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Abstract: The intelligent reflective surface (IRS) is a novel network node that consists of a large-scale
passive reflective array to obtain a customized reflected wave direction by modulating the amplitude
phase, which can be easily deployed to change the wireless signal propagation environment and
enhance the communication performance under a non-line-of-sight (NLOS) environment, where
location services cannot perform accurately. In this study, a low-rank matrix reconstruction-enabled
fingerprint-based localization algorithm for IRS-assisted networks is proposed. Firstly, a 5G position-
ing system based on IRSs is constructed using multiple IRSs deployed to reflect signals. This enables
the base station to overcome the influence of NLOS and receive the positioning signal of the point to
be positioned. Then, the angular domain power expectation matrix of the received signal is extracted
as a fingerprint to form a partial fingerprint database. Next, the complete fingerprint database is
reconstructed using the low-rank matrix fitting algorithm, thereby considerably reducing the work-
load of building the fingerprint database. Finally, maximal ratio combining is used to increase the
gap between the fingerprint data, and the Weighted K-Nearest Neighbor (WKNN) algorithm is used
to match the fingerprint data and estimate the location of the points to be located. The simulation
results demonstrate the feasibility of the proposed method to achieve sub-meter accuracy in an NLOS
environment.

Keywords: 5G; 6G; intelligent reflective surface; localization; fingerprint; matrix completion

1. Introduction

Currently, society is developing towards the use of information technology and in-
telligence, and location services have become an indispensable need. Location-based
information services have been used in many applications, such as location-based bicycle
sharing, route planning for daily travel, industrial Internet applications, emergency rescue
services, road traffic control, and autonomous driving technology. Considering the increas-
ing demand for location-based services, mobile communication technology-based location
methods have gradually gained attention [1–3]. In recent years, with the continuous devel-
opment of 5G technology [4], many studies based on 5G-related technology localization
methods have emerged [5–13]. Therefore, 5G-based wireless positioning technology has
become a popular topic in current research.

Massive multiple-input multiple-output (MIMO) is an important technology in 5G that
increases the resolution in the angular domain through the arrangement of a multitude of
antenna arrays at the base station, increasing the aperture of the antenna arrays [14,15], and
it achieves better localization results in multipath environments combined with trilateration
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or triangulation-based localization methods [16–19]. However, the measurement computa-
tion of this method requires the cooperation of multiple base stations, thus generating a
large amount of information exchange overhead. To solve this problem, fingerprint-based
localization methods [20] have been developed. The fingerprint localization method first
constructs a fingerprint database required for localization in the offline phase. Subsequently,
the fingerprint user data are matched to the localized signal received in real time with the
data in the fingerprint database in the online phase to obtain the coordinates of the user to
be localized. Traditional fingerprint data include the received signal strength (RSS) [21];
however, the RSS is susceptible to multipath effects, resulting in low localization accu-
racy. By contrast, channel state information (CSI)-based fingerprinting [22–25] contains
more multipath information than RSS, which can improve the accuracy of localization
in multipath environments. In addition, the user can use MIMO technology to obtain
high-resolution multipath characteristics in the angular domain of the channel, which im-
proves the strength of the localization signal. In [26], an angle delay channel power matrix
(ADCPM) was extracted from the MIMO channel as a fingerprint, and the fingerprint com-
pression method and fingerprint clustering algorithm were combined to realize localization.
Consequently, the numerical results verified the reduction in computational complexity
and the ability to locate when using the proposed algorithm. In [27], a deep convolutional
neural network (DCNN) localization algorithm combining an angular delay channel ampli-
tude matrix (ADCAM) as the fingerprint was proposed, and the results confirmed the high
localization accuracy of the algorithm. In [28], a noise reduction strategy was proposed to
improve the accuracy of localization using the sparsity of ADCPM fingerprints. The above
algorithms can solve the problem of low positioning accuracy caused by multipath signals
to a certain extent; however, in the case of a non-line-of-sight (NLOS) path, where direct
communication between the base station and the user is absent, the positioning accuracy
of the above methods is very poor or even impossible. The intelligent reflective surface
(IRS) [29–33], which has received significant attention in recent years, is expected to be the
key to solving the problem of the inability to perform localization in an NLOS environment.

The IRS is a programmable meta-surface consisting of a number of low-cost passive
reflective elements, which is considered one of the key technologies for 5G and for the
realization of wireless smart communication environments towards 6G. Facing the NLOS
environment, the signals transmitted by the user to be located can bypass the obstacles
by means of the intelligent reflection of the IRS [34]. The phase and amplitude of the
signal transmitted by the user to be located can be changed by presetting the reflection
coefficient of the smart reflection element through a digital controller. This ensures that the
signal propagates along the direction of the base station and is eventually received by the
base station [35]. The IRS improves the wireless communication environment by realizing
intelligent control of the wireless communication environment in the above way.

Many studies have analyzed enhancements in IRS for the communication environ-
ment. In [36], the authors established a wireless channel model based on distributed IRS
and proposed a mathematical framework based on the method of moments, analyzed the
communication performance of the model such as spectral efficiency and energy efficiency,
and demonstrated the advantages and disadvantages of the scheme. In [37], the authors
proposed a dual-distributed IRS-assisted communication system that utilizes passive beam-
forming to optimize the deployment locations of IRSs, thereby maximizing the worst-case
Signal-to-Noise Ratio (SNR) at all locations in the target area. In [38], the authors discussed
the practical role of IRS for 6G-oriented massive MIMO technology, which is expected
to realize all aspects of massive MIMO technology in the upcoming 6G era by exploiting
the low-cost maneuverable performance of IRSs. In addition to this, with the continuous
development of AI technology, research on AI-assisted IRS communication [39] is ongoing.
In [40], a model for IRS communication using deep neural networks was introduced, and
the authors verified that a low bit error rate is still obtained with a low signal-to-noise ratio.
In [41], the authors used federated learning augmented with deep deterministic policy
gradients to optimize IRS deployment and power allocation strategies, and simulations
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showed that the algorithm has better convergence rates as well as optimization performance.
Therefore, it can be seen that IRSs can enhance the performance of the communication
system and improve the communication environment, which plays an important role in
the future development of intelligent communication and has great potential to be applied
in research on positioning technology [42].

Recently, a number of localization techniques have emerged with regard to the use
of IRSs. The authors of [43] investigated the challenges of setting up a fully passive IRS
in a wireless network for positioning and showed that with a sufficient number of IRSs,
conventional positioning protocols can still function with satisfactory accuracy. In [44], the
authors employed a near-field positioning algorithm using large linear IRSs in an NLOS
environment to improve signal coverage, and the results show that the method provides
good positioning accuracy, even in the presence of high blocking rates. In [45], virtual
line-of-sight paths were established using IRSs to maximize the signal reception strength
and achieve complete localization in the near field. In [46], the authors used an IRS for
RSS-based multiuser positioning and improved the positioning accuracy by amplifying
the RSS distribution difference. Although the above literature uses IRSs to improve the
wireless signal communication environment and increase the positioning accuracy, it only
considers the positioning problem in single-antenna mode and fails to take advantage of
MIMO technology.

This study proposes an intelligent reflective surface low-rank matrix reconstruction
fingerprint localization (IRS-RFL) algorithm, utilizing the angular-domain power expecta-
tion matrix (APEM) as the fingerprint data to leverage the high spatial resolution provided
by MIMO technology. In addition, the low-rank matrix fitting (LMaFit) reconstruction
algorithm was used to reconstruct the fingerprint database, which solved the problem of
the large workload required to build a fingerprint database. Finally, the effectiveness of the
proposed positioning scheme was verified through a simulation.

The main contributions of this study are as follows:

(1) First, this study addresses the problem of a no-direct-line-of-sight path between
the base station and the user to be located by constructing an intelligent reflective
surface (IRS) 5G positioning system, which consists of a multi-antenna base station
and multiple IRSs for signal reflection, and the signal from the user to be located is
reflected by the IRSs and reaches the base station. Therefore, this system overcomes
the problem that the localization process cannot be performed due to the lack of
line-of-sight (LOS) paths.

(2) Secondly, this study addresses the problem of an excessive workload in fingerprint
database construction and uses the LMaFit algorithm for fingerprint database recon-
struction. In the fingerprint database construction stage, the fingerprint data consist
of APEM, and part of the fingerprint reference points are used to construct the local
fingerprint database; then, the complete fingerprint database is reconstructed by its
combination with the LMaFit algorithm. This method requires fewer fingerprint
data to construct the complete fingerprint database using mathematical operations to
reduce the workload of fingerprint database construction.

(3) In addition, this study increases the gap between fingerprint data by using the max-
imum ratio combination method, which means that the fingerprint data of each
fingerprint reference point are multiplied by their corresponding signal-to-noise ratio
(SNR) as the weight, and this facilitates the matching of the data to be compared of
the point to be located with the fingerprint data in the fingerprint database in the
online matching stage.

(4) Finally, the simulation results show that the proposed IRS-RFL algorithm achieves
sub-meter localization accuracy in a large NLOS complex environment, which is a
significant improvement over the traditional fingerprint localization algorithm, thus
confirming the good localization effect of the algorithm.
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2. Materials and Methods
2.1. System Model

The 5G positioning system with IRSs is shown in Figure 1 and comprises a base station,
IRSs, and the user to be located. It was assumed that there was only one base station in
the system, denoted by BS, with a uniform horizontal linear arrangement of W antennas,
denoted by, AN =

{
AN1 · · · ANw · · · ANW

}
, where the distance between the

antennas is d. The user to be located in the system was denoted as US and configured with
a single antenna. The system was assumed to be equipped with M (although, theoretically,
an IRS can also continue to localize, in order to improve the accuracy of localization as
well as to compare it with TOA/TDOA and other localization methods in subsequent
studies, so here we set M ≥ 3) IRSs, denoted as IRS =

{
IRS1 · · · IRSm · · · IRSM

}
,

where IRSm denotes the m-th IRS, each of which comprised K reflective units arranged in a
uniform horizontal linear pattern, denoted as

{
IRSm,1 · · · IRSm,k · · · IRSm,K

}
. In

addition, the distance between the reflective elements is d. In Figure 1, we use “. . .. . .” to
denote multiple IRSs to simplify the representation in the figure, and the brown and the
blue dotted line with arrows denote the direction of signal transmission from US to IRS
and IRS to BS, respectively.
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Figure 1. 5G positioning system with intelligent reflective surfaces.

Assuming that there was no direct signal path between the user and base station, the
user could communicate with the base station through an IRS. The signals received by the
base station in this system from the user were divided into two stages: initially from the user
to the IRS and subsequently from the IRS to the base station. The two-stage channel was
considered a Rayleigh fading channel, and the channel fading coefficient α was a complex
Gaussian random variable with zero mean and σ2

α variance, that is, α ∼ CN
(
0, σ2

α

)
.

2.1.1. Stage of US − IRSm

The stage from US transmitting the signal to IRSm is referred to as US − IRSm, and a
signal propagation schematic of this phase is shown in Figure 2.
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Figure 2. Signal propagation schematic of the US − IRSm stage.

As shown in Figure 2, the channel from US to the kth reflection element of the mth
IRS (IRSm) is denoted as h1m,k. Its unit is dB, and the specific expression is shown in
Equation (1).

h1m,k =
Lm,k

∑
lm,k=1

√
β1m · α1lm,k

· e−j(k−1)2π d
λ cos (ϑlm,k

), (1)

where Lm,k is the total number of propagation paths (subsequently, the term “propagation
paths” will be shortened to “paths”) from US to the kth reflecting element of IRSm, β1m
is the large-scale decay factor from US to IRSm, α1lm,k

is the path fading coefficient of the
lm,kth path, λ is the signal wavelength, and ϑlm,k

is the arrival angle of the path lm,k in a
range of [0, π].

We assume that the total channel in the stage of US − IRSm is H1m ∈ CK×1, where
CK×1 denotes the complex matrix of K rows and 1 column, as shown in Equation (2).

H1m =
[
h1m,1 · · · h1m,K

]T (2)

2.1.2. Stage of IRSm − BS

It was assumed that the stage from IRSm reflected the signal to BS, which is referred
to as the stage of IRSm − BS, and a signal propagation schematic of this phase is shown in
Figure 3.
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As shown in Figure 3, the channel from the kth reflection element of the mth IRS
(IRSm) to the wth antenna of BS(ANw) is denoted as h2m,k,w. Its unit is dB, and the specific
expression is shown in Equation (3).

h2m,k,w =
Cm,k,w

∑
cm,k,w=1

√
β2m · α2cm,k,w · ej2π d

λ [(k−1) cos (φcm,k,w )+(w−1) cos (θcm,k,w )] (3)

where Cm,k,w is the total number of paths from the kth reflecting element of IRSm to the
wth antenna, β2m is the large-scale decay factor from IRSm to BS, α2cm,k,w is the path fading
coefficient of the cm,k,wth path, λ is the signal wavelength, θcm,k,w is the arrival angle of the
path cm,k,w, and φcm,k,w is the launching angle of the path cm,k,w; they are all in a range of
[0, π].

We assume that the total channel in the stage of IRSm − BS is H2m ∈ CW×K, where
CW×K denotes the complex matrix of W rows and K columns, as expressed in Equation (4).
The detailed expression of Equation (4) is shown in (A1) of Appendix A.

H2m =

 h2m,1,1 · · · h2m,K,1
...

. . .
...

h2m,1,W · · · h2m,K,W

 (4)

Therefore, the channel through which the signal emitted by US arrived at the wth
antenna of BS via the kth reflector element of IRSm is denoted as hm,k,w. Its unit is dB, and
the specific expression is shown in Equation (5).

hm,k,w
= h1m,k · Ξm,k · h2m,k,w

=
√

βm
Lm,k

∑
lm,k=1

α1lm,k

Cm,k,w

∑
cm,k,w=1

α2cm,k,w ηm,ke
jωm,k+j2π d

λ {
(k − 1)[cos (φcm,k,w )− cos (ϑlm,k

)]

+(w − 1) cos (θcm,k,w )
}
,

(5)

where βm is the large-scale fading coefficient from US through IRSm to BS, and Ξm,k is the
reflection coefficient of the kth reflection element of IRSm, as expressed in Equation (6).

Ξm,k = ηm,kejωm,k , (6)

where ηm,k denotes the reflection amplitude of the kth reflection element of IRSm. In this
study, it was assumed that ηm,k = 1, so ωm,k ∈ [0, 2π] denotes the reflection phase of the
kth reflection element of IRSm.

Thus, the total channel of IRSm-assisted US communicating with BS can be expressed
as Hm ∈ CW×1, where CW×1 denotes the complex matrix of W rows and one column. This
is expressed as Equation (7). The detailed expression of Equation (7) is shown in (A2) of
Appendix A.

Hm = H2mdiag(Ξm)H1m =

[
K
∑

k=1
hm,k,1 · · ·

K
∑

k=1
hm,k,W

]T

(7)

where diag(Ξm) represents the reflection coefficient matrix of IRSm, expressed as Equation (8).

diag(Ξm) =

ηm,1ejωm,1 0 0

0
. . . 0

0 0 ηm,Kejωm,K

. (8)

In addition,
diag(Ξm)H1m = diag(H1m)Ξm, (9)
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such that Ym = H2mdiag(H1m). Let Ym ∈ CW×K be the cascade channel of US− IRSm − BS.
Consequently, Equation (7) can be rewritten as Equation (10).

Hm = H2mdiag(Ξm)H1m = H2mdiag(H1m)Ξm = YmΞm (10)

where diag(H1m) is expressed as Equation (11)

diag(H1m) =

h1m,1 0 0

0
. . . 0

0 0 h1m,K

. (11)

The cascade channel Ym can be transformed from the spatial domain to the angular
domain using the Discrete Fourier Transform (DFT) estimation method. Let the DFT matrix

at point W be V ∈ CW×W , and let its elements satisfy Va,b = e−j2π
(a−1)(b−1)

W . Then, the
cascade channel Ym is represented in the angular domain as expressed in Equation (12)

Yag
m = VYm, (12)

where V is expressed as Equation (13)

V =


1 · · · 1
...

. . .
...

1 · · · e−j2π
(W−1)(W−1)

W

 (13)

where Yag
m ∈ CW×K is the representation of the cascade channel Ym in the angular domain.

Thus, following the reflection through IRSm, BS received the signal sent by US as
Ym ∈ CW×1, which is expressed by Equation (14). The detailed expression of Equation (14)
is shown in (A3) of Appendix A.

Ym
=

√
ρYag

m Ξms + n′

=
√

ρVYmΞms + n′

=
√

ρVH2mdiag(H1m)Ξms + n′,

(14)

where ρ is the transmit power, Yag
m Ξm is the total channel of US − IRSm − BS, s is the signal

transmitted by US, and n′ is Gaussian white noise with zero mean and σ2 variance.

2.2. IRS-RFL Algorithm
2.2.1. Fingerprint Database Construction

Suppose N fingerprint reference points were uniformly distributed in the IRS-RFL sys-
tem. Let the coordinate value of the nth fingerprint reference point be LOCn = (xn, yn, zn).
Then, the signal emitted from this point after reflection by IRSm is received by BS and
expressed as YmUS ∈ CW×1. The corresponding fingerprint data f′n can be represented by
Equation (15)

f′n = [fp1n, . . . , fpmn, . . . , fpMn], (15)

where fpmn = [E(|Ymn|)]T , |·| denotes the modulo operation for each item in the matrix,
E(·) denotes the expectation of the matrix, and [·]T denotes the transpose of the matrix.
Therefore, f′n is a one-dimensional row vector in the column M×W, which, when combined
with the coordinate value of the point forms the complete fingerprint fn of the point, is
expressed as (16)

fn =
[
LOCn f′n

]
. (16)
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Let LOC = [LOC1, . . . , LOCn, . . . , LOCN ]
T denote a summary of the coordinate values

of the N fingerprint reference points, which are expressed in Equation (17)

LOC =



LOC1
...

LOCn
...

LOCN

 =



(x1, y1, z1)
...

(xn, yn, zn)
...

(xN , yN , zN)


N×3.

(17)

F′ =
[
f′1, . . . , f′n, . . . , f′N

]T denotes a summary of the fingerprint data from the N finger-
print reference points, which is expressed by Equation (18)

F′ =

 f′1
...

f′N

 =

 fp11 . . . fpM1
...

. . .
...

fp1N · · · fpMN


N×(M×W).

(18)

Consequently, the constructed fingerprint database F is expressed by Equation (19)

F =
[
LOC F′] =

LOC1 f′1
...

...
LOCN f′N

. (19)

2.2.2. LMaFit Fingerprint Database Reconstruction Algorithm

When building a fingerprint database, the number of fingerprint reference points
is too large, which will lead to a relatively large workload in building the fingerprint
database. Therefore, in order to reduce the workload of building a fingerprint database, in
this study, we used the LMaFit algorithm to build a complete fingerprint database while
only collecting fingerprint data from a partial fingerprint database. The algorithm first
samples the fingerprint database F′, and the number of sampled elements is significantly
smaller than the total number of elements N × (M × W) in the fingerprint database F′. Let
Γ be the set of subscripts of the sampled elements. The reconstructed fingerprint database
X′, which is the reconstructed fingerprint database F′, is obtained following reconstruction
using the LMaFit algorithm in the case of the known fingerprint data corresponding to Γ.

Define GΓ as the projection mapping of the fingerprint database F′ onto Γ.

GΓ
(
F′)

uv =

{
F′

uv, (v, u) ∈ Γ
0, (v, u) /∈ Γ

(20)

According to the matrix reconstruction theory, the reconstructed fingerprint database
X′ satisfies Equation (21).

min rank
(
X′)

s.t. GΓ
(
X′) = GΓ(F′)

(21)

where min denotes the minimization, s.t. denotes the constraint, and rank
(
X′) denotes the

rank of X′. Equation (21) indicates that if there is a unique low-rank matrix X′ satisfying the
above conditions, this matrix is the complete estimation matrix of matrix F′. Considering
that this problem is computationally extremely intensive, the LMaFit algorithm was used
to transform the rank minimization problem in Equation (21) into the following problem:

min 1/2
∥∥URT − I

∥∥2
F−norm

s.t. GΓ(I) = GΓ(F′)
(22)
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Let the rank of matrix F′ be r. We introduce the intermediate matrix I to facilitate the
calculation and introduce two matrices of dimensions N × r and (M × W)× r of U and R
as the matrix to be estimated, that is, X′ = URT .

Equation (22) is nonconvex and can be transformed into the following Lagrange form
for computational convenience:

L(U, R, I, Ω)

= 1/2
∥∥URT − I

∥∥2
F−norm − ⟨Ω, GΓ(I − F′)⟩

= 1/2
∥∥URT − I

∥∥2
F−norm − trace

(
ΩTGΓ(I − F′)

)
,

(23)

where ⟨Ω, GΓ⟩ = ∑a,b Ωa,b(GΓ)a,b is the inner product of matrices, and the matrix Ω is a
Lagrange multiplier that satisfies Ω = GΓ(Ω). As ∥P∥2

F−norm = trace
(
PTP

)
, Equation (23)

can be transformed into Equation (24) as follows:

L(U, R, I, Ω)
= 1

2 trace
((

UTR − IT)(URT − I
))

−trace
(
ΩTGΓ(I − F′)

) (24)

The above equation is differentiated, and the differential equation is set to 0, which
leads to the optimization condition of Equation (22). This can be expressed as Equation (25).

∂L
∂U =

(
URT − I

)
R = 0

∂L
∂R = UT(URT − I

)
= 0

∂L
∂Ω = −GΓ(I − F′) = 0

∂L
∂I = UT(I − URT)− Ω = 0

(25)

Because Ωuv = 0, (u, v) /∈ Γ exists, the final version of Equation (25) can be written as
GΓc

(
I − URT) = 0, where Γc complements Γ.
To solve Equation (25) using the immovable-point iteration method, the first equation

in Equation (25) is transformed as follows:

URTR = IR (26)

This equation can be solved as follows:

U = IR
(

RTR
)+

= I
(
R+

)T (27)

where R+ is the Moore–Penrose pseudo-inverse of R. Matrix U can be updated iteratively
according to (27), and similarly, the matrices I and R can be updated in the iteration using
the remaining conditions of Equation (25).

In the convergence calculation process, the approach of dynamically selecting the step
size for ω at each iteration was adopted as follows. Here, Ei−1(ω) denotes the error matrix
for the last step size equal to the ω iteration, and Ei(ω) is the error matrix for the current
step size equal to ω. Consequently, the error rate was calculated using Equation (28).

σ(ω) = ∥Ei(ω)∥F−norm/∥Ei−1(ω)∥F−norm (28)

In the iterative process, if σ(ω) > 1, the error is not reduced, and the parameter ω is
set to 1 in the next iteration. However, if σ(ω) ≤ 1, the error is reduced in the iterative
process, and the value of the parameter ω in the last iteration was constant. In addition, to
obtain a faster iteration speed, the parameter σ1 could be added in the next iteration, and
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the value of ω could be increased moderately when σ(ω) > σ1. The stopping criterion of
the algorithm is expressed as Equation (29).∥∥GΓ

(
X′

step − F′)∥∥
F−norm

∥GΓ(F′)∥F−norm
≤ error, (29)

where step denotes the number of iterations and error denotes the minimum allowable
error.

Thus, the steps of the LMaFit fingerprint database reconstruction algorithm are as
Algorithm 1.

Algorithm 1 LMaFit Fingerprint Database Reconstruction Algorithm

Input: Fingerprint database F′ set of subscripts of the sampled elements Γ sampled fingerprint
database GΓ(F′), iteration step ω, maximum number of iterations step(ς = 1, . . . , step), allowed
minimum error error, initialization: U, R, I
Repeat:

1. Update the error matrix E using equation Eς+1 = GΓ
(
F′ − UςRς

T).
2. Update the intermediate matrix I using equation Iς+1 = UςRς + ωEς+1.

3. Update the matrix U using equation Uς+1 = ωIς+1Rς
(
Rς

TRς
)−1

+ (1 − ω)Uς.

4. Update the matrix R using equation Rς+1 = ωIς+1
TUς+1

(
Uς+1

TUς+1
)−1

+ (1 − ω)Rς.
Until: The maximum number of iterations step is reached or is less than the minimum allowable
error error.
Output: Reconstructed fingerprint database X′ = URT .

After obtaining the reconstructed fingerprint database X′, the complete reconstructed
fingerprint database X was obtained by merging it with its corresponding coordinates, as
shown in Equation (30).

X =
[
LOC X′]. (30)

2.2.3. Online Matching Positioning Stage

Let the coordinates of US be LOCUS = (xUS, yUS, zUS), and the data to be compared
are f′US = [fp1US, . . . , fpMUS]. The data combined with the coordinates of US and the data
to be compared of US are expressed as Equation (31).

fUS = [LOCUS, fp1US, . . . , fpMUS]. (31)

The reconstructed fingerprint database X′ was obtained in the offline database building
stage, and the online matching and positioning stage employed the maximum ratio [47]
merging concept to multiply the fingerprint data of each fingerprint reference point with
the corresponding SNR. Here, the SNR SNRm denotes the SNR of the channel between US
and BS after reflection through IRSm. Its calculation is given by Equation (32).

SNRm =
∥Hm∥2

σ2 , (32)

where σ2 denotes the average power of the noise.
The data to be compared from the US, combined with the maximum ratio, were

then matched to assess similarity with the fingerprint data in the fingerprint database
using the WKNN algorithm. Euclidean distance was used to measure the similarity of
fingerprints. A larger distance implied lower similarity, whereas a smaller distance implied
a higher similarity. Let Xi = [fp1i, . . . , fpMi] be the ith fingerprint data in the reconstructed
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fingerprint database X. The formula for calculating the similarity between the data to be
compared of US and the ith fingerprint data is:

simi =

√√√√ M

∑
m=1

W

∑
w=1

(fpmi(m, w)SNRmi − fpmUS(m, w)SNRm)
2 (33)

where SNRim is the SNR of BS to the channel of the ith fingerprint reference point after
reflection through IRSm. Following the similarity measurements with all fingerprint data
points in the database, the coordinates [LOC1, . . . , LOCS] corresponding to the S(S ≥ 3)
fingerprint data points with the highest similarity were selected. Subsequently, the WKNN
algorithm was used to assign different weights (weight) to the coordinates correspond-
ing to fingerprint data points with different similarities, which were calculated using
Equation (34).

weights =
1/(sims + ε)

S
∑

s=1
1/(sims + ε)

, (34)

where ε is a small positive number used to avoid a zero denominator. After obtaining
the corresponding weights of the coordinates of the S reference points, the estimated
coordinates LOC′

US of US can be obtained using Equation (35).

LOC′
US=

(
x′US, y′US, z′US

)
=

S

∑
s=1

weightsLOCs
(35)

The localization error e′ was calculated using the Euclidean distance between the
estimated coordinates of US and true coordinates of US, as expressed by Equation (36).

e′ =
√(

xUS − x′US
)2

+
(
yUS − y′US

)2
+

(
zUS − z′US

)2 (36)

3. Experimental Results and Analysis

The MATLAB R2021b simulation platform was used to simulate and verify the pro-
posed IRS-RFL algorithm. The simulation environment is set to 100 m × 100 m × 15 m
three-dimensional space as shown in Figure 4. In this study, the flat fading Rayleigh channel
is used in the simulation verification. The fingerprint data in the set positioning space were
sampled on a grid with a sampling interval of γ = 1 m. The parameters were set as follows:
number of antennas BS of K = 8, spacing d = λ

2 , number of paths C = 3 of BS − IRS,
average power of noise −96 dBm, carrier frequency fq = 3.5 GHz; the total number of
IRSs is M = 9, where the coordinates of IRS1 − IRS9 are (0 m, 75 m, 15 m), (100 m, 0 m,
15 m), (100 m, 100 m, 15 m), (100 m, 50 m, 15 m), (75 m, 100 m,15 m), (0 m, 50 m, 15 m),
(50 m, 0 m, 15 m), (25 m, 100 m, 15 m), (100 m, 75 m, 15 m). And the number of reflective
elements W = 8 of each IRS, and number of paths L = 3 of IRS − US. The large-scale
decay coefficient was βmUS = −86.65 − 20 log10(disIRSm ,US · disBS,IRSm) + χmUS[dB] [48],
where disIRSm ,US is the distance between US and IRSm, disBS,IRSm is the distance between
BS and IRSm, and χmUS ∼ CN (0, 64) is the shadow decay.
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3.1. Simulation of Algorithm for Reconstructing Fingerprint Database

When constructing the fingerprint database, first, the original fingerprint database
F′ was obtained. Then, 60% of the data were randomly sampled to recover the remaining
data and obtain the reconstructed fingerprint database X′. Because of the large size of
the fingerprint database, it only provides data from some fingerprint reference points for
comparison. The fingerprint data from the original fingerprint database are listed in Table 1.
The data in the reconstructed fingerprint database are listed in Table 2. The absolute errors
of some data between the reconstructed and original fingerprint databases are listed in
Table 3.

Table 1. Original fingerprint matrix data.

1 2 3 4 5 6 7 8

1 166.1103 142.2683 162.862 148.1069 1585.3218 161.5227 176.1805 169.7322
2 165.7726 190.1619 199.2585 181.5946 1765.6832 176.7504 206.7448 179.3109
3 162.6964 153.8574 167.5265 164.2221 1679.1405 154.9969 163.9783 160.0116
4 187.4405 168.8461 171.5338 207.7941 1860.735 215.5813 198.855 196.7667
5 190.54 162.0931 205.4878 174.8375 1864.1001 222.0865 202.3262 182.3111
6 190.0572 167.0714 146.0369 162.1234 1690.4696 147.1783 163.1289 159.0874

Table 2. Reconstructed fingerprint matrix data.

1 2 3 4 5 6 7 8

1 166.1103 142.2683 162.862 148.1069 1585.3218 161.5227 179.0332 169.7322
2 165.7726 188.7121 199.2585 181.5946 1765.6832 176.7504 206.7448 179.3109
3 165.4293 153.8574 165.2193 164.7294 1679.1405 154.9969 164.7676 164.692
4 187.4405 168.8461 171.5338 207.7941 1860.735 215.5813 193.9373 193.8484
5 190.54 162.0931 205.4878 174.8375 1864.1001 222.0865 202.3262 183.9541
6 190.0572 161.6099 146.0369 161.6529 1690.4696 147.1783 161.6904 161.6163

Table 3. Absolute error data.

1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 −2.8527 0
2 0 1.4498 0 0 0 0 0 0
3 −2.7329 0 2.3072 −0.5073 0 0 −0.7893 −4.6804
4 0 0 0 0 0 0 4.9177 2.9183
5 0 0 0 0 0 0 0 −1.643
6 0 5.4615 0 0.4705 0 0 1.4385 −2.5289
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As shown in Tables 3 and 4, an error existed between the reconstructed and original
fingerprint databases, and the average relative error calculated from all the data was 1.85%;
therefore, there was almost no effect on the localization error.

Table 4. Relative error data.

1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 1.62% 0
2 0 0.76% 0 0 0 0 0 0
3 1.68% 0 1.38% 0.31% 0 0 0.48% 2.93%
4 0 0 0 0 0 0 2.47% 1.48%
5 0 0 0 0 0 0 0 0.9%
6 0 3.27% 0% 0.29% 0 0 0.88% 1.59%

3.2. Analysis of Algorithm for Reconstructing Fingerprint Database

1. The localization of fingerprint databases without a reconstruction algorithm (IRS-
URFL) and the complexity of constructing database fingerprints are as follows:

In the fingerprint database construction phase, when the matrix reconstruction algo-
rithm is not used to construct the fingerprint database F′, the total number of elements in
the fingerprint database F′ is NMW, and the generation of each fingerprint data requires
approximately W · K · L · times floating-point computations, where times is the number
of times each fingerprint datum is sampled. Therefore, the number of floating-point
calculations for the process is approximated as O

(
W2 · K · N · M · L · times

)
.

2. Reconstructing the fingerprint database using the LMaFit algorithm for the indoor
radio signal-based robust fingerprint localization (IRS-RFL) algorithm, the complexity
of constructing database fingerprints is as follows:

When using the matrix reconstruction algorithm for constructing the fingerprint
database, we first collect 60% of the fingerprint database F′, and the computational com-
plexity required for this process is about O

(
0.6W2 · K · N · M · L · times

)
. Then, we use the

LMaFit algorithm to complement the remaining 40% of the fingerprint data, and in this
way, we reconstruct to obtain the complete fingerprint database X′.

The floating-point operations of the LMaFit algorithm are divided into two main
parts: matrix factorization and matrix data reconstruction through multiple iterations.
In this study, firstly, the number of floating- point operations in the matrix factoriza-
tion part is O

(
N(MW)2

)
. Secondly, the part of the matrix data reconstruction through

multiple iterations mainly involves calculating the update parameters and performing
matrix multiplication operations, so the number of floating-point operations in this part is
O
(

step
(

N(MW)2
))

, where step is the number of iterations. Thus, the number of floating-
point computations using the LMaFit matrix reconstruction algorithm can be approximated
as O

(
N(MW)2 + step

(
N(MW)2

))
.

Therefore, the total number of floating-point operations when using the matrix re-
construction algorithm for constructing the fingerprint database X′ is approximated by
O
(

0.6W2 · K · N · M · L · times + N(MW)2 + step
(

N(MW)2
))

.

3. Complexity comparison:

Therefore, theoretically, M = 5, W = 8, K = 8, L = 3, times = 21, step = 35. At this
time, the computational complexity of the IRS-URFL algorithm and IRS-RFL algorithm is
shown below.

In Figure 5, the horizontal coordinates represent the number of rows in the matrix,
and the vertical coordinates represent the computational complexity of the algorithms; the
blue line represents the computational complexity of constructing the fingerprint database
when the localization (IRS-URFL) algorithm for fingerprint databases is used without
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the reconstruction algorithm; and the red line represents the computational complexity
of constructing the fingerprint database when the localization (IRS-RFL) algorithm for
fingerprint databases is reconstructed using the low-rank matrix fitting (LMaFit) algorithm.
The computational complexity of the fingerprint database was also considered. From
the figure, it can be seen that as the number of matrix rows increases, the computational
complexity of the IRS-RFL algorithm is small compared to the computational complexity of
the IRS-URFL algorithm. For example, when N = 15,000, the computational complexity of
the IRS-RFL algorithm is reduced by about 2.4 × 108 computations compared to that of the
IRS-URFL algorithm, and, therefore, the IRS-RFL algorithm reduces the amount of work
involved in constructing the fingerprint database, where the number of rows in the matrix
affects the number of matrix elements. As the number of matrix elements increases, the
complexity of the algorithm for constructing the matrix also increases.
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3.3. Simulation of Positioning Errors

When SNR = 10 dB, the localization results of the IRS-RFL algorithm in this study are
shown in Figure 6, where the asterisk indicates the estimated location of the point to be
located, and the hollow point indicates the real location of the point to be located.
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As shown in Figure 6, the point to be located that was estimated by the proposed
IRS-RFL algorithm was similar to or overlapped with most of the real locations. This
indicated the highly accurate localization results of the proposed IRS-RFL algorithm.

Positioning error analysis plots of the traditional fingerprint localization (traditional
RSS) algorithm [49–51], the intelligent reflective surface for unreconstructed fingerprint
localization (IRS-URFL) algorithm, and IRS-RFL algorithm are shown in Figure 7.
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In Figure 7, the horizontal coordinate, vertical coordinate, blue curve, red curve,
and yellow curve indicate the SNR (dB), positioning error (m), positioning error of the
traditional RSS algorithm, positioning error of the IRS-RFL algorithm, and positioning error
of the IRS-URFL algorithm, respectively. The results show that at SNR = 5 dB, the error of
the traditional RSS algorithm is 3.35 m, the error of the IRS-RFL algorithm is 0.97 m, and
the error of the IRS-URFL algorithm is 0.92 m; at SNR = 25 dB, the error of the traditional
RSS algorithm is 1.41 m, the error of the IRS-RFL algorithm is 0.60 m, the error of the IRS-
URFL algorithm is 0.92 m, and the IRS-URFL algorithm has an error of 0.57 m. All three
localization algorithms show better localization results as the SNR increases. Among these
three algorithms, the IRS-URFL algorithm has the highest positioning accuracy and the
smallest positioning error, and the IRS-RFL algorithm has a higher positioning accuracy
than the traditional RSS algorithm. First of all, both the IRS-URFL algorithm and IRS-
RFL algorithm use APEM fingerprints; this type of fingerprint contains more information
compared to RSS fingerprints, and the correspondence between this information and spatial
location is stronger, which is conducive to improving the system’s localization accuracy,
so the localization error of the traditional RSS algorithm is higher than the IRS-URFL
algorithm and IRS-RFL algorithm’s positioning error. In addition, because the IRS-RFL
algorithm uses the LMafit reconstruction algorithm, there is a certain error between the
reconstructed fingerprint database and the fingerprint database that is directly collected
without reconstruction; therefore, the IRS-RFL algorithm has a larger localization error than
the IRS-URFL algorithm compared to the IRS-RFL algorithm.

The localization errors for different numbers of IRS and SNRs are shown in Figure 8.
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As shown in Figure 8, the X, Y, and Z coordinates indicate the number of IRSs, SNRs
(dB), and localization errors (m), respectively. The figure shows that with an increase in the
SNR number of IRSs, the localization error of the IRS-RFL algorithm gradually decreases.
For IRS M = 6, the localization error was less than 1 m, and it decreased gradually with
an increase in SNR; when SNR = 15, the localization error decreased gradually with an
increase in IRS. This shows that both SNR and the number of IRSs have a highly significant
effect on the localization accuracy. In the wireless communication system, SNR indicates
the power ratio of the received signal to the noise, and the larger the SNR, the stronger the
useful signal in the received signal and the smaller the interference generated by the noise.
In this case, the fingerprint APEM will be inaccurate, and the final localization error of the
IRS-RFL algorithm in this study will be larger. In contrast, the smaller the SNR, the less
useful the signal received. The number of IRSs has an impact on the number of fingerprints
collected; the higher the number of IRSs, the higher the number of fingerprints, and an
increase in the number of fingerprints can improve the localization accuracy.

The cumulative distribution of the localization error of IRS-RFL at different sampling
intervals is shown in Figure 9.
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distribution function curves of the positioning error for sampling intervals of 1, 2, 2.5, 3,
and 5 m, respectively. Evidently, the sampling interval was inversely proportional to the
positioning error; the larger the sampling interval, the worse the positioning accuracy. For
sampling intervals of 5, 3, 2.5, 2, and 1 m, 80% of the positioning errors were less than 1.2,
1, 0.83, 0.8, and 0.6 m, respectively. In fingerprint localization, the sampling interval of the
fingerprints has an impact on the number of fingerprints collected. The smaller the sam-
pling interval, the higher the localization accuracy of the system, and, on the contrary, the
worse the positioning accuracy of the system. When the sampling interval is short, the 5G
positioning system with intelligent reflective surfaces proposed in this study can increase
the number of fingerprints, thereby improving the accuracy and reliability of positioning.
On the contrary, when the sampling interval is longer, the number of fingerprints collected
by the intelligent reflective surface 5G positioning system proposed in this study decreases,
which does not accurately reflect the accurate information of the channel of each point in
the positioning area, thus reducing the localization accuracy.

4. Conclusions

In this study, we proposed a low-rank matrix reconstruction-enabled fingerprint-
based localization algorithm in IRS-assisted networks, which used APEM as fingerprint
data and exploited the high spatial resolution of MIMO technology. The LMaFit matrix
reconstruction algorithm was used to reconstruct the fingerprint database to alleviate
the large workload introduced by the full set of measurement data required to build a
fingerprint database and reduce the workload of fingerprint acquisition. The similarity
of fingerprints was determined using the Euclidean distance, and the coordinates of the
users to be located were estimated by combining maximal ratio combining and WKNN
algorithms. Finally, it was verified through simulation that the proposed method can reduce
the fingerprint database construction workload by 40%, and it has an 80% probability of
obtaining sub-meter localization accuracy when the sampling interval is less than 2.5 m.
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Appendix A. Specific expression of Equations (4), (7) and (14)

The detailed expression of Equations (4), (7) and (14) is shown in (A1), (A2) and (A3),
separately.
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H2m

=


h2m,1,1 · · · h2m,K,1

...
. . .

...
h2m,1,W · · · h2m,K,W



=
√

β2m ·



Cm,1,1

∑
cm,1,1=1

α2cm,1,1 · · ·
Cm,K,1

∑
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α2cm,K,1 · ej2π d
λ [(K−1) cos (φcm,K,1 )]

...
. . .

...
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∑
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∑
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=
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∑

k=1
hm,k,1 · · ·
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∑
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√
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∑
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∑
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∑
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