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Abstract: The recently introduced Video Coding Standard, VVC, presents a novel Quadtree plus
Nested Multi-Type Tree (QTMTT) block structure. This structure enables a more flexible block
partition and demonstrates enhanced compression performance compared to its predecessor, HEVC.
However, The introduction of the new structure has led to a more complex partition search process,
resulting in a considerable increase in time complexity. The QTMTT structure yields diverse Coding
Unit (CU) block sizes, posing challenges for CNN model inference. In this study, we propose a
representation structure termed Block Segmentation and Block Connection (BSC), rooted in texture
features. This ensures that partial CU blocks are uniformly represented in size. To address different-
sized CUs, various levels of CNN models are designed for prediction. Moreover, we introduce a
post-processing method and a multi-thresholding scheme to further mitigate errors introduced by
CNNs. This allows for flexible and adjustable acceleration, achieving a trade-off between coding time
complexity and performance. Experimental results indicate that, in comparison to VTM-10.0, our
“Fast” scheme reduces the average complexity by 57.14% with a 1.86% increase in BDBR. Meanwhile,
the “Moderate” scheme reduces average complexity by 50.14% with only a 1.39% increase in BDBR.

Keywords: VVC; CNN; BSC; coding unit partition

1. Introduction

With the emergence of 4K/8K, 3D, VR/AR/MR, High Frame Rate (HFR), High Dy-
namic Range (HDR), and other Ultra-High-Definition (UHD) videos, there are increasingly
stringent requirements for the capability of video compression, and the need for more
efficient video coding standards is becoming more and more urgent. To satisfy the require-
ment for ultra-high definition video compression, the Joint Video Experts Team (JVET)
group, jointly established by Moving Picture Expert Group (MPEG) and Video Coding
Experts Group (VCEG), designed the Versatile Video Coding (VVC), which was finalized
in July 2020 as the next-generation international video coding standard [1]. VVC inherits
the basic framework of previous HEVC and introduces new techniques such as QTMTT [2],
Intra Sub-Partitions (ISP), Multiple reference line (MRL), Local Illumination Compensation
(LIC), Bi-directional Optical flow (BIO), Affine motion compensated prediction (AMC) [3],
and Adaptive Loop Filtering (ALF), etc. These new techniques enable VVC to have a
more powerful coding performance compared to the previous high-efficiency video cod-
ing (HEVC), but at the same time, they also bring about a huge overhead in coding time
complexity. Among them, the introduction of QTMTT technology is the main part that
leads to the increase in coding time complexity overhead [4,5]. In HEVC, only the quadtree
(QT) partitioning structure is allowed to be used to partition each coding tree unit (CTU),
while QTMTT supports the binary-tree (BT) and ternary-tree (TT) partitioning structures in
addition to the QT partitioning. This flexibility allows for adaptation to different image
features, making the partitioning structure more flexible and bringing more efficient coding
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efficiency. However, the introduction of BT and TT leads to a more complex partition search
process, resulting in significant time complexity overhead. Previous studies have shown
that the time complexity overhead of partition search in VVC is above 90% [6]. Therefore,
it is necessary to reduce the time complexity of VVC and decrease the time spent in the
partition search process [7].

In past research, the fast partitioning of CU partitions has been widely used to reduce
time complexity, extending a large variety of fast partitioning methods. In HEVC, due to
the existence of only a single QT partitioning structure, numerous studies have achieved
superior performance by determining the need for partitioning through manually designed
features. Yet, for VVC, due to the newly introduced BT and TT partition structures, which
increase the number of partitioning modes to six, including quadtree, horizontal binary-tree
(BTH), vertical binary-tree (BTV), horizontal ternary-tree (TTH), vertical ternary-tree (TTV),
and non-split (NS), CU partitioning has become much more flexible, making it difficult to
use previous algorithms for straightforwardly reducing complexity overheads. In recent
studies, attempts have been made to address this challenge through statistical analysis
or machine learning methods. The fundamental idea behind these approaches is to skip
modes and terminate early.

The new QTMTT structure as shown in Figure 1a, allows CUs to perform five partitions
and greatly enhances the flexibility of CU blocks. Compared with HEVC, to improve
the coding efficiency and adapt to higher resolution video content, VVC increases the
default size of the CTU to 128 × 128, and the minimum CU size is specified to be 4 × 4.
During the CU partitioning process of VVC, the CTU is always quadtree partitioned since
the maximum CU is 64 × 64 by default. Furthermore, VVC specifies that only quadtree
partition is allowed until the CU size is 32 × 32. Five partitions model are allowed for CUs
of size 32 × 32 and its sub-CUs, which results in 15 different sizes of CU blocks as shown in
Figure 1b. This partitioning structure greatly increases the flexibility of CU blocks, and the
different sizes of CU blocks can be better adapted to different texture features. The process
of CU partitioning is very violent, in which VVC checks the RD cost of all the partitioning
modes for each CU as well as its sub-CUs, and selects the partitioning combinations with
the optimal RD cost. In HEVC, up to 21 combinations need to be checked for each CU of
32 × 32 size, but for VVC, 361 combinations need to be checked. Therefore, the QTMTT
structure in VVC significantly increases the overall coding complexity.

32x3
2

8x32

16x8

8x8

16x3
2

32x1
6

32x8

32x4 4x32
16x1

6

8x16 16x4 4x16
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NS QT BTV BTH TTV TTH

(a) The split mode in the QTMT partition structure.

(b) The example of a 64×64 CU Partition Result.

Figure 1. QTMTT structure in VVC.



Electronics 2024, 13, 1767 3 of 17

Due to the complexity of the QTMTT structure, there is a wide variety of CU blocks of
different sizes, which makes it difficult to perform unified inference with models. In this
paper, we propose a new BSC structure that represents some of the blocks in a QTMTT
as the same size and then uses different levels of CNN models to directly predict each
block partitioning mode. In the CNN model, we introduced symmetric and asymmetric
convolutional kernels for extracting texture features of different dimensions and added
hand-crafted features in the fully connected layer to make the model more compatible with
the BSC structure. After obtaining the output of the model, we use a multi-thresholding
scheme to decide on the final segmentation mode, achieving tunability in terms of coding
time complexity and performance.

The main contributions of this paper are as follows:

• Block segmentation and block connection structure: we design a new representation
structure for partial CUs based on texture features to represent partial CU blocks as
the same size.

• Different levels of CNN models: we designed different levels of CNN models to predict
the partitioning mode of CU blocks, introduced asymmetric convolutional kernels for
extracting different features in the model, and also introduced some external features,
which proved the effectiveness.

• Multi-thresholding design: we propose a multi-thresholding scheme that sets differ-
ent thresholding schemes for different levels of characteristics, realizing a trade-off
between coding time complexity and coding performance.

The rest of the paper is organized as follows. Section 2 summarizes the background
and related work. Section 3 explores the details of the overall algorithm. Section 4 presents
the experimental results. Section 5 describes the conclusions.

2. Related Works

In previous work, a large amount of research has been spent on fast CU partition-
ing with the expectation of reducing the time complexity of CU partitioning. We cat-
egorize the previous methods into two groups: statistical analysis-based methods and
machine learning-based methods. In this section, we summarize and review the previous
research results.

2.1. Methods Based on Statistical Analysis

Methods based on statistical analysis attempt to utilize the data or features generated
during the coding process to determine the final classification result. In [8], a bi-directional
depth search method is proposed using previously encoded CUs and predicted mode
costs. In [9], an adaptive early termination algorithm based on coding unit depth history is
proposed to track CU depth history based on the CTU temporal correlation to determine the
depth range of the target CUs to terminate the segmentation early. In [10], depth difference
and RD loss ratio are utilized to model and perform split and early termination decisions
for CUs. In [11], the correlation with the distribution of the distortion cost of neighboring
block rates under different quantization parameters is analyzed, and a threshold is set to
terminate the partition early based on the correlation. In [12], a methodology is introduced
for Coding Unit (CU) segmentation based on the keypoint-based CU depth decision (KCD).
Meanwhile, in [13], a novel fast CU segmentation decision approach is proposed, leveraging
SAO edge category information as spatiotemporal encoding parameters.

In [14], a methodology is presented where partition modes are determined based on
the gradient features and variance of the partitions. In [15], a methodology is introduced
that utilizes the sum of the mean absolute deviation (SMAD) to quantitatively measure the
vertical and horizontal texture complexity. In [16], the features of the current block and
coding context are explored based on the selected intra-prediction mode. This exploration
aims to skip unnecessary partitioning computations. In [17], the encoding results of BT
partitions are incorporated as features in the decision process for TT partitioning. This
inclusion is aimed at reducing the time complexity of TT partitioning. In [18], an efficient
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algorithm is proposed for the selection of the partitioning direction of the current CU.
This algorithm utilizes entropy and texture contrast as effective features to discriminate
the optimal partitioning direction for the current CU. In [19], depth information from
temporally and spatially adjacent blocks is extracted to predict the optimal depth of CUs.
This enables the early termination of partitioning, reducing unnecessary time expenditures.
In [20], explicit VVC features (EVFs) and derived VVC features (DVFs) are manually
designed based on the correlation with the QTMTT structure. These features are utilized
to facilitate the early termination of the nested TT block structure after QT partitioning.
In [21], the distortion of CUs is obtained by calculating the difference between the original
luminance pixels and the predicted luminance pixels. This feature is utilized to establish
an early skip decision model for both BT and TT partitioning for each CU.

However, these algorithms heavily rely on manually designed features and heuristic
rules to make decisions for video coding. Although these methods still perform well,
manually designed features are usually difficult to capture complex nonlinear relationships
and generalize to different situations. Moreover, summarizing features based on data
analysis is not representative of all situations and only serves to show a high correlation,
making it difficult for these algorithms to further improve their performance.

2.2. Methods Based on Machine Learning

In recent years, machine learning has been widely used in a large number of studies,
showing excellent performance, and is rapidly being cited in the field of fast video coding.
Machine learning models can automatically learn the features from large amounts of data
and can represent complex nonlinear features well. In [22–24], each Coding Tree Unit
(CTU) is partitioned into blocks of size 32 × 32. A Convolutional Neural Network (CNN) is
employed to predict the depth range of 32 × 32 Coding Unit (CU) blocks, facilitating the
premature termination of unnecessary rate-distortion optimization (RDO) computations.
However, this premature termination strategy may yield counterproductive results in cases
of high texture complexity, as there is no need to skip RDO calculations in such scenar-
ios. In [25,26], a partition map is employed to represent the block partitioning structure
based on QTMTT. In these works, convolutional neural network (CNN) models are con-
structed to predict the optimal partition map based on the original pixel values. However,
the prediction of partition maps relies on intricate sub-networks, leading to suboptimal
computational efficiency and posing challenges for hardware implementation. Moreover,
the complexity of the partition maps may contribute to inaccuracies in the prediction pro-
cess. In [27,28], a methodology is implemented wherein each 64 × 64 block is subdivided
into multiple 4 × 4-sized sub-blocks. CNN is leveraged to deduce, for each 4 × 4 sub-block,
a probability vector denoting the likelihood of its borders serving as partition bound-
aries. This information is harnessed to formulate the overall partitioning structure for the
64 × 64 block.

In [29], a methodology is introduced wherein 32 × 32 blocks are stratified based on
their side lengths. The proposed Hierarchical Grid Fully Convolutional Network (HG-
FCN) is employed to predict probability vectors denoting the likelihood of side lengths
serving as boundaries within 32 × 32 blocks across different hierarchical levels. In [30],
a partition homogeneity map (PHM) is introduced, and a Fully Convolutional Network
(FCN) is employed to infer the final results. However, fundamentally, this approach aims
to predict the probability of 7 × 7 blocks serving as boundaries. The inherent bottom–up
predictive structure may introduce redundant computations and compromise the accuracy
of predictions.

In [31], an approach is introduced, employing asymmetric convolutional kernels for
the prediction of partition modes. Similarly, in [32], CNN is utilized to directly predict
the partition modes of CUs. In [33,34], an adaptive pooling-variable CNN is proposed to
predict the partitioning of CUs of varying sizes. However, the pooling process inevitably
introduces the loss of certain features.
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In the realm of current video coding research, efficient CU partitioning strategies are
crucial for enhancing the encoding efficiency and reducing computational complexity. Al-
though various deep learning-based approaches have been proposed to predict the optimal
partitioning modes of CUs, these methods typically confront the challenge of utilizing mod-
els to replace partition search. Addressing this issue, this paper introduces an innovative
BSC structure capable of representing CUs of varying sizes as model inputs of the same
dimension. With this structure, we can directly predict a wider range of CU partitioning
modes using a CNN model. Moreover, our approach not only maintains high accuracy but
also incorporates a threshold scheme to flexibly adjust the acceleration efficiency, thereby
achieving a superior balance between encoding efficiency and computational complexity.
Our “Fast” scheme reduces the average complexity by 57.14% and increases the BDBR
by 1.86%, while the “Moderate” scheme reduces the average complexity by 50.14% and
increases the BDBR by only 1.39%.

3. The Proposed Method

Our proposed method uses a CNN model to replace part of the time-consuming
partition search process. Figure 2 shows the flowchart of the overall algorithm. The BSC
structure and CNN model are used to determine the partitioning modes for most of
the CUs, and the encoder partitioning process can be guided by the model prediction
results. The overall architecture of the method contains BSC mapping, segmentation mode
prediction, post-processing, and CU encoding. We designed the 64 × 64 CNN Model,
32 × 32 CNN Model, and 16 × 16 CNN Model for the different sizes of CUs to predict the
partitioning modes of different sizes of CUs. To enable more CUs to be predicted by the
16 × 16 CNN Model, we propose BSC structures to give more blocks of 16 × 16 mapping.
Considering that the prediction against BSC structures may not be standardized, we design
a post-processing algorithm to solve this problem. In addition, to increase the accuracy of
the model prediction to reduce the error, we design a multi-thresholding scheme to further
increase the stability of the model. After obtaining the prediction results, the encoder
can directly skip this level of CU partition. Due to the multi-thresholding scheme and
the multi-level network structure, the encoder can arbitrarily choose whether to use the
network at this level, as well as arbitrarily adjust the threshold at a certain level, thus
realizing flexible acceleration settings.

Start CU coding

CU encoding

End CU coding

CNN Prediction

Post-processing

VTM partition search

B = CU Size

Y

N

Figure 2. Flowchart of the overall algorithm (B = CU size represents one of the CU sizes: 64 × 64,
32 × 32, 16 × 16, 32 × 16, 16 × 32, 32 × 8, 8 × 32).
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3.1. Block Segmentation and Block Connection Structure

VVC takes a lot of time for the partition search process. Therefore, streamlining this
process is crucial for encoder efficiency. However, the size of CUs in the same layer may
be different and the size of CUs in different layers may be the same, and this irregularity
in size makes it difficult to make direct predictions. To make direct predictions of CUs,
finding a single representation that unifies the size of CUs is the first problem that needs to
be solved. As shown in Figure 3, we have quantified the blocks in the dataset that correlate
with the BSC structure. It is clear that the BSC structure enables the 16 × 16 CNN model to
process an additional 40% of CU blocks, which is highly valuable in terms of reducing the
encoding time.

Figure 3. Block segmentation and block connection structure data statistics.

We propose a new BSC structure based on the correlation of image texture features,
expecting to represent the partial CUs of the same size. As shown in Figure 4a, for CUs of
16 × 32 and 32 × 16 sizes, we segmented it into two 16 × 16 sized images from the middle
to represent this CU. For the CUs of 8 × 32 and 32 × 8 sizes, we first split it into two 8 × 16
and 16 × 8 images from the center and then concatenated the left (bottom) half of the image
with the right (top) half of the image to form a new 16 × 16 sized image. We try to use this
BSC structure to unify four different sizes of CU blocks into the same 16 × 16 and design
models to reason about them in a unified way.

Specifically, for the way it may be partitioned, we map the texture features of the
original CU image as well as the partitioning mode to the newly composed image of
16 × 16 size. As shown in Figure 4b, in the block segmentation structure (taking 16 × 32 as
an example), this mode of NS indicates that the original CU image texture is not complex
and does not need to be partitioned, and we consider that neither of the texture features of
the segmentation two images is complex, corresponding to the NS partition modes. For the
BTV and TTV partition modes, there is a difference between the texture features of the left
and right parts of the original image, and we believe that the two images after segmentation
still retain this difference, so they still correspond to the original partitioning case. However,
for the TTH partition mode, this partition mode indicates that the original CU image
exhibits three different levels of texture features in the vertical direction, and when the
original CU is cut from the middle, the three original different levels of features will exhibit
two different levels of features in each block after the cut, corresponding to the BTH
partition model. It is worth saying that, in the BSC structure, there is no design for the
BTH partition case, when cut from the middle, the two newly cut images will represent the
information of next-level partitioning, which cannot be extracted from the current level,
which is a situation that we will solve by the original encoder in post-processing.
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(b) Block segmentation structure

(c) Block connect structure(a) BSCA

Figure 4. Block segmentation and block connection structure.

As shown in Figure 4c, in the block connection structure (taking 8 × 32 as an example),
this model of NS indicates that the original CU image texture is not complex and does
not need to be divided, and the spliced image corresponds to the NS partitioning model.
In the model of BTV, it means that there are differences in texture information between
the left and right sides of the original image, which will be represented as a three-level
hierarchical architecture in the new image after the connect operation, corresponding to
the TTV partitioning mode. BTH means that the upper and lower sides have different
texture features, which will be transformed into different texture information between the
left and right sides in the new image after the connect operation, corresponding to the
BTV partitioning mode. In the TTH partitioning mode, CU exhibits three levels of texture
features in the horizontal direction, and this characteristic is more consistent with the QT
partitioning mode in the image after the connection. In general, BSC is a complete mapping
of CU to a 16 × 16 size image; therefore, the partitioning decision of CU can be converted
into a 16 × 16 size image prediction. The BSC structure is equivalent to preprocessing the
original CU to facilitate the reasoning of CNN model, and will not be encoded as coding
information. After CNN obtains the division mode of the CU, it will map the reasoning
result to the division mode of the original CU and encode the original CU.

3.2. The Structure of CNN Models

In this paper, we use CNNs to determine the partitioning modes of CUs in the VVC
internal prediction. For a block of CUs, the RD cost of all the partitioning modes for that
CU and its sub-CUs is computed in VTM and the least costly partitioning case is used.
We design different levels of CNNs for 64 × 64, 32 × 32, and 16 × 16 sized CUs including
BSC structures to predict their partitioning modes thus replacing some of the tedious
partitioning search process, which is more complex for these blocks as compared to other
blocks. Our model structure is shown in Figure 5. We designed different three-model
architectures for different-sized blocks.
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Figure 5. The structure of CNN models.

3.2.1. 64 × 64 CNN Model

The 64 × 64 CNN MODEL takes the luminance channel of the 64 × 64 CU block as
input and outputs the probability of the two partition modes {NS, QT}. As shown in
Figure 5a, in the context of HD video processing, we designed an 7 × 7 convolution kernel
in the first layer to extract features because pixels are highly redundant in HD videos,
and employing a larger convolution kernel can increase the sensory field of the next layer
of convolution. This approach ensures that the extracted features are highly representative
and beneficial for optimizing. To effectively reduce the complexity, the running time
of the model should be as little as possible, so we did not design a deep network and
complex network architecture, and only used simple convolution, pooling, and batch
normalization to extract features further. The CU block of HD video does not carry much
texture information, and this simple structure can extract the features of the image well
without the need for a more complex model representation. After that, we use Global
AvgPool and Flatten to transform the features into one-dimensional vectors, and finally,
output two predicted probabilities after a fully connected layer and Softmax activation
function, which represent the probabilities of the two modes of the partitioning of the
64 × 64 CU block.

3.2.2. The 32 × 32 CNN Model

Unlike the 64 × 64 CU block, the 32 × 32 CU block allows for six partitioning modes.
The 32 × 32 CNN MODEL takes the luminance channel of the 32 × 32 CU block as input, but the
output is the probability vector of the six partitioning modes {NS, QT, BTH, BTV, TTH, TTV}.
As shown in Figure 5b, in the design of 32 × 32 CNN MODEL, instead of using the previous
7 × 7 convolution kernel as the first layer of the model, we use three different sizes of
convolution kernels, 4 × 4, 5 × 3, and 3 × 5, as the three channels for extracting the features
of different dimensions and connect the output with the features for input into the next
layer. Due to the limitation of the pixel size of 32 × 32 CU itself, an 7 × 7 convolutional
kernel is too large to easily cause the loss of some local features. We use a relatively small
4 × 4 convolutional kernel instead, and combine two asymmetric convolutional kernels,
3 × 5 and 5 × 3, to extract features in different directions for better prediction of BT, TT,
and this type of segmentation. The subsequent design follows the backbone network in
64 × 64 CNN MODEL and uses Global AvgPool and Flatten to transform the features into
one-dimensional vectors. Notably, in the fully connected layer of 32 × 32 CNN MODEL,
we add the QPs of CUs as external features. For different QPs, the partitioning decision of
the same CU may be different, which will make the CNN inference more correct. Finally,
after Softmax activation function outputs six predicted probabilities, which represent the
probabilities of the six partitioning modes of the 32 × 32 CU block.

3.2.3. 16 × 16 CNN Model

The 16 × 16 CNN MODEL uses the same structure as the 32 × 32 CNN MODEL.
The difference is that the input of the 16 × 16 CNN MODEL does not only have the
luminance channels of the original 16 × 16 CU blocks, but also contains the new 16 × 16
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luminance maps formed by BSC of the 16 × 32, 32 × 16, 32 × 8, and 8 × 32 luminance channels.
So, as shown in Figure 5c, as in QP, we add both the width and height information of the
CUs as external features to the fully connected layer, because they are important features of
this block and will have an additional impact on the partitioning decision, which will make
the CNN inference more correct.

Table 1 shows the number of channels in the first convolutional layer and the number of
features in the flatten layer for models at different levels. In the 64 × 64 CNN model, the first
convolutional layer is designed with 16 channels using a 7 × 7 convolution, and ultimately,
64 feature maps are extracted by the backbone. In the 32 × 32 CNN model and the
16 × 16 CNN model, the first convolutional layer is designed with 16 channels using
a 4 × 4 convolution, and each has eight channels using 3 × 5 and 5 × 3 convolutions,
respectively. Finally, 256 and 128 feature maps are extracted by the backbone. This is to
consider the impact of the number of model parameters, so not too many channels are
designed to avoid an explosion in parameter quantity. Since the 32 × 32 CNN model and the
16 × 16 CNN model classify more categories, more feature maps are ultimately extracted to
increase their representational ability.

Table 1. CNN models parameters.

Models Convolutional (C×W×H) Backbone Flatten Output

64 × 64 CNN 16 × 7 × 7
32 × 3 × 3
64 × 3 × 3 64 × 1 2

32 × 32 CNN
16 × 4 × 4
8 × 3 × 5
8 × 5 × 3

 128 × 3 × 3
256 × 3 × 3

256 × 1 6

16 × 16 CNN
16 × 4 × 4
8 × 3 × 5
8 × 5 × 3

 64 × 3 × 3
128 × 3 × 3

128 × 1 6

3.3. Dataset

The importance of datasets in training deep learning models cannot be overlooked,
as they directly influence the performance and generalization capabilities of the models.
We employ the Div2K [35] public image dataset for model training, which is an open
dataset for super-resolution tasks, encompasses a diverse collection of images covering a
broad array of scenes and content. This diversity ensures that the model performs well
under various conditions. We encode the dataset using a VTM encoder in AI configuration,
setting the QP values to {22, 27, 32, 37}, to extract complete CU partition information
and RD costs. Based on the partition information, the partition mode and luminance
channels of each CU are extracted to serve as labels and data for training. Notably, for CU
blocks that conform to the BSC structure, labels and data are assigned according to the
mapping depicted in Figure 4. By utilizing the Div2K dataset, we acquired over 1.78 million
instances of 64 × 64 block partitions, more than 5.91 million instances of 32 × 32 block
partitions, and over 12.73 million instances of 16 × 16 block partitions. Figure 6 shows the
proportion of each label within the dataset, clearly indicating a significant imbalance in data
distribution among different categories, regardless of the CU block size. The imbalance
of data significantly affects the model’s fitting. For each block size, we denote M as the
number of labels with the lowest proportion. To mitigate this imbalance, we randomly
select 0.8M from each category for the training set and 0.2M for the test set, thereby not
only addressing the imbalance but also facilitating the identification of an optimal training
set representation.
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Figure 6. Distribution of datasets (32 × 32 (left), 64 × 64 (center), 16 × 16 (right)).

3.4. Loss

The approach in this paper treats CU mode prediction as a multistate polarization
problem. In neural networks, the cross-entropy loss function is a natural choice when the
task is to map the input to one of multiple categories. It is an effective measure of how
the probability distribution of the model output differs from the true label. Moreover,
the cross-entropy loss function is relatively simple for the computation of the gradient,
which makes it easier to find the global optimal solution in the optimization process. So,
we apply the basic cross entropy as the loss function with the following expression:

LCE = − 1
N

N

∑
i=1

yi log(ŷi) (1)

where N is the size of the minibatch, yi denotes the true split mode of ith CU, ŷi denotes
the predicted probability of ith CU.

In VVC, distinct partitioning modes result in significant variations in RD costs. Conse-
quently, opting for different partitioning modes can entail considerably varying additional
encoding expenses. This pronounced characteristic suggests that the conventional cross-
entropy loss function may not perfectly capture the discrepancies between predicted and
actual values. To account for this in model training, we have incorporated RD cost into
the loss function to more accurately reflect the impact of different partitioning modes on
encoding efficiency. The formula can be expressed as follows:

LRD = − 1
N

N

∑
i=1

yi(
rn,m

rn,min
− 1) (2)

where rn,m is the RD cost of the CU at split mode m, and rn,min is the minimum RD cost of
this CU across all possible split modes. In the above equation, rn,m

rn,min
− 1 can be interpreted

as the normalized RD cost. The term yi(
rn,m

rn,min
− 1) levies increased penalties on larger RD

costs rn,m, in line with the RD optimization objectives in VVC. Combining (1) and (2),
the overall loss function is:

L = LRD + βLCE (3)

Here, β is a positive scalar set to 1, used to adjust the relative size of the RD cost term
on the cross-entropy term to ensure that both terms can be optimized efficiently. Thus,
three CNN models can be correctly trained by minimizing L.

3.5. Post-Processing Operations for BSCA Structure

Our BSCA structure gives a mapping between 16 × 32, 32 × 16, 32 × 8, and 8 × 32
CU blocks to 16 × 16, and after reasoning through the model, we need to post-process the
results for two main purposes:

Error reduction: In the block segmentation structure, we split a 16 × 32 and 32 × 16
block into two blocks and reason about them separately. However, the two newly seg-
mented blocks may exhibit different texture features. In a block with a BTV partition mode,
one of the segmented two blocks may exhibit a more obvious BTV partition features while
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the other does not have any texture features, which are present. To avoid errors, when two
blocks are predicted differently, we encode the partition modes mapped to both outcomes
by adding them to the VTM. It is worth noting that we will always add the 32 × 16 BTH
mode and the 16 × 32 BTV mode to the VTM, because the small blocks formed by block
segmentation represent the features of the next level, and both cases cannot be mapped to
the block segmentation mode.

Prescribed normalization: a trained network cannot predict every block with complete
accuracy. Inevitably, there will be outliers in predicted values, which is not only a prediction
error, but also violates the regularity of the partition. For example, QT partition is not
allowed in the original blocks of the BSC structure. When the predicted value does not
conform to the partition rules of the original block, we discard this prediction result and
encode the block using VTM.

3.6. Multi-Threshold Settings

Exclusively using the prediction results of the model, deciding the partition mode
of CUs can minimize the time complexity. However, the prediction results of the trained
network are not completely accurate, and the presence of errors in the model can lead to
the introduction of incorrect segmentation modes thus leading to a degradation of the RD
performance. The error introduced by different block sizes varies, and relatively speaking,
the prediction error of a block with a smaller depth brings more losses as it affects the
deeper partition. Therefore, we propose a multi-thresholding scheme to realize the trade-off
between coding complexity and RD performance.

3.6.1. Fixed Threshold Program

For a 64 × 64 model, errors in the prediction results may exponentially bring about a
loss in RD performance compared to other, smaller CU blocks. We use a fixed threshold τ to
determine the confidence level of the prediction, with τ ranging from [0, 1]. For prediction
results, less than τ will be discarded, and the encoder performs an partition search to
determine the segmentation mode, and the next layer of the prediction model is prohibited
during the search process to ensure the correct decision.

3.6.2. Variable Threshold Program

For 32 × 32 and 16 × 16 models, there are multiple modes being predicted, and when
using a simple fixed threshold to determine the confidence of the prediction results, setting
the threshold too high many predictions will be discarded bringing limited time complexity
reduction, and setting the threshold too low will check too many non-essential partition
modes. So, we use a variable thresholding scheme, which is dynamically adjusted according
to the probability vector of the model output. The threshold is defined as:

τ = α × pmax (4)

where α is a manually set fixed factor, pmax is the maximum value among the model outputs
pi ∈ {0, 1}(i ∈ {0, m − 1}), and m ∈ {5, 6} represents the number of different splitting
modes for CUs. The threshold τ is the final value. Since the model outputs vary with
different CU blocks, the threshold τ is variable. For all possible modes m of this CU, only
the modes with a probability of pi(i ∈ {0, m − 1}) ≥ α × pmax are checked during the
encoder’s partition search, while the others are skipped.

For the most aggressive setting, α = 1, the encoder only examines modes where the
model output pi(i ∈ {0, m − 1}) ≥ pmax , and the partitioning mode of the CUs is entirely
determined by the model. In contrast, for α = 0, the encoder checks modes where the
model output pi(i ∈ {0, m − 1}) ≥ 0, and the partitioning mode of the CUs is entirely
determined by the original encoder’s partition search. As a compromise, the parameter a is
typically set between 0 and 1 in practice.
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4. Experimental Results and Analyses
4.1. Experimental Configuration

CNN training configuration: We generated training datasets separately for four quan-
tization parameters (QP) in luminance; for detailed information, please refer to reference
sections. The training process was implemented using PyTorch 1.8.0 framework and
Python 3.6. We optimized the parameters of CNN models using the Adam optimizer,
widely adopted in deep learning models. The initial learning rate was set to 1 × 10−3, and a
smooth CosineAnnealingLR strategy was employed to adjust the learning rate, aiding the
model in smoothly exploring the global optimum. Each CNN model underwent training
for 50 epochs on a GeForce RTX 3060Ti. Considering the substantial dataset size and the
limited information carried by individual data points, the batch size was set to 1000 to
reduce sensitivity to noise and mitigate the impact of local minima.

Encoding test configuration: our approach was implemented using the VVC reference
software VTM 10.0 [36]. The experiments were conducted on six classes of JVET test
sequences [37], encoding under AI configurations with four quantization parameter (QP)
values 22, 27, 32, 37 using the file encoder in vtm.cfg. The six classes correspond to
A1 (3840 × 2160), A2 (3840 × 2160), B (1920 × 1080), C (832 × 480), D (416 × 240), and E
(1280 × 720). We employed the Bjøntegaard Delta bit-rate (BD-rate/BD-BR) [38] metric for
performance evaluation, measuring the RD performance difference of our method relative
to the original VTM 10.0. Additionally, the time saving (TS) ratio was used to represent the
percentage of time saved compared to the original VTM, providing a metric for complexity
reduction. The TS is defined as:

TS =
1
4

22,27,32,37

∑
QP

TVTM(QP)− TOUR(QP)
TVTM(QP)

(5)

4.2. Model Prediction Accuracy

This approach employs CNN to predict partition modes, and consequently, model
accuracy directly influences compression performance. Figure 7 illustrates the accuracy of
the models under different thresholds. For the 64 × 64 CNN model, the prediction accuracy
reaches 96.8%. However, for the 32 × 32 CNN model and the 16 × 16 CNN model, their
inherent prediction accuracies are only 73% and 68%, respectively. This discrepancy may be
attributed to the larger number of prediction categories for the latter two models. The BSC
curve in the figure shows the prediction accuracy of the 16 × 16 CNN model for the BSC
structure, but its performance for the BSC structure is relatively low. This is because the BSC
structure changes the original structure of the CU, which to some extent, leads to a decrease
in the representation ability of the model. Setting the threshold significantly improves the
model’s accuracy, albeit at the cost of sacrificing some inference results. We chose two sets
of different thresholds for implementing our proposed method, distinguishing them as the
“Fast” scheme, which more effectively reduces the encoding complexity, and the “Moderate”
scheme, which exhibits a superior RD performance. The threshold values for both schemes
are presented in Table 2.

Table 2. Threshold settings for 64 × 64 CNN MODEL; α settings for 32 × 32 and 16 × 16 CNN MODEL.

Scheme 64 × 64 32 × 32 16 × 16

Fast 0.6 0.7 0.8
Moderate 0.7 0.4 0.5
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Figure 7. Prediction accuracy of different threshold models.

4.3. The Compression Performance of the Proposed Method

To validate the effectiveness of the proposed BSC structure, we conducted experiments
under two threshold modes by setting whether to infer the BSC structure. Table 3 presents
the results of RD performance and coding complexity reduction under these two modes,
evaluated through BD-BR loss and TS. Fast (i) and Moderate (i) are the results of adding BSC
structures. It can be observed that, in both the “Fast” and “Moderate” schemes, introducing
the BSC structure significantly reduces time complexity. However, it also comes with
more BD-BR loss, and this trend is more pronounced in the “Moderate” scheme. This is
because the introduction of the BSC structure leads to more CU block partition structures
determined by the model, thereby skipping more intricate partition search processes.
In the “Moderate” scheme, where the model accuracy is relatively lower, more inference
results are adopted, skipping more partition search processes, but the inaccuracy of the
model also leads to more BD-BR loss. Additionally, the acceleration results of this method
vary depending on different video sequences, with higher resolution video sequences
outperforming the lower resolution ones overall, as more CU partition searches are skipped
in high-resolution videos.

Utilizing models at different levels, we established three configurations (L1–L3) for
the proposed fast block partitioning method. The L1 configuration indicates acceleration
solely with the use of a 64 × 64 CNN model, while all remaining partitions are processed
using VTM. Building upon L1, L2 incorporates a 32 × 32 CNN model to infer additional
CU blocks. The L3 configuration represents an accelerated setup using three models
concurrently. Figure 8 demonstrates the BD-BR loss and TS for the three configurations. It
is observed that, with the introduction of deeper model layers, both BD-BR and TS increase
concurrently. This is primarily due to a larger number of CU block partitioning decisions
being made by the CNN models, as well as the inherent errors introduced by the models
themselves. In the L1 configuration, Class A1 and A2 videos exhibit a more pronounced
acceleration effect. This is attributed to the fact that, in high-resolution videos, there are
more than 64 × 64 blocks that do not require partitioning, thereby skipping a significant
number of partition searches. In Class D videos, the acceleration effect of L1 is almost
negligible, as the 64 × 64 blocks in low-resolution videos typically need to be partitioned.
Moreover, with the introduction of deeper models, the acceleration effect on encoding
time is lesser. This is because the partition search time for deeper blocks is relatively short,
and the value gained from replacing this process with models is correspondingly lower.
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Table 3. The compression performance improvement brought by the BSC structure, with Fast and
Moderate being the compression performance improved by adding the BSC structure.

Test Sequence
Fast (i) Fast Moderate (i) Moderate

BDBR (%) TS (%) BDBR (%) TS (%) BDBR (%) TS (%) BDBR (%) TS (%)

A1
Tango2 2.35 58.15 2.05 55.89 1.96 54.62 1.77 50.32

FoodMarket4 2.41 64.84 2.12 58.96 1.56 54.19 1.49 49.53
Campfire 2.45 64.96 2.26 63.32 1.62 55.37 1.58 51.06

A2
DaylightToad2 1.91 63.24 1.65 59.24 1.55 49.96 1.29 46.87
ParkRunning3 1.85 62.43 1.76 56.84 1.57 53.34 1.39 48.12

CatRobot 1.81 59.38 1.61 57.21 1.42 50.62 1.27 46.51

B

Kimono 1.73 58.46 1.48 54.25 1.32 52.69 1.25 49.51
ParkScene 1.62 56.14 1.58 54.62 1.48 52.94 1.35 51.16

Cactus 1.93 57.27 1.76 54.31 1.41 49.21 1.21 45.84
BasketballDrive 2.15 56.49 1.94 52.15 1.86 48.14 1.64 45.21

BQTerrace 1.65 54.32 1.53 52.34 1.32 51.87 1.15 47.24

C

BasketballDrill 1.98 55.19 1.87 51.48 1.84 49.56 1.72 44.02
PatyScene 1.23 54.55 1.13 53.14 0.83 46.51 0.58 44.23

RaceHorsesC 1.51 57.14 1.36 51.56 1.14 50.08 0.96 47.12
BQMall 1.62 52.13 1.38 49.65 1.02 45.17 0.87 38.75

D

BasketballPass 1.93 48.62 1.69 45.82 1.22 46.49 1.04 43.49
BQSquare 1.39 50.54 1.21 49.75 0.96 47.82 0.75 44.12

BlowingBubbles 1.54 55.98 1.37 53.51 0.64 48.10 0.58 45.56
RaceHorses 1.76 55.15 1.62 50.41 1.16 49.41 0.98 44.77

E
FourPeople 2.13 56.33 1.94 55.32 1.65 47.53 1.46 45.35

Johnny 2.37 59.32 2.13 57.35 1.63 52.91 1.56 47.21
KristenAndSara 2.25 57.63 2.01 53.91 1.56 46.61 1.49 42.43

Average 1.86 57.14 1.68 54.14 1.39 50.14 1.24 46.29
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Figure 8. The compression performance of the proposed method under different configurations
of L1–L3.

Table 4 and Figure 9 presents a comparison between the proposed method and
other state-of-the-art approaches. The results indicate that our algorithm significantly
reduces computational complexity. In our “Fast” scheme, the average complexity reduction
achieved was 57.14%, with a BDBR increase of 1.86%. The “Moderate” scheme resulted in
an average complexity reduction of 50.14%, with a BDBR increase of 1.39%. Comparing
with algorithms proposed by [28,32,34], the “Moderate” scheme of the algorithm proposed
by [32] achieved an average time saving of 47.90%, with a BDBR increase of 1.29%. The al-
gorithm proposed by [34] resulted in an average time saving of 39.39%, with a BDBR
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increase of 0.86%. In contrast, our method achieved average time savings of 2.24% and
10.75% with BDBR increases of only 0.1% and 0.53%, respectively. The algorithm proposed
by [28] achieved an average time saving of 50.33%, with a BDBR increase of 1.85%. Our
“Moderate” scheme resulted in a slight increase in time complexity by 0.19%, while achiev-
ing a BDBR reduction of 0.46%. The “Fast” scheme from the algorithm proposed by [32]
saved an average of 55.93% in time, with a BDBR increase of 1.81%. Compared to the “Fast”
schemes of algorithms [28,32], our Fast method saved an additional 6.68% and 1.21% in
time complexity, respectively, with a BDBR that was essentially the same. This indicates
that our algorithm demonstrates superior performance and is more efficient compared to
these algorithms.
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BDBR
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En
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im
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 (%

)

Methods
Li Zhang Zhao pro

Figure 9. Comparison with other methods. The horizontal axis is the BD–BR increase and the vertical
axis is the encoding time acceleration factor.

Table 4. Compare the performance of our algorithm with the performance of others’ algorithms.

Test Video

Li [32] Zhang [28] Zhao [34] Fast Moderate

BDBR (%) TS
(%) BDBR (%) TS

(%) BDBR (%) TS
(%) BDBR (%) TS

(%) BDBR (%) TS
(%)

A1
Tango2 1.55 50.59 2.23 76.34 0.78 38.87 2.35 58.15 1.96 54.62

FoodMarket4 1.61 50.11 1.88 76.26 0.82 39.96 2.41 64.84 1.56 54.19
Campfire 1.59 51.85 1.94 70.72 0.89 41.55 2.45 64.96 1.62 55.37

A2
DaylightRoad2 1.39 54.33 2.00 77.83 0.85 39.58 1.91 63.24 1.55 49.96

CatRobot 1.77 47.92 2.71 75.08 0.92 40.14 1.85 62.43 1.57 53.34
ParkRunning3 1.46 48.11 0.79 69.45 0.81 38.22 1.81 59.38 1.42 50.62

B

Kimono 0.98 51.04 - - - - 0.78 37.51 1.73 58.46 1.32 52.69
ParkScene 1.05 51.18 - - - - 0.61 39.56 1.62 56.14 1.48 52.94

Cactus 1.31 44.95 1.88 58.39 - - - - 1.93 57.27 1.41 49.21
BasketballDrive 1.49 46.16 2.03 63.74 - - - - 2.15 56.49 1.86 48.14

BQTerrace 0.94 48.33 1.55 52.37 0.76 41.79 1.65 54.32 1.32 51.87

C

BasketballDrill 1.18 45.17 2.32 35.49 1.25 39.21 1.98 55.19 1.84 49.56
PatyScene 1.05 51.18 0.76 27.73 0.37 36.73 1.23 54.55 0.83 46.51

RaceHorsesC 0.81 46.95 1.03 39.43 0.24 30.68 1.51 57.14 1.14 50.08
BQMall 1.24 48.33 4.64 37.61 - - - - 1.62 52.13 1.02 45.17

D

BasketballPass 1.41 40.04 1.03 25.54 - - - - 1.93 48.62 1.22 46.49
BQSquare 0.89 46.68 0.58 17.85 0.58 36.67 1.39 50.54 0.96 47.82

BlowingBubbles 0.99 43.86 0.56 18.61 0.83 40.87 1.54 55.98 0.64 48.10
RaceHorses 1.27 39.21 0.80 23.13 0.56 36.51 1.76 55.15 1.16 49.41

E
FourPeople 1.55 52.64 2.67 55.10 1.34 46.51 2.13 56.33 1.65 47.53

Johnny 1.58 50.67 3.25 55.13 1.56 43.78 2.37 59.32 1.63 52.91
KristenAndSara 1.63 49.82 2.43 50.87 1.57 40.85 2.25 57.63 1.56 46.61

Average 1.29 47.90 1.85 50.33 0.86 39.39 1.86 57.14 1.39 50.14
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5. Conclusions

In this paper, we propose a novel block segmentation and block connect structure
(BSC) to uniformly represent the CUs of different sizes. We design CNN models tailored to
different CU sizes to predict their partition modes, replacing the computationally intensive
RD partition search process. Additionally, to enhance the model accuracy, we introduce a
multi-threshold approach based on the characteristics of CUs of different sizes to further
assess the confidence of the predictions. The experiment results show that, compared with
VTM-10.0, our “Fast” scheme reduces the average complexity by 57.14% and increases the
BDBR by 1.86%, while the “Moderate” scheme reduces the average complexity by 50.14%
and increases the BDBR by only 1.39%.
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