes;
second, fine-tuning and gradual pruning based on the personalized distribution of local
data are realized. Additionally, we employ a specially designed aggregation algorithm to
combine model parameters with different sparse structures, ensuring that the global model
maintains good generalization performance. All methods used in this study involve no
operations that transmit user data to other devices, thereby safeguarding user data privacy.
The proposed algorithm achieves a compression of 3.7% of the model size, thereby reducing
communication overhead. The overall training speed is increased by 46.4% compared to
the baseline method, with minimal impact on training accuracy. The methods presented in
this paper can be extended to larger-scale models and more complex scenarios. In future
work, we will investigate the combination of federated learning with personalized pruning
methods in various scenarios.
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