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Abstract: The task of router alias resolution for IPv4 networks presents a formidable challenge
in the realm of router-level topology inference. Despite the considerable potential exhibited by
machine-learning-based alias-resolution methods for IPv4 networks, several constraints impede their
effectiveness. These constraints include a low discovery rate of aliased IPs, a failure to account for
router aggregation, and a dearth of valid features in current schemes. In this study, we introduce
a novel alias resolver, AliasClassifier, which is based on the Random Forest model and the alias
triangulation algorithm. This innovative model identifies the key six features from a set of four preva-
lent routing behaviors that are typically employed to distinguish aliased IPs from non-alienated IPs.
Subsequently, the AliasClassifier aggregates aliased IP pairs into routers using an alias triangulation
algorithm. Experimental results demonstrate that AliasClassifier excels in discovering aliased IPs
in IPv4 networks, boasting a resolution accuracy as high as 94.8% and a recall rate of 40.4%. Its
comprehensive performance significantly surpasses that of state-of-the-art alias resolvers such as
TreeNET, MLAR, and APPLE. Furthermore, as a typical centralized alias parser, AliasClassifier’s
deployment cost is remarkably low. Consequently, AliasClassifier emerges as an ideal tool for router
alias resolution in large-scale IPv4 networks.

Keywords: alias resolution; alias aggregation; router; machine-learning models

1. Introduction

The intricate topology of routers forms a fundamental cornerstone in the landscape of
the Internet, holding substantial relevance for research areas such as network performance
evaluation, network security, and link reliability analysis [1–4]. Despite the ongoing data-
sharing efforts by several renowned international organizations, a comprehensive and
representative router-level topology map of the current Internet remains elusive [5–8]. This
is largely due to the inherent complexity of Internet links and the spontaneous requirements
of network operators to safeguard commercial privacy. Consequently, researchers are often
left to infer the topology of routers by gathering fragmented routing information scattered
across the Internet.

The issue of router alias resolution presents a formidable challenge in the acquisition
of router topology maps. Router alias resolution, a technique employed to identify the
IP addresses of multiple interfaces on the same router, aims to transform the logical
topology map of the IP layer—obtained through methods such as traceroute—into a
physical topology map at the router layer [9,10]. Within the realm of IPv4 networks, a
variety of router alias-resolution techniques have emerged. These techniques can be broadly
categorized into three types: measurement-based, inference-based, and machine-learning-
based router alias-resolution technologies [11].

Measurement-based techniques typically demonstrate high accuracy as they employ
active detection (e.g., ping or traceroute) to acquire precise fingerprint information [6,12,13].
In contrast, inference-based technology necessitates only a logical analysis of the network
topology to yield parsing results, rendering it particularly suitable for alias resolution in
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large-scale networks [9,10,14]. However, these technologies often resort to distributed
detection methods for data collection, inevitably escalating deployment costs and dimin-
ishing parsing efficiency. Furthermore, due to the absence of a mature network topology,
inference-based technologies can easily result in relatively low accuracy. Certain finger-
print information, such as recorded route [15], timestamp [16,17], and IPID [2], are readily
restricted by routers and challenging to acquire. While proposals have been made to
amalgamate multiple alias-resolution tools and design comprehensive inference methods
to reduce measurement complexity and enhance measurement accuracy, these methods are
typically complex to implement [18,19]. In the absence of global prior knowledge, these
solutions cannot significantly improve parsing efficiency and the alias IP discovery rate.
The alias IP discovery rate, a key metric for evaluating the effectiveness of alias-resolution
technology, refers to the proportion of IP addresses in the network that can be resolved by
aliases. Evidently, a common challenge for router alias-resolution techniques in IPv4 net-
works is striking a delicate balance between various critical factors, including the discovery
rate of alias IPs, the accuracy of parsing results, detection efficiency, and deployment costs.

In the wake of the burgeoning application of machine learning, a variety of machine-
learning approaches have been introduced to tackle the router alias-resolution prob-
lem [20–22]. Machine-learning-based methods can effectively amalgamate topological
data and fingerprint information obtained via various probes during the alias-resolution
process. These methods extract multidimensional features and combine them with complex
logical reasoning, therefore enhancing the efficiency and accuracy of alias resolution. This
integration and reasoning process endows machine-learning-based solutions with superior
generalization performance compared to traditional solutions. Consequently, these solu-
tions exhibit a higher discovery rate of alias IPs and yield a completer and more accurate
parsed router topology.

However, current machine-learning-based solutions often overlook the challenges
associated with data acquisition. This oversight directly impacts the integrity of the features
that can be acquired, resulting in a discovery rate of alias IPs that falls short of theoretical
potential. In addition, most inference results produced by machine-learning models are
alias IP pairs rather than routers. This simplistic aggregation approach may lead to an
overabundance of irrelevant IP addresses in the inferred routers, a phenomenon referred
to as “router bloat”. The occurrence of “router bloat” underscores the need for further
refinement of these methods, highlighting the ongoing challenges in the field of router
alias resolution.

To address the aforementioned challenges, we trained an alias resolver, AliasClassifier,
based on a machine-learning model. AliasClassifier employs a Random Forest classifier to
identify potential alias IP pairs and subsequently aggregates these pairs using the router
aggregation algorithm of alias triangulation. This approach enables efficient and accurate
router alias resolution for IPv4 networks. AliasClassifier, a typically centralized alias
resolver, is relatively economical to deploy and selects features that are readily collectible
from routing data. Consequently, AliasClassifier not only ensures notable accuracy but
also maintains high efficiency, establishing it as an effective and precise tool for resolving
aliases in large IPv4 networks. The primary contributions of this article are as follows:

• We conducted an empirical analysis of four widely recognized routing hypothesis
behaviors using the data-cleaned ITDK dataset. Our analysis identified six features
that can effectively distinguish between aliased and non-aliased IPs. We define IPs
located on different interfaces on the same router as ’alias IPs’ and IPs located on
different routers as ‘non-aliased IPs’.

• Based on these six features, we selected an appropriate alias IP classifier through multiple
sets of experiments. Ultimately, we chose to use the Random Forest model, which
exhibited the most balanced performance, to construct the alias resolver AliasClassifier.

• To address the alias aggregation problem, we proposed an innovative alias aggrega-
tion algorithm based on alias triangulation. This method significantly enhances the
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credibility of router alias resolution by making a secondary judgment on the alias IP
following alias classification.

• The experimental results underscore the superior comprehensive performance of
AliasClassifier, which markedly surpasses similar advanced classifiers such as APPLE,
MLAR, and TreeNET. A comparative analysis with TreeNET revealed that AliasClassi-
fier’s alias IP discovery rate increased by 2.4 times, and its parsing efficiency improved
by 4.5 times.

The remainder of this paper is meticulously structured as follows: Section 2 serves as a
foundational background section, offering a comprehensive review of the work conducted
on router alias resolution, specifically in relation to IPv4 networks. Section 3 delves into an
empirical analysis of the four hypothesized behaviors that constitute the crux of this study.
Section 4 is dedicated to the construction of the alias parser, AliasClassifier, elucidating its
design and implementation details. Section 5 presents an extensive experimental evalua-
tion of AliasClassifier’s performance, providing a rigorous assessment of its efficacy and
robustness. In Section 6, we delve into the constraints of AliasClassifier and contemplate
potential enhancements for future iterations. Finally, Section 7 draws together the main
findings and contributions of this research, offering a succinct summary and highlighting
the implications of our work.

2. Background

In this section, we first embark on a thorough exploration of the existing body of
work pertinent to router alias resolution for IPv4 networks. Subsequently, we introduce
the dataset employed in our experiments. This dataset, carefully curated and rigorously
vetted, forms the empirical backbone of our research, providing the raw data from which
our insights and conclusions. Lastly, We conclude this section with an in-depth discussion
of seven key hypothetical behaviors that hold potential utility in the realm of router alias
parsing work. The objective of this discussion is to analyze the generality of the relevant
behaviors and to reduce the number of features characterized by a high incidence of
missing values.

2.1. Related Work

Router aliasing techniques of IPv4 networks can be systematically classified into three
principal categories [11]: measurement-based aliasing methods, inference-based aliasing
methods, and machine-learning-based aliasing methods.

Measurement-based methods involve sending probe packets to IP pairs that may have
aliasing relationships. The correlation patterns of the corresponding fingerprint information
in the response packets are analyzed to determine whether these IPs belong to the same
router. Key algorithms in this category include Ally [6], Passenger [15], DisCarte [23],
RadarGun [12], Timestamp [16], MIDAR [13], Pamplona-traceroute [2], Pythia [17] among
others. The latest development in this field is an alias-resolution method based on delay
sequence analysis [24], proposed by Yang Tao et al., which leverages the similarity of delay
sequences for alias resolution. These measurement-based alias-resolution algorithms have
gained widespread use due to the high accuracy of their resolution results. However,
in scenarios with slow networks and many unresponsive routers, these methods can be
time-consuming, rendering these methods unsuitable for large IPv4 networks.

In contrast, inference-based alias-resolution methods leverage the contents of IP topol-
ogy, subnets, or domain names. They infer whether two IPs are aliased based on the
connectivity or naming rules of the IP addresses. Key algorithms in this category include
DASAR [25], AAR [14], APAR [10], Kapar [9], among others. Recently, Alexander Marder
proposed an aliasing technique, APPLE [26], which compares the length of the reply path
from each IP address to a set of distributed VPs for router aliasing. This method circumvents
the dependence on router manufacturer and operating system-specific IP implementations.
Overall, inference-based alias-resolution methods are suitable for large-scale IPv4 net-
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works. However, their accuracy is highly dependent on network topology, resulting in
lower accuracy.

In the dynamic and rapidly progressing field of IPv4 network topology, research
endeavors focusing on measurement-based and inference-based router alias-resolution
algorithms have been consistently deepening. A suite of comprehensive alias detection
algorithms, such as Palmtree [18] and TreeNet [19], among others, have been proposed to
mitigate measurement complexity and augment measurement accuracy. These proposed
methodologies typically represent a fusion of multiple alias-resolution tools, therefore
rendering their implementation process highly intricate. For instance, TreeNet imposes
a stringent stipulation that the path hops of all IP nodes should not exceed a single hop.
Concurrently, it necessitates the collection of a diverse array of alias fingerprints, predomi-
nantly encompassing TTL values, source addresses of port unreachable packets, IPIDs, DNS
resolution results, and timestamp information. The TreeNet algorithm can be perceived
as an amalgamation of the algorithms of iffinder [27], Kapar [9], and others. Iffinder is an
alias-resolution algorithm based on homologous addresses. It realizes alias resolution by
looking for the source address in the returned “port unreachable” ICMP message that is
different from the destination address of the probe message sent.

Undeniably, methods that amalgamate multiple fingerprinting information have
carved out a significant niche in the domain of router alias resolution for IPv4 networks.
Despite the convoluted nature of the implementation process, comprehensive alias detec-
tion algorithms deliver exceptional precision and accuracy. However, in the absence of
global a priori knowledge, these schemes do not significantly enhance the parsing efficiency
and alias IP discovery rate. A pervasive challenge is the lack of equilibrium among key
factors such as the accuracy of resolution results, the discovery rate of aliased IPs, detection
efficiency, and the feasibility of deployment in traditional router alias-resolution tech-
niques. Consequently, numerous innovative approaches, despite their theoretical promise,
underperform when tasked with router alias resolution on large IPv4 networks.

In recent years, the ascendancy of artificial intelligence and machine learning has cat-
alyzed the integration of these technologies into various router alias-resolution methodolo-
gies. Machine-learning-based alias-resolution algorithms mainly include AliasCluster [20],
MLAR [21], Limited Ltd [22], and so on. The MLAR algorithm introduces four-dimensional
features to reframe the alias-resolution problem as a classification challenge [21]. However,
the method does not grapple with the unavailability and generalizability of feature data,
leading to subpar parsing accuracy. Limited Ltd employs the characteristic of ICMP rate
limiting as a pivotal feature for router alias resolution. This technique involves the dispatch
of ICMP probes to target interfaces, instigating the router’s ICMP rate-limiting mechanism.
While ICMP rate limiting can be more ubiquitously obtained in comparison to other finger-
printing information, this method is not without its challenges. It is particularly susceptible
to interference from the network environment, which can compromise the integrity of
the results. Frequent initiation of large numbers of packets for ICMP rate-limit probing
increases interference with the Internet and raises potential ethical concerns.

The advent of machine-learning methods has ushered in a new era for alias resolution.
These methods enable the utilization of multiple probe data and fingerprint information
in the alias-resolution process, as well as the adoption of more intricate logical reasoning,
therefore enhancing both the efficiency and accuracy of alias-resolution. Consequently,
the optimization of machine-learning methods to improve the outcomes of router alias
resolution for IPv4 networks has emerged as a novel research direction. However, current
machine-learning-based alias-resolution solutions often overlook the challenges associated
with data collection. This oversight directly contributes to the low discovery rate of
aliased IPs for these solutions. Moreover, most inferences made through machine learning
are IP pairs rather than router aggregations. The absence of effective alias aggregation
operations may lead to inferred routers containing an excessive number of IP addresses.
This phenomenon underscores the need for further refinement of these methods and
highlights the ongoing challenges in the field of router alias resolution.
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2.2. Datasets

In our research, we faced a challenge of lacking fundamental data. To overcome
this, we turned to the ITDK dataset, generously provided by CAIDA (the Cooperative
Association for Internet Data Analysis) [28]. ITDK releases were produced from traceroutes
conducted on the Archipelago (Ark) measurement infrastructure. The IPv4 router-level
topology is derived from aliases resolved with MIDAR [13] and iffinder [27], which yield
the highest confidence aliases with very low false positives. The router-level topology
is provided in two files, one giving the nodes and another giving the links. There are
additional files that assign ASes to each node, provide the geographic location of each node,
and provide the DNS name of each observed interface.

It is important to note that while the ITDK dataset boasts a commendably low false
positive rate, the absolute accuracy of the data cannot be entirely guaranteed. To address
this, we implemented the state filter to bolster the construction of our ground truth collec-
tion for aliased IPs. IP addresses located on different interfaces on the same router should
theoretically remain consistently line or offline. Our state filter was designed to leverage
the online/offline state of routers. If a pair of aliased IPs originate from the ITDK, one IP is
pingable, and the other is not. We consider the pair of IPs not to be aliased IPs on the same
router. This filter was designed to enhance the reliability of the data and mitigate potential
inaccuracies inherent in any large-scale dataset.

In our research, we initiated the process by extracting a total of 883,636 pairs of
IPv4 aliases from the CAIDA ITDK dataset, focusing on data generated in February 2022.
Subsequently, by applying the state filter, we were able to eliminate a substantial number
of non-alias IP pairs, specifically 126,343 pairs, from our dataset. This filter played a pivotal
role in enhancing the reliability and relevance of the data used in our research. At the same
time, we took the initiative to build a collection of non-alias IPs to enhance the effective
distinction between aliased IPs and non-alias IPs, drawing insights from our ground
truth collection. Given that interface IPs of different routers lack aliasing relationships,
we curated a non-alias IPs dataset by pairing interface IPs from distinct routing nodes.
This meticulous curation process yielded a dataset comprising 757,293 pairs of aliased
IPs and 909,233 pairs of non-aliased IPs, representing a comprehensive and diverse set
of IPs distributed across 218 countries and regions globally, as outlined in Table 1. This
rigorous data refinement process ensured the integrity and quality of the dataset used for
our research.

Table 1. Ground truth data set.

CAIDA ITDK Ground Truth

Interface IPs 344,860 322,668
IP Pairs 883,636 757,293

IP pairs filtered - 126,343

2.3. Hypothetical Behavior

Our approach begins by establishing fundamental behavioral assumptions regarding
aliased IPs that coexist on the same router. In our approach, the process of alias resolution
for a pair of IPs is conceptualized as a binary classification problem. Our overarching goal
is to develop a trained classifier capable of effectively solving the alias-resolution challenge
for routers within a network. To achieve this, it is imperative to identify features that can
reliably differentiate between aliased IPs and non-aliased IPs. Equally important is the
requirement that these features should be universally accessible from routers.

Drawing from a comprehensive review of prior research in the field, we have identi-
fied seven key hypothetical behaviors that have shown promise in distinguishing between
aliased and non-aliased IPs. These behaviors encompass aspects such as routing path,
round-trip delay, Reply TTL, domain name information, port information, IPID informa-
tion, and IP spatial difference information. To further inform our methodology, we have
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tabulated the probability of occurrence of these seven hypothetical behaviors within the
ground truth dataset of aliased IPs, as depicted in Table 2.

Table 2. Occurrence of hypothetical behaviors.

Behavior Frequency

Routing path 65%

Round-trip delay 65%

Reply TTL 86%

Domain Information 39%

Port information 0.14%

IPID 13%

IP Spatial Discrepancy Information 100%

In our investigation, the ITDK dataset, as of February 2022, was employed as the
primary source of data. Although we ran multiple active probes in the same month, the
change in network topology caused us to discover only 65% of the pingable IPs. Our
analytical efforts yielded the identification of a mere four hypothetical behaviors charac-
terized by high prevalence. The probability of the port information, IPID Information,
and domain information are small, 0.14%, 13%, and 39%, respectively. Given the practical
challenges associated with collecting data pertaining to these non-universal attributes and
their limited influence on parsing outcomes, we have chosen to exclude feature extraction
from port information, IPID information, and domain information. The four remaining
hypothetical behaviors have been previously validated in the extant literature. Our inten-
tion is to conduct an in-depth analysis of these four hypothetical behaviors in the context
of a ground truth dataset and, subsequently, to derive relevant features for the training of
alias-resolution classifiers. This approach is underpinned by the robustness and reliability
demonstrated by these behaviors in prior research endeavors.

3. Characterization Analysis

By evaluating the likelihood of these hypothetical behaviors, we discern four specific
behaviors that hold universal applicability. We undertake a meticulous instance analysis of
these four hypothetical behaviors, leveraging both the set of alias IPs and the set of non-alias
IPs. This analysis is conducted with the aim of extracting behavioral features that prove to be
instrumental in the process of alias resolution. Furthermore, we elucidate the methodologies
employed for capturing and representing pertinent behavioral data. These steps collectively
constitute a critical foundation for the development of our alias-resolution framework.

The specific details of these relevant features, which were utilized to train the classifier,
are comprehensively outlined in Table 3. We are committed to making the feature dataset
and our research results publicly available to facilitate replication and further research in
this domain.

Table 3. List of features selected by the classifier.

Feature Name Flag Characters

Difference Value of round-trip time RTTDV

Difference Value of Path Length PLDV

Difference Value of Path Direction PDDV

Path Similarity Coefficient PSC

Difference Value of Reply TTL TTLDV

Spatial Distance of the IP pair SDIP



Electronics 2024, 13, 1747 7 of 25

3.1. Round-Trip Delay Information

Round-trip delay information (RTT) is a crucial metric representing the time required
for a packet to complete a round-trip journey from the source IP address to the destination
IP address. Typically, when network performance is stable and congestion is minimal, RTT
exhibits a positive correlation with geographic distance [29]. Notably, two IP addresses
residing on the same router should theoretically exhibit closely aligned RTT measurements
when observed from a common source IP. Leveraging this understanding of RTT behavior,
we introduce a novel feature aimed at distinguishing aliased IPs from non-aliased IPs: the
Difference Value of round-trip time denoted as RTTDV .

Feature 1: Difference Value of round-trip time. For any two IP addresses, the round-
trip delay from the same source IP is rtt = [t1, t2], and the Difference Value of round-trip
time feature RTTDV between these two IP addresses is defined as:

RTTDV = |t1 − t2| (1)

For any two target IPs, we measure the likelihood of two IPs being aliased to each other
by comparing the RTTDV of the two IP addresses. We count the cumulative distribution
curves of RTTDV in milliseconds between aliased IP pairs as well as non-alias IP pairs, as
shown in Figure 1. Our analysis has revealed a significant distinction between aliased IPs
and non-aliased IPs based on RTTDV . When RTTDV is set at 25, the cumulative proportion
of aliased IPs reaches approximately 80%, while for non-aliased IPs, it stands at a notably
lower 31.1%. This substantial difference of 48.9% underscores the efficacy of RTTDV as a
discriminative feature.

0 25 50 75 100 125 150 175 200
RTTDV

0.0

0.2

0.4

0.6

0.8

CD
F

(180, 0.945)

(180, 0.845)

Alias IP Pirs
Non-alias IP Pairs

Figure 1. RTTDV of alias IPs and non-alias IPs.

Intriguingly, as RTTDV increases, the cumulative disparity between aliased IPs and
non-alias IPs begins to diminish. For instance, when RTTDV = 180, the cumulative
difference between alias IP pairs and non-alias IP pairs in RTTDV contracts to a mere 10%,
a stark contrast to the cumulative difference of 48.9% observed when RTTDV = 25. These
observations suggest that relying solely on one feature, such as RTTDV , may not suffice to
draw a comprehensive distinction between aliased and non-alienated IPs. This underscores
the complexity of the alias-resolution problem and highlights the need for a multi-faceted
approach that considers a broader set of features.

3.2. Routing Path

The primary function of a router is to determine the optimal transmission path for
individual packets based on a routing table. The routing table, which encapsulates the
data forwarding policy, typically remains static for extended durations. Consequently, the
routing trajectory of a packet, originating from a source IP and destined for a target IP, is
theoretically relatively constant over short intervals [30].
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To substantiate the stability of routing paths, we conducted an empirical study in-
volving the random selection of 10,000 IP addresses. Our approach encompassed multiple
iterations of traceroute operations from an identical probing point to the same destination
IP. We subsequently compared the outcomes of these traceroute rounds and computed the
Path Edit Distance (PED) [31]. The Path Edit Distance is the minimum number of editing
operations required to change from one to the other between two routing paths. In general,
the smaller the Path Edit Distance, the more similar the two routing paths are.

Figure 2 offers a cumulative distribution curve of path edit distances for the aforemen-
tioned 10,000 IP addresses. Notably, this visual representation reveals that approximately
92% of the IP addresses exhibit path edit distances of 2 hops or less. This empirical observa-
tion firmly establishes the relative stability of routing paths from source IPs to destination
IPs over time. This stability observation suggests that IPs characterized as aliases residing
on the same router should theoretically exhibit closely aligned routing paths.

0 1 2 3 4 5 6 7 8
PED

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(2, 0.92)

Figure 2. Stability analysis of routing paths.

Feature 2: Difference Value of Path Length. For a given pair of IP addresses, each
characterized by path lengths denoted as ℓ1 and ℓ2, respectively, the Difference Value of
Path Length feature PLDV is represented as follows:

PLDV = |ℓ1 − ℓ2| (2)

Feature 3: Difference Value of Path Direction. For any given pair of IP addresses, each
associated with routing paths p1 and p2, where the number of transformations required
to align p1 with p2 is represented as trns. Editing operations allowed by trns include
replacing, inserting, and deleting characters. The Difference Value of Path Direction feature
(PDDV) is denoted as follows:

PDDV = trns(p1, p2) (3)

We introduce two features in our methodology: the Path Length Difference Fea-
ture (PLDV) described by Equation (2) and the Path Direction Difference Feature (PDDV)
outlined by Equation (3). The concept of Path Direction Difference (PDDV) primarily en-
capsulates the count of IP nodes that diverge between two routing paths. It is noteworthy
that even when two routing paths share an identical length, their path directions may
not necessarily align. For instance, consider two paths: {a, b, c, d} and {a, f , x, d}. Despite
having a Path Length Difference (PLDV) of zero, indicating identical path lengths, their
Path Direction Difference (PDDV) stands at 2. This discrepancy underscores the fact that
identical path lengths do not guarantee congruent path directions, therefore highlighting
the nuanced complexity inherent in the analysis of network routing paths. These metrics
enable us to discern and characterize the distinctions between aliased and non-aliased IPs
based on the similarity within their respective routing paths.
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For both aliased and non-aliased IP pairs, we conduct data statistics, focusing on
the Path Length Difference and Path Direction Difference. These statistical analyses are
depicted in Figure 3. The analysis reveals that the disparity between alias IPs and non-alias
IPs based on the PLDV is relatively modest. The most substantial cumulative proportion
difference observed between alias IPs and non-alias IPs in PLDV features is merely 32.8%.
In contrast, the distinction between aliased IPs and non-aliased IPs, as determined by the
PDDV , is striking. During this assessment, the most substantial cumulative proportion
difference observed between alias IPs and non-alias IPs in PLDV features is 56.9%, where
the cumulative proportion in PDDV of aliased IPs stands at 58.3%, while that of non-aliased
IPs is a mere 1.4%. Upon rigorous statistical analysis, we discerned that the disparity
between the cumulative proportions of alias IPs and non-alias IPs converges to within 10%
when the Path Length Difference (PLDV) equals 4. Interestingly, a similar convergence
of less than 10% in the cumulative proportions of the two categories is observed only
when the Path Direction Difference (PDDV) exceeds 8. These findings underscore the
challenge of distinguishing alias IPs from non-alias IPs based on Path Length Difference
while emphasizing the efficacy of Path Direction Difference as a more discerning metric.

0 2 4 6 8 10 12
PLDV

0.2

0.4

0.6

0.8
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(4, 0.974)
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a.Difference Value of Path Length

Alias IP Pairs
Non-alias IP Pairs

2 4 6 8 10 12 14
PDDV

0.0
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0.4
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0.8

1.0

CD
F

(8, 0.989)

(8, 0.896)

b.Difference Value of Path Direction

Alias IP Pairs
Non-alias IP Pairs

Figure 3. (a) Difference value of path length. (b) Difference value of path direction.

Furthermore, we introduce the Path Similarity Coefficient (PSC) as a novel metric to
elucidate distinctions between aliased IPs and non-aliased IPs within their routing paths.
PSC quantifies the degree of similarity between two paths by considering the ratio of
common IP addresses between them to the length of the path, as defined in Equation (4).

Feature 4: Path Similarity Coefficient. For any given pair of IP addresses, each
associated with path lengths ℓ1 and ℓ2, and whose routing paths have an edit distance of d,
the Path Similarity Coefficient feature PSC is expressed as follows:

PSC = 1 − 2d
ℓ1 + ℓ2

(4)

To gain insight into the behavior of aliased IPs and non-aliased IPs, we calculate the
Path Similarity Coefficient separately for each group. Figure 4 depicts the cumulative
distribution of the Path Similarity Coefficient. It is evident from the figure that aliased IPs
exhibit significantly higher routing path similarity compared to non-aliased IPs. Specifically,
only 39.1% of aliased IPs have path similarity coefficients below 10%, whereas a striking
98.5% of non-aliased IPs fall within the same range. This substantial disparity underscores
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the effectiveness of our proposed Path Similarity Coefficient feature in discerning between
these IP categories.

0.0 0.2 0.4 0.6 0.8
PSC

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
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(0.1, 0.985)

(0.1, 0.391)

Alias IP Pair
Non-alias IP Pair

Figure 4. Cumulative distribution curve of Path Similarity Coefficient.

3.3. Reply TTL

The Reply TTL, denoting the Time-to-Live value in response messages from the target
IP during active measurements, plays a crucial role in network analysis [32,33]. When a
response packet is received by the source IP from the router, the Reply TTL in the packet
header reflects the path length from the router to the source IP. Due to the consistent use of
the same destination address (i.e., the source IP address) for all response packets sent by
the router, there is substantial stability in the return path, as demonstrated in Section 3.2
of our analysis. This inherent stability in the return path can be leveraged to distinguish
alias IPs from non-alias IPs. To this end, we propose the Difference Value of Reply TTL,
abbreviated as TTLDV . Figure 5 presents cumulative distribution curves illustrating the
Reply TTL difference values for both alias IPs and non-alias IPs.
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Figure 5. Cumulative distribution curve of Reply TTL difference.

Feature 5: Difference Value of Reply TTL. For any given pair of IP addresses, each
associated with Reply TTL values obtained after active probing, denoted as ttl1 and ttl2,
the Difference Value of Reply TTL feature TTLDV is expressed as follows:

TTLDV = |ttl1 − ttl2| (5)

The analysis reveals that approximately 83% of alias IP pairs exhibit identical Reply
TTL values, while less than 3% of the Reply TTL values in non-alias IPs coincide, highlight-
ing the consistency in network response behavior among alias IPs. Figure 5 provides further
insights, with 99% of alias IPs displaying TTLDV ≤ 15, while the cumulative percentage
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for non-alias IPs is substantially lower at 54.4%. These observations affirm the efficacy of
the TTLDV feature as a potent discriminator between alias IPs and non-alias IPs.

3.4. Spatial Differences in IP Addresses

The consideration of spatial distance among IP addresses, particularly those situated
on different interfaces of the same router, is crucial for understanding their potential
aliasing. Key findings, as noted by Keys et al. in reference [13], indicate that the probability
of two IPs being aliased within a “/24” subnet (the spatial distance of IP addresses less than
128) is relatively low, at less than 30%. In contrast, within a “/16” subnet, approximately
50% of IP addresses exhibit aliasing with others (the spatial distance of IP addresses is less
than 65,536). These insights underscore the significant spatial separation often observed
among aliased IPs, even in densely populated IPv4 networks. Hence, we propose a spatial
distance feature for IP addresses, allowing us to quantify the spatial separation between IPs.

Feature 6: Spatial Distance of the IP pair. For any given pair of IP addresses, the
Spatial Distance of the IP pair is calculated by the integer values I1 and I2 obtained by
converting the IP address from dotted-decimal notation to an integer representation. Spatial
Distance of the IP pair feature SDIP is expressed as follows:

SDIP = log2 |I1 − I2| (6)

Figure 6 provides a comprehensive view of the distribution of spatial distances among
IP pairs, taking into account the statistics of both aliased IPs and non-alias IPs. This
analysis highlights a notable disparity in spatial distance between these two categories
of IPs. Specifically, non-alias IPs exhibit significantly smaller spatial distances compared
to alias IPs. Approximately 98% of non-alias IPs have spatial distances within the “/24”
subnet. In contrast, only 33.2% of alias IPs are found in the same “/24” subnet. These
findings underscore the substantial difference in the spatial distribution of IP addresses
between alias IPs and non-alias IPs.
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Figure 6. Spatial distance distribution of IP pairs.

4. Framework Design of AliasClassifier

Capitalizing on the power of machine learning, we introduce a novel alias parser,
AliasClassifier. This innovative tool reinterprets the router alias-resolution problem through
the lens of classification. It employs aliased IPs as positive case samples and non-aliased IPs
as negative case samples. These samples are subjected to a training process that utilizes a
multitude of features, as detailed in the previous section, therefore facilitating the parsing of
IP pairs for potential alias determination. In addition to its core functionality, AliasClassifier
offers a set of aggregation rules specifically designed for potentially aliased IP pairs. These
rules, which form the basis of the alias triangle aggregation algorithm, serve to further
diminish the number of misclassified alias IP pairs. This, in turn, enhances the accuracy of
router alias resolution, underscoring the efficacy of AliasClassifier as a potent tool in the
realm of network topology analysis.
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Figure 7 provides a visual representation of the architecture of AliasClassifier, illustrat-
ing its key components and workflow. The AliasClassifier is structured into four primary
modules: the Data Collection Module, the Alias Filtering Module, the Alias Classification
Module, and the Alias Aggregation Module.
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Figure 7. Architecture of AliasClassifier.

4.1. Data Collection Module

This study primarily entails the acquisition of feature-rich information from the sam-
ple dataset. This encompasses the retrieval of routing path data, spanning from source IP to
destination IP, as well as round-trip delay metrics, Reply TTL, and other pertinent parame-
ters. These measurements are performed utilizing custom-developed active measurement
tools, namely ‘smark’ and ‘sping’. To ensure the inclusivity of routing data, an approach
involving the deployment of multi-protocol messages (ICMP, UDP, TCP) is adopted and
administered over multiple iterations. Concurrently, the identification and exclusion of
aberrant routes characterized by circular trajectories and private IPs is undertaken.

4.2. Alias Filtering Module

The alias filtering process entails the systematic application of specific filtering rules
to discern potential non-alias IP pairs. This proactive filtering strategy serves the dual
purpose of reducing the volume of IPs, necessitating identification and enhancing resolution
efficiency. The following two fundamental filtering rules are employed:

1. IPs co-occurring within the same IP path exhibit an inherent incapacity to function as
aliases for one another.

2. And IPs displaying incongruities in their online status are improbable candidates for
alias relationships.

It is imperative to note that offline IPs typically lack access to essential data, such as
routing path information. Therefore, AliasClassifier optimizes its parsing efficiency by
exclusively parsing online IPs, given their capacity to furnish the requisite information for
precise alias recognition.

4.3. Alias Classification Module

The Alias Classification Module represents the pivotal stage in the process, dedicated
to the discernment of potential aliased IP pairs following rigorous filtering procedures.
These identified aliased IP pairs serve as the foundation for the subsequent step in the
process. However, different classifiers have different performances, leading to variations in
their efficiency and effectiveness when classifying the same set of samples. In the context
of router alias resolution of the network containing n IP addresses, the algorithm’s overall
time complexity is O(n2) due to the utilization of IP pairs as input data. Therefore, the
selection of classifier models for alias resolution is a crucial decision.
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Our discovery during feature analysis was that most of the feature data exhibit heavy-
tailed characteristics and discrete values. These findings have motivated the criteria
for choosing an appropriate classifier model. Specifically, the selected classifier model
must be lightweight to ensure swift classification, thus enhancing the efficiency of alias
resolution. Additionally, priority is given to classifier models adept at handling heavy-
tailed and discrete data. As a result of these considerations, four distinct classifier models
have been chosen for experimental training: Naive Bayes (NB), Support Vector Machine
(SVM), Decision Tree (DT), and Random Forest (RF). This strategic selection aligns with
the identified requirements and is poised to facilitate effective alias resolution within the
given context.

During the training phase of the alias-resolution classifier, the initial step involves
the acquisition of both the alias IPs dataset and non-alias IPs dataset from the public
data source ITDK, as expounded upon in Section 2.2. Following this, the data collection
module is deployed to procure pertinent feature data within the sample set, wherein
designated classification features are utilized to construct feature vectors for each sample.
The assemblage of samples constituting the training set is then inputted into the designated
machine-learning model for the purposes of training. Consequent to this, the efficacy of the
classifier is meticulously assessed through its application to the test set, therefore furnishing
a pragmatic appraisal of its operational performance.

In our experimental setup, we have employed a self-help sampling method to create
training and test sets for the ground truth collection. This method has yielded a total
of five self-help samples. Consequently, all four classifiers, namely NB, SVM, DT, and
RF, have been subjected to alias-resolution tasks five times each. To accurately assess
the performance of each classifier, we have evaluated them using a comprehensive set of
metrics, including precision, recall, F0.5 score, F1 score, F2 score, and parsing time per
100,000 IP pairs.

We assess the classification accuracy of various classifier models using precision
metrics, evaluate the capability of these models to detect potential alias IPs through recall
metrics and gauge the parsing efficiency of each classifier model by measuring the parsing
time for every 100,000 IP pairs. Subsequently, we ascertain the comprehensive efficacy of
each classifier model using the F score index. The F score provides a holistic evaluation of
classifier performance, considering both precision and recall. Specifically, we consider the
F1 score as equally significant as precision and recall while according twice the weight to
recall in the F2 score. Conversely, in the F0.5 score, recall is assigned half the importance of
precision, reflecting a more nuanced assessment of classifier efficacy. The detailed results
of this evaluation are presented in Table 4, with a description of the evaluation metrics
provided in Appendix A for reference. The classifier models leading in each metric have
been Bolded for reference.

The analysis from Table 4 reveals distinct strengths and weaknesses among the classi-
fier models used in alias resolution. From the analysis in Table 4, we found that the Bayesian
classifier, despite its significant performance in recall, F1 score, and F2 score, exhibits a
relatively low classification accuracy, averaging 74.4%. This deficiency undermines its relia-
bility as a parser and introduces a potential constraint. The diminished accuracy observed
in the Bayesian classifier can likely be attributed to the interdependence and continuous
nature of the selected features. Conventionally, Bayesian classifiers operate under the
assumption of feature independence and discreteness. However, certain features chosen
for our analysis exhibit correlations, notably those concerning routing paths. Addition-
ally, some selected features manifest as continuous values, exemplified by the Difference
Value of round-trip time. This departure from discrete, independent features may entail
information loss within the Bayesian classifier framework, consequently undermining its
classification efficacy.

The decision tree classifier, while demonstrating commendable classification speed
and accuracy, suffers from low recall. This observation is intricately linked to a known
limitation inherent in decision tree classifiers—namely, their susceptibility to overfitting.
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Decision trees, by their nature, have a propensity to excessively tailor themselves to the
intricacies of the training data, particularly under conditions of heightened tree depth
or scant training samples. Under such circumstances, the phenomenon of overfitting
becomes pronounced, as the classifier excessively captures noise and idiosyncrasies within
the training data, compromising its generalization capability. This limitation could pose a
significant challenge in practical applications, as the low recall may result in a diminished
discovery rate of alias IPs. Consequently, this could lead to a restricted coverage of the
inferable router topology, negatively impacting the construction of the router topology.

Table 4. Evaluation results of four classifier models.

1 2 3 4 5

Pre 78.25% 80.93% 82.65% 65.36% 64.62%
Rec 67.39% 68.25% 66.11% 74.22% 72.88%
F1 0.7241 0.7405 0.7346 0.6951 0.8650

F0.5 0.7581 0.7803 0.7871 0.6696 0.6612
F2 0.6931 0.7046 0.6887 0.7226 0.7106

NB

Time/10w pairs (s) 0.0064 0.0061 0.0060 0.0062 0.0062

Pre 90.97% 79.44% 78.67% 88.89% 90.73%
Rec 41.48% 44.87% 45.46% 40.34% 42.08%
F1 0.5698 0.5735 0.5763 0.5550 0.5749

F0.5 0.7344 0.6883 0.6864 0.7164 0.7369
F2 0.4654 0.4915 0.4966 0.4529 0.4713

SVM

Time/10w pairs (s) 848.56 902.86 797.45 1101.88 932

Pre 99.81% 99.81% 99.77% 99.75% 99.85%
Rec 21.23% 22.22% 21.53% 22.74% 21.45%
F1 0.3501 0.3634 0.3542 0.3704 0.3531

F0.5 0.5735 0.5877 0.5778 0.5947 0.5768
F2 0.2520 0.2631 0.2553 0.2689 0.2545

DT

Time/10w pairs (s) 0.0042 0.0045 0.0048 0.0050 0.0045

Pre 95.74% 95.89% 95.93% 91.78% 94.96%
Rec 40.04% 40.59% 40.85% 39.49% 41.27%
F1 0.5647 0.5704 0.5730 0.5522 0.5748

F0.5 0.7490 0.7536 0.7556 0.7256 0.7535
F2 0.4531 0.4588 0.4615 0.4457 0.4653

RF

Time/10w pairs (s) 0.2433 0.6901 0.2307 0.2420 0.2512

The SVM classifier is evidently burdened by the parsing speed. While SVM boasts
robust generalization capabilities and excels in handling high-dimensional datasets, their
efficacy is tempered by computational demands, particularly evident in the processing
of large-scale datasets. SVM training entails substantial computational overhead and
necessitates extensive storage resources, factors that impede expeditious alias resolution
within network contexts. Moreover, SVM’s sensitivity to missing data imposes a requisite
for meticulous data preprocessing, therefore introducing variability in classifier accuracy.
Consequently, despite its theoretical strengths, SVM’s practical utility is constrained by
computational exigencies and susceptibility to data quality fluctuations.

In contrast, the Random Forest classifier manages to strike a balance across multiple
dimensions, achieving a harmonious blend of parsing speed, accuracy, and recall. While the
Random Forest model may not exhibit conspicuous advantages over alternative classifier
models concerning metrics such as precision, recall, and parsing time per 100,000 IP pairs,
its paramount significance emerges in scenarios where parsing accuracy assumes primacy.
The preeminence of the Random Forest classifier, underscored by its superior performance
in the F0.5 score, substantiates its unparalleled capability to ensure parsing precision. In
contexts where parsing accuracy is paramount, the Random Forest classifier emerges as
the optimal choice, notwithstanding its comparative performance in other metrics. We
expect the filtered classifier to simultaneously satisfy high precision of parsing results,
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fast parsing speed, and high discovery rate of alias IPs that can be parsed (high recall).
The Random Forest classifier strikes an attractive balance, making it an ideal choice for
researchers who require both high accuracy and a robust discovery of potential alias IPs.
Its balanced performance, resistance to overfitting, and noise immunity further add to
its appeal.

Given the favorable balanced performance and versatility of the Random Forest Clas-
sifier, as well as its ability to mitigate overfitting and handle noise in data, the decision to
construct AliasClassifier based on the Random Forest model for comparison with other
methods appears well-founded. Subsequent sections will delve into the details of the com-
parative experiments, shedding light on the effectiveness and advantages of this approach.

4.4. Alias Aggregation

Alias aggregation is the process of aggregating identified alias IP pairs into routers.
Traditional machine-learning methods employ alias passing for router node aggregation
following the identification of aliased IP pairs. Alias passing implies that for mutually
aliased pairs (IP A, IP B) and (IP B, IP C), the trio (IP A, IP B, IP C) are classified to the same
router node due to the existence of a common alias interface, IP B, for both pairs, as shown
in Figure 8.

IP A IP B

IP B IP C

IP A IP B IP C

Alias Pair1

Alias Pair2

Candidate Route1

Classifier

Figure 8. Process diagram of alias passing.

However, as discussed in Section 4.3, it is evident that regardless of the classification
model employed, the final classification results contain some errors. When alias passing
is used for router node aggregation on the IP pairs that have been discriminated against
by the classifier, the misreported alias IPs associate with many unrelated routers. This
association results in a significant reduction in the number of routers that are eventually
aggregated. Consequently, some of the routers inferred through the alias-resolution process
may be assigned more IP addresses than they actually possess.

To address the aforementioned “router bloat” problem, we propose a router aggre-
gation algorithm based on alias triangulation. An alias triangle comprises any three IP
addresses that are aliases of each other. If any three IP addresses in a router form an
alias triangle, we consider the router comprising these three IP addresses to be real. A
simple schematic of the router aggregation algorithm based on alias triangles is depicted in
Figure 9. The aggregation steps are as follows:

Step 1:We construct an alias set of IP addresses (Alias dataset) by incorporating all the
IP addresses deemed to be aliased by the classifier. Specifically, for any IP address ipk, we
construct an alias set for ipk by taking ipk as the key and the IP addresses judged by the
classifier to be aliases of ipk as the value: ipk = {ipk1, ipk2, . . . , ipkn}.

To reduce the data volume during router aggregation, we sort the Alias dataset in
ascending order based on the key IP and also eliminate the member IPs in the value IP
that are smaller than the key IP, i.e., for the set of IP aliases ipk = {ipk1, ipk2, . . . , ipkn}, there
exists int(ipki) > int(ipk) for any ipki. Where int() represents a decimal integer value.

Step 2: We select the IP address ipk with the smallest key IP from the Alias dataset to
initiate router aggregation. Each router is represented by a set of member IP addresses,
which is dynamically expanded as more IP addresses are discriminated. Therefore, the
initial IP set for Rk is Rk = {ipk}.

We subject the set of ipk aliases ipk = {ipk1, ipk2, . . . , ipkn} to alias triangulation. If
any two IP addresses (ipi, ipj) within ipk = {ipk1, ipk2, . . . , ipkn} are also aliased to each
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other, then (ipi, ipj) also belongs to the constituent IP addresses of Router Rk. After alias
triangulation of all IP addresses in {ipk1, ipk2, . . . , ipkn}, we obtain the new Router Rk.

Step 3: The judgment process from Step 2 is also applied to the newly added IP
addresses in Router Rk until all member IP addresses in Router Rk have completed the
alias triangle judgment. If no new members are added to Router Rk after all member IP
addresses in Router Rk have completed the judgment, it indicates that all members of
Router Rk have been recognized.

Step 4: Remove all member IPs of Router Rk from the Alias dataset and repeat Steps
2 and 3 until all IP addresses in the Alias dataset are devoid of alias triangles. The IP
addresses that do not form alias triangles undergo alias passing to construct potential
routers. This subset of routers may contain IP addresses that have been incorrectly aliased,
so we designate it as the Candidate Router.
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Figure 9. Router aggregation based on alias triangulation.

5. Experimentation and Evaluation

In this section, we initially conduct an analysis of AliasClassifier in juxtaposition with
state-of-the-art alias-resolution techniques. This is carried out to validate the effectiveness
and advancement of AliasClassifier, as elaborated in Section 5.1. Subsequently, we delve
into the discovery rate of resolvers’ alias IPs by establishing field test experiments, as
well as discussing the practical utility of the router aggregation algorithm based on the
alias triangle, as outlined in Section 5.2. We then assess the actual resolving efficiency of
each resolver by instituting a set of comparative experiments to ascertain the capability
of AliasClassifier in resolving large networks in section 5.3. Finally, in Section 5.4, we
explore the impact of the number of Vantage Points (VPs) on AliasClassifier to discuss the
deployment cost of AliasClassifier.

5.1. Effectiveness and Advancement

We conducted a comparison of carefully chosen alias resolvers using ground truth sets
procured from the ITDK dataset, with the objective of thoroughly assessing the performance
of AliasClassifier in relation to state-of-the-art alias-resolution techniques in terms of the
accuracy of resolution results and the discovery rate of alias IPs. However, we no longer
possess the supplementary ground truth data, aside from the ground truth set derived from
the ITDK dataset. As a result, for the effectiveness and advancement comparison study, we
were unable to juxtapose AliasClassifier with MIDAR + iffinder [13,27], the methodology
employed to generate the ITDK dataset. Instead, we selected another cutting-edge alias
classifier, APPLE [26], the most recent alias classifier proposed by CAIDA. APPLE identifies
potential alias pairs with a coverage accuracy that is comparable to MIDAR in IPv4. We
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also chose two advanced alias resolvers, TreeNET [19] and MLAR [21], to participate in the
comparative experiments. Notably, MLAR utilizes support vector machines as its kernel.

To ensure the precision of our distributed detection-based parsing algorithm, we have
strategically chosen 13 VPs distributed across the globe to conduct active detection, thus
collecting comprehensive feature information. In scenarios that employ machine-learning
models, we have employed a self-service sampling method to derive five distinct sets of
training and test data from our ground truth collection. These training sets serve as the
foundation for the training of machine-learning models, while the test sets play a crucial
role in evaluating the performance of all parsers involved. Consequently, AliasClassifier,
TreeNET, MLAR, and APPLE are each tasked with performing five alias parses. This
systematic approach guarantees a robust evaluation of the parsing algorithms and reinforces
the reliability and comprehensiveness of our assessment.

Figure 10 furnishes a comprehensive exposition delineating the parsing accuracy
proficiency of the four parsers under scrutiny. Notably, APPLE emerges as the paragon of
resolution accuracy, consistently achieving 100% precision in router alias resolution across
all five test experiments. However, meticulous scrutiny reveals a conspicuous limitation:
APPLE exhibits a meager discovery rate of IPs bearing aliasing relationships, reflected in
its paltry average recall rate of merely 0.22%. This diminutive figure denotes the accurate
identification of a trifling fraction of IPs harboring aliasing relationships by APPLE.
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Figure 10. Performance of four parsers in terms of precision and recall.

The exceedingly low incidence of discovering aliased IPs in APPLE may be intricately
intertwined with the incompleteness characterizing the amassed topology dataset. Despite
a concerted effort involving the deployment of 13 VPs spanning the globe to procure a
comprehensive global IP topology, the corpus of valid IP-level topologies remains conspic-
uously circumscribed. This limitation is exacerbated by the dispersal of experimental IP
addresses across disparate geographic locations worldwide. Consequently, notwithstand-
ing APPLE’s adeptness in precise alias resolution, its efficacy is significantly curtailed in
the absence of a robust and expansive IP-level topology dataset.

TreeNET also suffers heavily from a high reliance on IP-level topology, and similar to
APPLE, TreeNET’s average recall is only 1.5%, even though it also achieved an excellent
average accuracy of 99.88% over the five experiments. Employing topology measurements,
TreeNET segments all IP aliases into discrete sets before embarking on an array of supple-
mentary alias determination procedures. Despite earnest endeavors aimed at enhancing
resolution precision and expanding the roster of resolvable IPs, TreeNET contends with
the persistent lacuna inherent in router topology due to the absence of a comprehensive IP
topology framework.

In stark contrast to the limited recall exhibited by APPLE and TreeNET, MLAR and
AliasClassifier emerge as formidable contenders. Despite MLAR’s middling average pre-
cision of 92.80%, ranking it as the least precise among all parsers scrutinized, its recall
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performance markedly outshines that of APPLE and TreeNET, boasting an average re-
call of 8.85%. Our proposed innovation, AliasClassifier, surpasses its predecessors, not
only achieving an average classification precision of 94.80% but also showcasing an out-
standing average recall of 40.45%, surpassing the performance of other alias parsers by a
considerable margin.

The notable enhancement in the recall rates of MLAR and AliasClassifier stems from
their reduced reliance on IP-level topology. Unlike their counterparts, MLAR and AliasClas-
sifier exhibit a diminished dependency on comprehensive IP-level topology. Leveraging
features that are comparatively more accessible than a complete IP-level topology, both
MLAR and AliasClassifier substantially enhance their discovery rates of alias IPs. Fur-
thermore, compared with MLAR, the features selected by AliasClassifier are not only less
difficult to obtain but also more effective in improving the discovery rate of alias IPs and
have a leading edge in accurately determining alias relationships. AliasClassifier outper-
forms MLAR by enhancing overall accuracy and recall by 2% and 31.6%, underscoring the
superior efficacy of features selected by AliasClassifier in discerning alias relationships.

The huge difference in recall between the parsers leads to a huge gap in their com-
bined scores. Figure 11 offers a detailed insight into the performance of the four parsers
across the three comprehensive evaluation metrics. Notably, AliasClassifier emerges as
the indisputable leader, showcasing a substantial advantage over the other parsers, largely
attributable to its superior recall rates. Conversely, APPLE and TreeNET, affected by their
lower recall rates, ultimately exhibit subpar comprehensive performance, highlighting the
crucial role recall plays in the overall efficacy of alias-resolution methodologies.
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Figure 11. Performance of four parsers on the composite metrics.

The recall of an alias resolver mirrors the extent of resolvable IP coverage, delineating
the discovery rate of alias IPs. A heightened parser recall signifies a greater number of IPs
successfully resolved, therefore facilitating a more comprehensive delineation of router
topology. The comparatively low recall rates observed in APPLE and TreeNET underscore
the pressing need to prioritize the discovery of potentially aliased IPs over the precise
determination of aliasing relationships between IPs towards achieving a more exhaus-
tive depiction of router topology. Regrettably, this nuanced emphasis has eluded earlier
iterations of alias-resolution tools. The marked surge in recall witnessed in MLAR and
AliasClassifier signals the heightened potential of machine-learning-driven alias-resolution
tools in uncovering more comprehensive router topologies compared to their conventional
counterparts. Notably, our proposed AliasClassifier demonstrates a substantial proficiency
in uncovering a greater array of aliased IPs compared to other advanced alias resolvers,
therefore solidifying its position as the preeminent frontrunner in the endeavor to un-
ravel more expansive router topologies. Consequently, AliasClassifier resolves a more
comprehensive router topology compared to other alias resolvers.



Electronics 2024, 13, 1747 19 of 25

5.2. Field Testing of Real Network

The observed low recall in parsers like APPLE and TreeNET can likely be attributed to
two plausible factors. One possibility is that the accuracy of the latest ITDK dataset, which
we utilized, has significantly deteriorated. Given that the ITDK dataset has been relevant
to the topology for a year, substantial changes in the Internet topology over the past year
could result in most alias IPs losing their alias relationships. Another possibility is that
APPLE and TreeNET may not be highly effective at discovering aliased IPs. While they can
accurately identify aliased IPs, the number of aliased IPs discovered appears to be sparse.

To ascertain the actual cause of the low recall in resolvers such as APPLE and TreeNET,
we conducted field testing on 1 million IPs located in the same region. This testing aimed
to identify what contributes to the low recall of APPLE and TreeNET and to verify the
real alias IPs discovery ability of advanced resolvers. We filtered IPs from multiple IP
geolocation libraries [34–36] that are co-located in Shanghai, selecting 1 million IPs that are
most likely to be in the same region as targets for alias resolution. In this set of experiments,
MLAR is not included in the discussion due to its lengthy resolution time for 1 million
IPs, which is expected to exceed 87,000 h. Consequently, we did not use the MLAR for
field testing. We focus on the discovery ability of aliased IPs of three resolvers, namely
AliasClassifier, APPLE, and TreeNET. Simultaneously, to offset the absence of MLAR, we
incorporated the classical combinatorial parser of MIDAR + iffinder for field testing. The
rationale behind introducing the classical combined parser of MIDAR + iffinder is to render
the field test experiments more persuasive.

In this experiment, we solely focus on the discovery ability of the resolvers’ alias
IPs, assuming by default that the alias IPs are discovered correctly. To ensure the fairness
and reliability of the test results, we conduct tests separately using four types of alias
resolvers in the same experimental environment. The feature data required by each resolver
is collected in real time. For APPLE, a resolver that is highly dependent on network
topology, we field probe all IP addresses in Shanghai (approximately 15.36 million IPs)
from 13 VPs around the world. This approach aims to construct Shanghai’s network
topology as comprehensively as possible and improve the discovery rate of APPLE’s alias
IPs. Meanwhile, each resolver conducts three experiments, respectively, and the one with
the highest number of resolution results is selected for comparison. Table 5 presents the
results of the field tests for the four resolvers.

Table 5. Results of field tests of the four advanced parsers.

TreeNET APPLE MIDAR + Iffinder AliasClassifier

Alias IP pairs 66,551 29,426 5570 7,501,482
Interface IPs 4668 382 1072 11,514

Routers 1291 32 209 2385

As delineated in Table 5, the alias IP pairs discovered by TreeNet, APPLE, and MI-
DAR+iffinder were 66,551, 29,426, and 5570, respectively. The actual count of IP addresses
with resolved alias relationships was significantly lower, standing at 4668, 382, and 1072 for
each method, respectively. This represents a sparse fraction when compared to the target
total of 1 million IP addresses. In stark contrast, AliasClassifier identified a substantial
total of 7.5 million alias IP pairs. The actual number of IP addresses with resolved alias
relationships was 11,514, which is 2.4 times the quantity of alias IPs unearthed by TreeNET,
and 30 times by APPLE. This outcome mirrors the difference in recall between AliasClas-
sifier, TreeNET, and APPLE, as presented in Figure 10. The low recall of aliased IPs for
TreeNet and APPLE is not due to an excess of invalid data in the ITDK dataset. Instead,
it appears that these advanced parsers inherently struggle with discovering potentially
aliased IPs and are unable to discover aliased IPs in large quantities in the absence of
sufficient feature information.

Our field test experiments served as a valuable platform to assess the efficacy of
the router aggregation method predicated on alias triangulation. We observed that de-
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spite AliasClassifier inferring a dataset comprising 7.5 million pairs of aliased IPs, the
application of the alias passing method yielded a mere 64 routers. Notably, one of these
routers contained more than 103,000 IP addresses, a figure that starkly deviates from the
true representation of routers on the Internet. In contrast, when we employed an alias
triangulation-based approach to router aggregation, AliasClassifier inferred a more plausi-
ble set of 2385 routers. Among these, the router with the highest number of IP addresses
contained only 793 addresses. This figure aligns more closely with the number of IP
addresses typically associated with real-world Internet routers.

Another alias-resolution method that employs alias passing for router aggregation,
APPLE, is similarly afflicted by the phenomenon of “router bloat”. Despite APPLE’s
recognition of a substantial 29,426 individual IP pairs, it manages to resolve a mere 32
routers. In contrast, the classic MIDAR+iffinder method deduces a total of 209 routers, even
though it identifies only 5570 IP pairs. This stark discrepancy underscores the limitations
inherent in the alias-passing-based approach.

While there exist disparities between the router results inferred by AliasClassifier and
those furnished by MIDAR+iffinder, the inferred outcomes of AliasClassifier predominantly
cover those of MIDAR+iffinder. The routers deduced by AliasClassifier typically encompass
a greater number of IP addresses compared to the results proffered by MIDAR+iffinder.
This observation indirectly yet unequivocally attests to the reliability of AliasClassifier.
Field test experiments lend further credence to this assertion, demonstrating that the router
aggregation method predicated on alias triangulation is indeed efficacious in curtailing the
number of irrelevant IPs in a router. Consequently, this method significantly enhances the
accuracy of alias resolution, underscoring the potential of AliasClassifier as a robust tool in
the realm of router alias resolution for IPv4 networks.

5.3. Resolution Efficiency

During the field testing, we also conducted a comparative analysis of the resolution
efficiency of various resolvers across different network sizes. We selected IP addresses in
increments of 104, 105, 5 × 105, 106, and 2 × 106 from the Shanghai city IP address dataset.
Each of these subsets was then subjected to alias resolution using four distinct parsers.
Our primary focus in this experiment was the time efficiency of the parsing process rather
than the parsing results. To ensure a fair comparison, we included the time taken by each
parser to acquire feature information in our time-efficiency calculations. The total elapsed
time for each parser was computed by summing up the time taken for data collection, data
processing, and alias resolution. Figure 12 presents a comparative analysis of the parsing
efficiency of the four parsers under investigation.
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Figure 12. Comparison of parsing efficiency of four parsers.

Figure 12 illustrates that the parsing time of each resolver escalates gradually with
expanding network size. Notably, the parsing speed of MLAR, based on Support Vec-
tor Machine, is markedly constrained by the number of IPs to be parsed. It necessitates
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12.5 h to parse 10,000 IP addresses, and this time dramatically surges to 1500 h for parsing
100,000 IP addresses, indicative of an exponential growth trend in parsing time. Conse-
quently, MLAR is deemed less suitable for large-scale alias-resolution endeavors. Com-
paratively, APPLE emerges as the swiftest, with its runtime predominantly contingent on
the time taken to acquire network topology information. Subsequently, AliasClassifier
follows suit, requiring approximately 19.37 h to resolve 1 million IPs. The time consumption
exhibits a linear growth pattern. In contrast, TreeNET’s time consumption aligns closely
with a linear growth trajectory, demanding 87.13 h for resolving 1 million IPs, 4.5 times
more than AliasClassifier. This underscores AliasClassifier’s favorable parsing speed and
its suitability for large-scale network alias-resolution tasks.

5.4. Deployment Cost

Deployment cost is a crucial metric in evaluating a router alias resolver. The deploy-
ment cost of a distributed parser is anticipated to exceed that of a centrally deployed parser,
a fact that is particularly evident in the context of large networks. Excessive distributed
active probing for large networks may disrupt the network’s normal operation, diminish
the parsing efficiency of the resolver, and escalate the economic cost. However, increasing
the number of detection points may improve accuracy. For instance, active detection of the
same IP pair from N VPs yields N PLDV features and N TTLDV features. Consequently,
the feature vector generated for each sample based on N VPs will comprise N PLDV and N
TTLDV , leading to an expansion of the feature vector. As the number of favorable observa-
tion points increases, so does the feature vector used for classifier training. Theoretically,
an increase in the number of features will help improve the accuracy of the classifier.

We delve further into the deployment cost of AliasClassifier, specifically examining
the influence of the quantity of VPs on the accuracy of AliasClassifier. To assess the impact
of the number of VPs on AliasClassifier, we imposed an artificial limit on the number
of VPs. This meticulous investigation is designed to shed light on how the quantity of
VPs influences AliasClassifier’s performance, offering valuable insights into the role of
favorable observation points in the system’s operation. Table 6 presents the performance
results of AliasClassifier based on varying numbers of VPs.

In Table 6, our investigation reveals that augmenting the Random Forest classifier,
AliasClassifier, through the augmentation of probe points yields less than satisfactory
outcomes. In the process of training the Random Forest classifier for AliasClassifier, we
utilized a batch of training sets derived from the ground truth dataset, employing the
self-service sampling method. The Out-of-Bag (OOB score) represents the evaluation score
achieved by selecting samples using the “self-help method”, which approximates n-fold
cross-validation test accuracy [37]. Our experimentation encompassed the utilization of 1,
2, 3, and 4 distributed detectors.

Table 6. The impact of the number of VPs.

No. of VPs No. of Features
Best Parameters

OOB Score
Estimated Quantity Maximum Length

1 10 220 18 95.74%
2 15 280 20 92.49%
3 20 270 17 96.32%
4 25 220 20 92.91%

When we employ one VP, we generate a Random Forest model comprising 220 es-
timators with a maximum depth of 18, yielding an OOB score of 95.74%. Intriguingly,
our observations indicate that the OOB accuracy of AliasClassifier displays an oscillatory
pattern as the number of detectors increases rather than exhibiting a consistent enhance-
ment. For instance, a classifier based on one VP achieves a notable parsing accuracy of
95.74%, yet the accuracy of a classifier predicated on 2 VPs declines to 92.49%. Although
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the classifier predicated on 3 VPs attains the peak accuracy of 96.32%, the accuracy subse-
quently diminishes with the classifier based on 4 VPs. This observation underscores that
the parsing accuracy of AliasClassifier is independent of the number of VPs, characterizing
it as a typical centralized alias parser. This implies that AliasClassifier does not necessitate
distributed deployment to achieve high-quality router alias resolution. Consequently,
AliasClassifier emerges as a highly practical alias-resolution technology for real-world
deployments, distinguished by its exceptionally low deployment cost.

6. Discussion

Despite these promising results, our study identified a potential router encompassing
1927 IP addresses. This router represents the final potential router composed of aliased IPs
without any alias triangles, implying that alias passing is employed to obtain a potential
router. The challenge arises from the fact that our algorithm cannot further discern whether
this router contains extraneous IPs.

Future investigations will explore the integration of traffic data and IP remarks to aug-
ment the discernment of potential alias IP pairs. The management of multiple IP interfaces
within a single router typically regulates traffic processing velocity through a centralized
system. Consequently, prolonged monitoring of traffic associated with potential alias IP
addresses, segmented by interface IPs over distinct timeframes, is under consideration.
Distinctive attributes will serve as foundational criteria for the refined classification of
non-alias IP addresses within prospective routers, therefore bolstering their reliability.
Additionally, leveraging whois data, geographic locational insights, and supplementary
remarks linked with IP addresses will aid in filtering out non-alias IPs within prospective
routers. Efficient and precise methodologies for enhancing the credibility of prospective
routers represent a critical avenue necessitating further investigation and refinement in our
ongoing research endeavors.

Indeed, the AliasClassifier methodology extends its applicability beyond IPv4 net-
works, demonstrating promise for employment within IPv6 networks as well. With the
depletion of IPv4 addresses, the momentum behind IPv6 deployment is accelerating, as
demonstrated by the exponential growth observed in BGP prefix advertisements for global
IPv6 [38]. Consequently, there is an increasingly pressing need to delve into the network
topology and alias-resolution mechanisms specific to IPv6.

However, IPv6 not only extends the address space beyond the limitations of IPv4 but
also introduces alterations to the packet format of IP packets [39]. Given the distinct design
characteristics of IPv6 networks and the relative scarcity of IP addresses within them, many
alias-resolution techniques proven effective in IPv4 environments are incompatible with
IPv6 networks. Consequently, researchers have endeavored to develop IPv6-specific alias-
resolution methodologies, leveraging approaches such as source routing, induced IPID,
and prefix-based algorithms, exemplified by systems like Atlas [40], RMP [41], TBT[42],
Speedtrap [43], and UAv6 [44]. These algorithms commonly exhibit issues related to their
universality and parsing efficiency. For instance, source-routing-based alias resolution is
confined to a subset of routers, while the TBT algorithm generates substantially larger data
volumes than the IPv4 IPID method, leading to escalated network loads as the number of
aliases grows rapidly.

The six primary classification features we have identified are not only prevalent within
IPv4 infrastructures but also commonly observed in IPv6 contexts. Consequently, Alias-
Classifier exhibits significant potential for router alias resolution within IPv6 environments.
Nevertheless, the efficacy of AliasClassifier in IPv6 networks is influenced by factors such as
the relatively limited pool of known active IP addresses within the current IPv6 landscape
and the absence of IPv6 networks characterized by high concentrations of IP addresses.
Consequently, certain features outlined in this study may struggle to differentiate between
alias and non-alias IPs within IPv6 networks, notably those reliant on spatial disparities
among IP addresses, therefore attenuating AliasClassifier’s effectiveness in this domain.
However, as the prevalence of IPv6 continues to escalate in the foreseeable future, the effi-
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cacy of AliasClassifier within IPv6 realms may gradually augment, driven by the expanding
scope and intricacies of IPv6 network configurations.

7. Conclusions

In this paper, we delineate six features that are pivotal to the router alias-resolution
problem based on four prevalent hypothetical behaviors. These features aid us in effec-
tively differentiating between aliased and non-aliased IPs. Concurrently, we introduce an
alias triangulation-based router aggregation algorithm to augment the accuracy of alias
resolution. We construct an alias resolver, AliasClassifier, utilizing a Random Forest classi-
fier and juxtapose it with an array of state-of-the-art alias resolvers. Experimental results
demonstrate that AliasClassifier is aptly suited for router alias resolution in large-scale
IPv4 networks. In comparison to the state-of-the-art TreeNET and APPLE, AliasClassifier
achieves a 2.4× and 30× enhancement in alias IP discovery rate, respectively. Simulta-
neously, AliasClassifier can resolve 1 million IP addresses in less than 20 h, showcasing
remarkable efficiency. Of particular note is AliasClassifier’s role as a centralized alias
resolver, which renders it highly cost-effective to deploy.
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Appendix A

The confusion matrix is a prevalent tool in classification tasks, offering a comprehen-
sive reflection of the classification results. It succinctly conveys the outcomes of binary
classification tasks. By comparing predicted results with actual results, four scenarios
can emerge: true positives (TP), false positives (FP), true negatives (TN), and false nega-
tives (FN).

Precision, within the context of classification or statistical analysis, is quantitatively
defined as the ratio of true positive instances to the total number of samples that have been
classified as positive.

Precision =
TP

TP + FP
The recall rate is defined as the proportion of all actual positive samples correctly

categorized as positive by the model.

Recall =
TP

TP + FN

Fβ score: more generally defined scores are:

Fβ = (1 + β2) ∗ Precision ∗ Recall
(β2 ∗ Precision) + Recall

The physical significance of this is that the two scores, precision and recall, are com-
bined into a single score, and in the process of combining them, the recall is weighted

https://github.com/fyfishie/AliasClassifier-article-code
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twice as much as the precision. The F1 score considers recall and precision to be equally
important, the F2 score considers recall to be twice as important as precision, and the F0.5
score considers recall to be half as important as precision.
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