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Abstract: In recent years, multi-view graph clustering algorithms based on representations learning
have received extensive attention. However, existing algorithms are still limited in two main aspects,
first, most algorithms employ graph convolution networks to learn the local representations, but
the presence of high-frequency noise in these representations limits the clustering performance.
Second, in the process of constructing a global representation based on the local representations,
most algorithms focus on the consistency of each view while ignoring complementarity, resulting
in lower representation quality. To address the aforementioned issues, a local-global representation
enhancement for multi-view graph clustering algorithm is proposed in this paper. First, the low-
frequency signals in the local representations are enhanced by a low-pass graph encoder, which
yields smoother and more suitable local representations for clustering. Second, by introducing an
attention mechanism, the local embedded representations of each view can be weighted and fused to
obtain a global representation. Finally, to enhance the quality of the global representation, it is jointly
optimized using the neighborhood contrastive loss and reconstruction loss. The final clustering
results are obtained by applying the k-means algorithm to the global representation. A wealth of
experiments have validated the effectiveness and robustness of the proposed algorithm.

Keywords: multi-view learning; contrastive learning; graph clustering; graph learning; representation
learning

1. Introduction

Graph clustering, as a crucial task in graph analysis [1], aims to partition a graph into
multiple clusters, ensuring that nodes within the same cluster exhibit similarities in terms of
both graph topology and attribute values [2,3]. This process enables the identification of co-
hesive groups within the graph, facilitating various downstream tasks such as community
detection , anomaly detection, and recommendation systems [4–6]. Various graph cluster-
ing algorithms have been applied in fields such as social recommendation, link prediction,
citation network analysis, protein interaction analysis, and brain network analysis [7,8].
Most existing graph clustering algorithms focus on single-view graph data [9]. However,
the graph data in practical applications are typically multi-relational. For instance, in biolog-
ical networks, the interactions between proteins in some organisms may involve multiple
interaction patterns among thousands of protein molecules, with each protein [10] having
specific attribute information. In social networks [11], individuals may have different types
of social relationships, such as friends, followers, and co-groups, with each individual pos-
sessing certain descriptive characteristics. In a transportation planning network, locations
are abstracted as nodes, while different types of roads: subways, highways, railways, etc.,
are abstracted as sides of different views. By analyzing multi-view graph data, it helps to
improve the understanding of the complexity of urban transportation systems, and can
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provide support for improving traffic mobility and safety [12]. In comparison to single-view
graph data, multi-view graph data have a multi-layered topological structure and contain
richer information, facilitating a more accurate detection of pattern structures within the
network. For example, a social networking platform contains rich user behavioral data
and interpersonal relationship information. By integrating multi-view graph clustering
algorithms to merge user’s social connections, interests, and other attribute information,
the social networking platform can more accurately discover connections between different
groups, enabling more precise social circle recommendation services. By introducing more
information about user backgrounds, interpersonal relationships, and other aspects, the
platform can make product recommendations more targeted and adaptive. By comprehen-
sively considering user behavioral data and rich interpersonal relationships, it is possible
to identify potential fake accounts and fraudulent activities, further ensuring the security
of the social networking platform. Therefore, multi-view graph clustering algorithms can
leverage social information and user behavior patterns on the platform to provide users
with more precise, intelligent, and secure services, thereby enhancing the user experience
and stickiness of the social networking platform. However, there are both correlations and
heterogeneity within the cluster structures contained in different views, which introduces
new challenges to clustering tasks [13,14].

In recent years, the issue of multi-view graph clustering has attracted widespread
attention from researchers, leading to the emergence of a series of related algorithms.
These algorithms can be categorized into two types: graph clustering based on consensus
graph learning and graph clustering based on representation learning. The former category
attempts to learn a consensus graph by maximizing the consistency between different views.
Subsequently, utilizing a traditional clustering algorithm, it derives the final clustering
results [15,16]. However, clustering the consensus graph directly may result in the loss of
specific information within each view. The latter category aims to integrate the attribute
information of each node with the topological structure of the graph, while maximizing
the preservation of information from multiple views. These algorithms map the data
into a joint low-dimensional vector representation that can be used for clustering [17,18].
However, most algorithms have several limitations. For example, local representations
that are constructed directly using a graph convolution network (GCN) are susceptible
to high-frequency noise. Additionally, a global representation constructed from local
representations of each view often only focuses on the consistency information of each
view, effectively ignoring the complementary information [19].

To overcome these limitations, this paper describes a novel local-global representation
enhancement for multi-view graph clustering (LGMGC) algorithm. This algorithm en-
hances low-frequency signals in the local representations through graph filtering, making
them more suitable for clustering tasks. An attention mechanism is employed to allow
the global representation to integrate information from various views, thus enhancing the
connections between similar nodes in the global embedded representation and improving
the clustering results. This enhances the attention towards complementary information
within the global representation. Specifically, the graph data are encoded using a combina-
tion of low-pass graph filters and a multilayer perceptron (MLP). This encoding process
enhances the low-frequency signals present in the local representations. The local rep-
resentations from each view are then integrated into a global representation using the
attention mechanism. The exploration of the topological characteristics of each view is
strengthened through the reconstruction of the adjacency matrices, and the introduction of
neighborhood contrastive regularization enhances the connectivity between nodes with
similar attributes in the global representation, which clarifies the cluster structure. Finally,
a traditional clustering algorithm is applied to the enhanced representation to obtain the
final clustering results.

In summary, the contributions of this article can be outlined as follows:
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• A new multi-view graph clustering algorithm via local-global representation enhance-
ment is proposed. LGMGC enhances the local and global representations to obtain a
more suitable representation for clustering.

• A simple and effective graph encoder that enhances the low-frequency signals to
obtain a smoother representation is proposed.

• Comprehensive experimentation on three benchmark datasets illustrates the excel-
lent performance of the proposed algorithm in comparison to existing deep graph
clustering algorithms.

The paper is structured as follows: In Section 2, a review of related work on multi-view
graph clustering is offered. In Section 3, the specific process of the proposed algorithm are
thoroughly elucidated. In Section 4, we conducts an evaluation of the proposed algorithm,
comparing it to existing algorithms. In Section 5, we conducted ablation experiments to ver-
ify the effectiveness of each component. In Section 6, we discussed the experimental results
of the paper. In Section 7, we conclude this work and suggest the focus for future work.

2. Related Work

In this section, the related work on neighbor-based recommendation of collaborative
filtering and attention mechanism is briefly reviewed.

2.1. Graph Clustering Based on Consensus Graph Learning

This category of algorithms aims to maximize the consistency between different views
by learning a consensus graph. The final clustering result is obtained by applying graph
partitioning or other spectral graph techniques to the consensus graph. These algorithms
mainly consist of three steps: (1) preprocessing of multi-view data; (2) learning a consensus
graph to maximize view consistency; and (3) clustering based on the learned consensus
graph. Utilizing data information or prior knowledge to guide the learning of consensus
graphs constitutes a crucial step. The self-weighted multi-view graph clustering (SwMC)
algorithm initially generates a similarity matrix between nodes based on the features of each
view, before maximizing the consistency of the similarity matrices across different views
using a learning consensus graph approach. This algorithm leverages the Laplacian matrix
of the constrained consensus graph to aid in clustering The most crucial step is how to utilize
data information or prior knowledge to guide the learning of the consensus graph [20]. The
multi-view attributed graph clustering (MvAGC) algorithm employs low-pass filters to
smooth multiple views, and then simultaneously learns a consensus graph while generating
anchor points [15]. Lin et al. [16] employs a learning consensus graph approach to maximize
the consistency of smooth representations across different views. This optimizes the
consensus graph structure through contrastive learning, ultimately achieving higher-quality
clustering results. In this algorithm, contrastive learning brings similar nodes closer to each
other and pushes dissimilar nodes apart. Thus, the consensus graph more accurately reflects
the relationships between features in different views, resulting in more precise clustering.
Lin et al. [21] employ low-pass filters to achieve smooth representations. Subsequently,
they aim to maximize the consistency of these representations across various views while
also exploring the consistency of high-order topological structure information within each
view. Liu et al. [22] applied standard network embedding methods to process merged
graphs or individual layers, without leveraging interlayer interactions, aiming to construct
a vector space for information from multiple views. Robust multi-view spectral clustering
via low-rank and sparse decomposition(RMSC) incorporate elements of low-rank and
sparse decomposition. Initially, its construct a transition probability matrix from each
individual view. Subsequently, these matrices are utilized to reconstruct a shared low-rank
transition probability matrix, serving as a critical input for the standard Markov chain
method used in clustering [23]. Fettal et al. uses a simple linear model to simultaneously
accomplish clustering and representation learning [24]. These algorithms demonstrate
the effectiveness of learning consensus graphs for analyzing multi-view graph data. The
learning of consensus graphs reveals hidden relationships and common features between
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different views. However, directly partitioning the consensus graph may overlook specific
information present in individual views.

2.2. Graph Clustering Based on Representation Learning

This category of algorithms learns a compact representation of nodes from multi-view
graph data, and then applies clustering to the compact representation. Such algorithms
can generally be divided into three steps: (1) the extraction of a compact representation
of multiple views using graph embedding techniques; (2) the imposition of external con-
straints, such as adding corresponding regularization terms to the loss function, which
ensures that the representation is more suitable for clustering; and (3) the application of
traditional algorithms to the compact low-dimensional representation to obtain clustering
results. The purpose of a graph auto-encoder (GAE) is to reconstitute graph by taking
node features as input, compressing them into a low-dimensional representation, and
reconstructing the resulting graph, followed by k-means clustering on the low-dimensional
representation. While GAE serves as the cornerstone of this approach, its limitation lies
in its capability to handle only single-view graph data and its inefficiency when dealing
with large-scale graph data [25]. Tang et al. [26] introduces an edge sampling algorithm to
enhance the effectiveness and efficiency of inference. The one2multi graph autoencoder
for multi-view graph clustering (O2MAC) algorithm reconstructs the remaining views by
selecting an informative view from among the multiple available views, thereby learning
the node embedding. Simultaneously, the O2MAC algorithm uses self-training clustering
objectives to make the representation more suitable for clustering. Finally, clustering is
performed based on the learned embeddings [17]. Cai et al. [18] extracts representations
of both global and local information using autoencoders, and combines different features
based on their importance through adaptive weight learning algorithms. Xia et al. [27]
uses graph autoencoders to extract representations of each view, before applying block-
diagonal representation constraints to better explore the clustering structure. The learned
clustering labels are then used to guide the learning of node representations and coeffcient
matrices, which are subsequently used for clustering. Cheng et al. [28] uses a dual-path
encoder to capture consistency information across different views. The first path extracts
node representations, while the second path employs a consistency embedding encoder
to capture the consistency of geometric relationships and probability distributions among
different views. Ultimately, The resulting clustering is based on the representations learned
by the consistency embedding encoder. The powerful representation learning capability of
graph neural networks enables representation learning-based algorithms to explore deeper
information within graph data. However, when constructing global representations based
on the local embeddings of each view, they often only focus on the consistency information
among views, while ignoring complementary information.

3. Proposed Algorithm

In this section, we first present some notation and definitions, and then describe the
proposed algorithm in detail.

3.1. Notation and Preliminaries

A multi-view graph can be represented as G =
{
V , E1, · · · , EM, X

}
, where V =

{v1, v2, ..., vn} is the set of n nodes, and M sets of edges {Em}M
m=1 describe the interaction

between nodes in the corresponding M views. em
ij ∈ Em represents a linkage between nodes

i and j in the m-th view. These M interaction types can also be described by adjacency
matrices {Am ∈ Rn×n}M

m=1, where Am
ij = 1 if em

ij ∈ Em and Am
ij = 0 otherwise. X =

{x1, x2, ..., xn} ∈ Rn×d is the node feature matrix, xi is the feature vector of vi, and Dm

represents the degree matrix of the graph under the m-th view. Ãm = D− 1
2

m AmD− 1
2

m and
Lm = I − Ãm represent the normalized adjacency matrix and symmetric normalized
Laplacian matrix for the m-th view, respectively.
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The objective of multi-view graph clustering is to divide the nodes in G into c clusters
{S1, S2, ..., Sc}. The nodes in the same cluster are similar in topology and attributes, while
the nodes in different clusters are quite different.

3.2. Framework of Multi-View Graph Clustering via Local-Global Representation Enhancement

The framework of the proposed algorithm, as illustrated in Figure 1, consists of three
main modules: local representation generation and enhancement, global representation
generation, and global representation enhancement.

Figure 1. Illustration of LGMGC. In the local representation generation module, low-pass graph
filtering combined with MLP is used to enhance the low-frequency signals of each view’s repre-
sentation. In the global representation generation module, an attention mechanism is employed to
fuse the representations of various views, resulting in a global representation that captures both
consensus information and view-specific information. In the global enhancement module, topological
information of each view is explored by reconstructing the adjacency matrix. Additionally, nodes
with similar topological structures and properties are pulled together while dissimilar nodes are
pushed farther apart via neighborhood contrastive loss.

3.3. Local Representation Generation and Enhancement

The purpose of this module is to generate local representations for each view while
enhancing the low-frequency signals within these representations. This process is accom-
plished through multiple graph encoders consisting of two inputs: Am and X.

First of all, we will explain the reasons for choosing low frequency signals. The
symmetric regularized Laplace matrix L can be eigen-decomposed into L = UΛU−1 where,
Λ = diag(λ1, λ2, · · · , λn), λi(i = 1, 2, . . . , n) is the eigenvalue, U = [u1, u2, · · · , un]

T is the
corresponding orthogonal eigenvector. The eigenvalues can be considered as frequencies,
and the corresponding eigenvectors can be considered as Fourier bases. The smoothness of
ui can be reflected by λi.

∑
aj,k∈E

ajk[ui(j)− ui(k)]
2 = uT

i Lui = λi. (1)

As can be seen from Equation (1), the smaller the eigenvalue, the smoother the base
signal. This means that the attribute components corresponding to smaller eigenvalues in
the graph data have less difference between neighboring nodes, that is, the attributes of
neighboring nodes are more similar. Therefore, the smaller the eigenvector corresponding to
the eigenvalue is more conducive to the formation of cluster structure, which indicates that



Electronics 2024, 13, 1788 6 of 15

the graph signal required by the clustering task should contain a larger proportion of low-
frequency base signals. Meanwhile, the effectiveness of GCN does not stem from non-linear
feature extraction, but from aggregating features from neighboring nodes. The layering of
multiple GCNs may lead to intertwining weight matrices, consequently diminishing the
quality of representation learning.

Thus, the module is divided into two steps: neighbor aggregation and linear em-
bedding. In the neighbor aggregation step, a low-pass graph filter is used to aggregate
neighbor information, which enhances the low-frequency signals in the attributes, resulting
in a smoothed representation that is more suitable for downstream clustering tasks. The
process of filtering can be described as follows:

Hm = (I − Ãm)
kX, (2)

where, Hm denotes the smoothed representation of the m-th view after filtering, and k
denotes the number of layers in the graph filters. In the linear embedding step, Hm
is embedded into a low-dimensional space by the MLP encoders without an activation
function, The local embedding representation Zm of the m-th view is obtained as follows:

Zm = fm(Hm) = HmWm + bm, (3)

where, Wm and bm are the learnable parameters of the encoder for the m-th view. Through
the low-pass graph encoder, high-frequency noise in attributes is filtered out, the entan-
glement of weight matrix is avoided, the quality of representation is enhanced, and the
clustering performance is improved (See Section 5.4).

3.4. Global Representation Generation

The objective of this module is to fuse the local representations Zm from each view,
thus obtaining a global representation Z that incorporates information from all views:

Z =
M

∑
m=1

Zm. (4)

However, the quality of the views in multi-view graph data varies. If only high-
quality views are selected for clustering, the global embedding representation would lose
information from the remaining views. Conversely, treating all views equally would
allow lower-quality views to adversely impact clustering results. To effectively combine
complementary information from multi-view graph data and mitigate the influence of
lower-quality views on clustering outcomes, distinct weights are assigned to each view
through a self-supervised strategy.

In Section 3.5, the clustering structure in the global representation is enhanced by
neighborhood contrast loss. Consequently, it can be argued that when the clustering
result of the local representation of a view is closer to the clustering result of the global
representation, the clustering quality of the view is higher and the view quality is better.
During the training process, attention mechanisms are utilized to allocate respective weights
to each view based on the similarity between the local and global clustering results for
different views.

Specifically, the global representation Z is input into the k-means clustering algo-
rithm to generate pseudo-labels P. Using the same algorithm, predicted labels Qm are
also obtained for each view. These pseudo-labels P serve as the ground truth, while the
predicted labels Qm are considered as the results for calculating the clustering score (such
as normalized mutual information), denoted as i.e., scorem. The weight wm assigned to the
m-th view is calculated according to the following formula:

wm =
1

1 − scorem
, (5)
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By Equation (5), Greater weight is assigned to views that are more similar to the
clustering result of the global representation. Then normalize the weights of each view.

tm =
wm

∑M
i=1 wi

. (6)

Therefore, the fusion representation based on the attention mechanism is constructed
as follows:

Z =
M

∑
m=1

tmZm. (7)

In contrast to traditional data, the primary information in graph data is embedded
within its topology. For example, different views of the same group of nodes contain both
consistent parts (consistency information) and distinct parts (highlighting complemen-
tary information) in their respective topological relationships. Through the introduction
of an attention mechanism into the iterative training involving reconstruction loss and
neighborhood contrast loss, the global representation can effectively assimilate information
from each view while emphasizing the greater impact of views exhibiting more prominent
clustering structures. This approach efficiently balances the complementary insights across
varying perspectives, maximizing the advantages of multi-perspective learning.

3.5. Global Representation Enhancement

This module optimizes the global representation Z by exploring the topological and
attribute information from multiple views while strengthening the connections between
similar nodes in Z. This process clarifies the cluster structure in Z.

The exploration of topological and attribute information from each view is accom-
plished through the reconstruction of the adjacency matrix. To comprehensively integrate
information of each view into the global representation, Z is used to reconstruct the adja-
cency matrix Â:

Â = σ(Z, ZT
), (8)

where, σ denotes the sigmoid activation function. The reconstruction loss is then computed
as follows to capture the information of the m-th view.

Lm
rec = −∑ Am

ij ln Âij + (1 − Am
ij ) ln (1 − Âij). (9)

Considering the variations in quality among different views, the weights acquired from
Equations (5) and (6) are integrated into the loss function. Thus, the overall reconstruction
loss function is defined as follows

Lrec =
M

∑
m=1

tmLm
rec. (10)

The optimized global representation effectively captures both the consensus informa-
tion and individual characteristics from views in the graph data. To enhance the connections
between similar nodes and highlight the cluster structure in the global embedding repre-
sentation, the neighborhood contrastive loss algorithm is introduced.

In terms of attributes and topology, nodes within the same cluster are similar, while
nodes between different clusters have significant differences. in order to better highlight
the cluster structure in the global representation, contrastive learning can be used to push
similar node representations closer together, while pushing others away.
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Specifically, for the given node representation zi, the top-K similar nodes to zi are
calculated by KNN algorithm, and these nodes form a positive pair with zi, and the
remaining nodes form a negative pair. The neighborhood contrastive loss Lnbr is as follows:

Lnbr =
n

∑
i=1

∑
j∈Ni

− log
exp

(
sim

(
zi, zj

))
∑n

p ̸=i exp
(
sim

(
zi, zp

)) , (11)

where the pair-wise similarity sim(zi, zj) is measured by the cosine similarity. Ni is a set
consisting of the indices of the K samples obtained by applying the KNN to zi.

By minimizing Equation (11), similar samples are pushed closer together while dis-
similar samples are pushed father apart. The objective of this minimization is to enhance
the discrimination between samples in the global representation.

Combining Equations (10) and (11), our model optimizes the following loss function:

L = Lrec + αLnbr (12)

where, α is a hyper-parameter used for balancing Lrec and Lnbr. To optimize this objec-
tive function, we employ the Adam optimizer. The complete procedures is outlined in
Algorithm 1.

Algorithm 1 LGMGC

1: Input:Multi-view graph G =
{
V , E1, · · · , EM, X

}
, number of clusters c, order of graph

filtering k, number of KNN Samples K, hyperparameter α, iteration number epochs
2: Output:Clustering results Pf
3: for epoch = 1 to epochs do
4: Obtain Zm for each view according to Equation (3);
5: Obtain Z according to Equation (4) ;
6: Obtain tm according to Equation (6);
7: Update model parameters by minimizing Equation (12);
8: end for
9: Obtain Pf by performing k-means clustering on Z

4. Experiments

Benchmark datasets, baseline algorithms, evaluation metrics, and parameter settings
are introduced in this section.

4.1. Datasets

For our experiments, three widely used real-world datasets, namely ACM (http:
//dl.acm.org (accessed on 17 November 2023)), DBLP (https://dblp.uni-trier.de/ (accessed
on 17 November 2023)), and IMDB (https://www.imdb.com/ (accessed on 17 November
2023)), are used to evaluate our algorithm. Detailed statistics are presented in Table 1.

Table 1. Statistical information of the experimental datasets.

Datasets Nodes Edges Features Clusters

ACM 3025 Co-Subject (29,281) 1830 3
Co-Author (2,210,761)

DBLP 4057 Co-Author (11,113) 334 4
Co-Conference (6,776,335)

Co-Term (5,000,495)
IMDB 4780 Co-Actor (98,010) 1232 3

Co-Director (21,018)

ACM: This dataset is generated from information about ACM publications. The nodes
in this datasets represent the paper. There are two types of relationships between nodes

http://dl.acm.org
http://dl.acm.org
https://dblp.uni-trier.de/
https://www.imdb.com/
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and each type of relationship corresponds to a view. The nodes features are the elements of
a bag-of-words of keywords. According to the research field of the paper, it can be divided
into three categories.

DBLP: This dataset contains information that describes the author’s network. The
nodes in this dataset represent the authors. There are three types of relationships between
nodes, each relationship corresponding to a view. The nodes features are elements of a set
of keyword words. According to the research field of the author, it can be divided into
four categories.

IMDB: This dataset contains information on a movie network. The nodes in this
dataset represent the movie. There are two types of relationships between movie, each
relationship corresponding to a view. The nodes features are elements of a set of keyword
words. According to the theme of the movie, it can be divided into three categories.

4.2. Baseline Algorithms and Evaluation Metrics

In the pursuit of validating the effectiveness of the proposed algorithm, we under-
take a comparative analysis against eight baseline algorithms. These algorithms include
single-view algorithms GAE [25] , large-scale information network embedding (LINE) [26],
traditional multi-view algorithms Principled multilayer network embedding (PMNE) [22],
RMSC [23], SwMC [20], multi-view graph clustering based on representation O2MAC [17],
and multi-view graph clustering based on consensus graph learning MvAGC [15], and
multi-view attributed graph clustering(MAGC) [21], and simultaneous linear multi-view
attributed graph representation learning and clustering(LMGEC) [24]. A brief introduction
to these algorithms is provided below:

(1) GAE is a single view algorithm that uses graph autoencoders to generate embedded
representations. this algorithm is applied to each graph view and the best results
are reported.

(2) LINE is a single view graph clustering algorithm applied to large-scale graph data.
this algorithm is applied to each graph view and the best results are reported.

(3) PMNE projects multi-view graph in to a representative vector space.
(4) RMSC is a multi-view clustering algorithm designed to address noise in input data.
(5) SwMC implements clustering multi-view data while learning weights of each view.
(6) O2MAC learns node embedding by reconstructing entire view with the most

information-rich information view.
(7) MvAGC is a multi-view graph clustering algorithm that performs graph filtering to

achieve multi-view attributed graph clustering.
(8) MAGC is a multi-view graph clustering method using node attributes and exploring

higher-order graph structure information.
(9) LMGEC uses a simple linear model to simultaneously accomplish clustering and

representation learning.

To assess the quality of the clustering results, we employ four metrics: clustering
accuracy (ACC), normalized mutual information (NMI), adjusted Rand index (ARI), and
clustering F1-score (F1).

4.3. Parameter Settings

The hyper-parameters of LGMGC are set as follows: learning rate lr = 0.001, max-
imum number of iterations epochs = 200, number of layers in MLP layers = 1, output
dimension of MLP dimension = 512, and number of graph filtering layers k = 2. For
ACM DBLP and IMDB, the balancing hyper-parameters α = 10. For O2MAC, MvAGC
and LMGEC, we use original codes. To ensure fairness in comparison, we use the default
hyper-parameters settings reported in the original papers. GAE uses same structure as
the encoder in O2MAC. Each set of experiments is run ten times, and the average results
are reported.
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4.4. Experimental Results of Different Algorithms

In this subsection, we present and analyze the results of our experiments.
To evaluate the effectiveness of our LGMGC in multi-view graph clustering tasks, we

compare it with nine baseline algorithms on three datasets. Table 2 lists the results. The best
results are highlighted in bold. As can be seen, LGMGC performs the best on ACM and
DBLP in terms of ACC, NMI, ARI, and F1. For the accuracy (ACC) metrics, the LGMGC
model has shown average improvements of 18.59%, 6.74%, and 10.87% on the ACM, DBLP,
and IMDB datasets, respectively, compared to existing models. Single-view algorithms
such as GAE and LINE do not perform well with multi-view graph data because they
cannot leverage information from additional views. LGMGC significantly outperforms
other traditional multi-view clustering algorithms, such as PMNE, RMSC, and SwMC.
Although these algorithms consider all views, they fail to explore both attribute and topo-
logical information. PMNE and SwMC can only explore topological information, whereas
RMSC can only leverage attribute information. In contrast, our algorithm effectively uses
both topological and attribute information through the graph encoder. Our algorithm
performs significantly better than O2MAC across all three datasets. This is because O2MAC
solely considers the optimal view and disregards information from the remaining views.
Compared with the consensus graph learning algorithms MvAGC, MAGC and LMGEC,
the proposed algorithm achieves better performance. This is the result of MvAGC, MAGC
and LMGEC relying on learned consensus graphs for clustering, which may lead to the
omission of specific information from each view. In particular, the clustering performance
of LGMGC on IMDB is inferior to MAGC. The main reason is that each view edge and at-
tribute of IMDB data set are sparse, and the attribute information and topology information
in the representation learned by low-pass filter are less.

Table 2. Clustering results of various algorithms on three datasets.

Algorithms GAE LINE PMNE RMSC SwMC O2MAC MvAGC MAGC LMGEC LGMGC

ACM

ACC 0.8216 0.6479 0.6936 0.6315 0.3831 0.9042 0.8975 0.8806 0.9302 0.9388
NMI 0.4914 0.3941 0.4648 0.3973 0.0838 0.6923 0.6735 0.6180 0.7513 0.7735
ARI 0.5444 0.3433 0.4302 0.3312 0.0187 0.7394 0.7212 0.6808 0.8031 0.8263
F1 0.8225 0.6594 0.6955 0.5746 0.4709 0.9053 0.8986 0.8835 0.9311 0.9382

DBLP

ACC 0.8859 0.8689 0.7925 0.8994 0.6538 0.9074 0.9277 0.9282 0.9285 0.9334
NMI 0.6825 0.6676 0.5914 0.7111 0.3760 0.7287 0.7727 0.7768 0.7739 0.7860
ARI 0.7410 0.6988 0.5265 0.7647 0.3800 0.7780 0.8276 0.8267 0.8284 0.8394
F1 0.8743 0.8564 0.7966 0.8248 0.5602 0.9013 0.9225 0.9237 0.9241 0.9289

IMDB

ACC 0.4298 0.4268 0.4958 0.2702 0.2617 0.4502 0.5633 0.6125 0.5893 0.5998
NMI 0.0402 0.0031 0.0359 0.0054 0.0056 0.0421 0.0317 0.1167 0.0632 0.0913
ARI 0.0473 −0.0090 0.0366 0.0018 0.0004 0.0564 0.0940 0.1806 0.1294 0.1710
F1 0.4062 0.2870 0.3906 0.3775 0.3714 0.1459 0.3783 0.4551 0.4267 0.4565

The best results are highlighted in bold.

5. Ablation Study
5.1. Effect of Multi-View Learning

In order to verify the effectiveness of the multi-view learning of LGMGC, The single
view of each datasets is entered separately and the results are report in Table 3. It can
be seen that the clustering performance of the individual view is always inferior to the
consensus. In addition, the clustering performance of different views in the same dataset
varies. This validates the effectiveness of multi-view learning in our algorithm.
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Table 3. Clustering results of the proposed algorithm on different views.

Datasets V1 V2 V3 ALL

ACM

ACC 0.9197 0.7230 - 0.9388
NMI 0.7185 0.5155 - 0.7735
ARI 0.7765 0.4719 - 0.8263
F1 0.9198 0.7101 0.9382

DBLP

ACC 0.6621 0.6717 0.9247 0.9334
NMI 0.3743 0.3349 0.7782 0.7860
ARI 0.2649 0.3125 0.8329 0.8394
F1 0.6695 0.6724 0.9197 0.9289

IMDB

ACC 0.5730 0.5787 - 0.5998
NMI 0.0640 0.0811 - 0.0913
ARI 0.1196 0.1518 - 0.1710
F1 0.4298 0.4504 - 0.4565

The best results are highlighted in bold.

5.2. Effect of Reconstruction Loss

By minimizing the reconstruction loss, our algorithm maximizes the preservation
of topological information from each view in the fused embedding. In order to verify
the effectiveness of the reconstruction loss in LGMGC, the clustering results without the
reconstruction loss are reported in Table 4. It can be seen that the addition of reconstruction
loss achieves clustering performance improvements. These results verify that LGMGC
benefits from the reconstruction loss.

Table 4. Clustering results without reconstruction loss.

Datasets LGMGC w/o Lrec LGMGC

ACM

ACC 0.9233 0.9388
NMI 0.7349 0.7735
ARI 0.7854 0.8263
F1 0.9241 0.9382

DBLP

ACC 0.7678 0.9334
NMI 0.5124 0.7860
ARI 0.5198 0.8394
F1 0.7432 0.9289

IMDB

ACC 0.5852 0.5998
NMI 0.0754 0.0913
ARI 0.1389 0.1710
F1 0.4473 0.4565

The best results are highlighted in bold.

5.3. Effect of Neighborhood Contrastive Loss

By minimizing the contrastive loss, our algorithm pulls similar nodes closer and
pushes dissimilar nodes further, which could highlight the cluster structure in the global
representation.we report the clustering performance without the neighborhood contrastive
loss in Table 5. On all datasets, the performance drops sharply without the contrastive loss.
LGMGC achieves ACC improvements of 2.7%, 1.0%, and 6.53% on the DBLP, ACM, and
IMDB datasets, respectively. Regarding the other metrics, the neighborhood contrastive loss
significantly enhances the performance. The experimental results in Table 5 provide strong
evidence for the effectiveness of the neighborhood contrastive loss in our proposed model.



Electronics 2024, 13, 1788 12 of 15

Table 5. Clustering results without neighborhood contrastive loss.

Datasets LGMGC w/o Lnbr LGMGC

ACM

ACC 0.9111 0.9388
NMI 0.7070 0.7735
ARI 0.7552 0.8263
F1 0.9123 0.9382

DBLP

ACC 0.9232 0.9334
NMI 0.7774 0.7860
ARI 0.8293 0.8394
F1 0.9185 0.9289

IMDB

ACC 0.5345 0.5998
NMI 0.0044 0.0913
ARI 0.0188 0.1710
F1 0.2916 0.4565

The best results are highlighted in bold.

5.4. Effect of Graph Encoder

The graph encoder proposed in this paper enhances the low-frequency signals of
the local embedding representations in each view, and alleviates the problem of over-
smoothing. To validate the effectiveness of the graph encoder, we replaced the original
encoder with a GCN and compared the performance of the two models while varying the
number of network layers. To ensure a fair comparison, the GCN was applied with the
same parameters as the encoder and did not use any activation function. Figure 2 shows
the clustering performance of the two models for different numbers of network layers. In
most cases, the proposed graph encoder outperforms the GCN. Additionally, as the number
of layers increases, the performance of the GCN decreases, while that of the graph encoder
remains relatively stable. The reason for this phenomenon may be the trouble caused by
redundant weight matrices in GCN.
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5.5. Parameter Analysis

We briefly analyze the impact of parameters k and α on the clustering performance
to evaluate the stability of LGMGC. The clustering results using parameter settings of
k = {1, 2, 3, 4, 5} and α = {0.1, 1, 10, 100, 1000} are shown in Figure 3. It can be observed
that with a fixed k, the algorithm achieves great clustering performance on all three datasets
when the balance parameter is set to 10. However, when α is too large, there is a significant
decline in clustering performance on the dense DBLP dataset. On the other hand, when the
balance parameter is too small, there is a noticeable decrease in clustering performance on
the sparse IMDB dataset. When the balance parameter α is fixed, both excessively small
and large numbers of filter layers lead to unfavorable clustering results. The reason for
this phenomenon is that the small k leads encoder fails to capture higher-order topological
information, while an excessive number of filter layers leads to over-smoothing, rendering
the nodes indistinguishable.
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6. Discussion

We have developed a method for multi-view graph clustering that enhances the clus-
tering performance by improving both local and global representations. In contrast to
previous approaches that utilized traditional GCN with a single graph filter, our algorithm
introduces a new encoder. This encoder is a combination of graph filters and MLP, which
enables the amplification of local representations while extracting deeper-level informa-
tion between data points during the construction of local representations. Additionally,
a joint loss function was designed to enhance the clustering quality of global representa-
tions. Experimental results demonstrate that compared to existing algorithms, our model
achieves superior performance in multi-view graph clustering tasks. This indicates the
meaningful improvement in clustering effectiveness through the enhancement of both
local and global representations. The proposed algorithm plays a crucial role in exploring
community structures in multi-view graph data. This research can aid in capturing the
complex relationships within and between communities in multi-view graph data from
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various perspectives. A single data source might not fully reveal the community structure,
while combining multiple data sources can provide a more comprehensive and accurate
description of the communities. In the analysis of social networks, companies can take
into account multiple types of relationships between users to obtain more accurate and
comprehensive community structures. For example, in the analysis of social networks,
companies can comprehensively consider multiple types of relationships between users to
uncover more accurate and comprehensive community structures. Furthermore, during
the analysis of citation networks, it becomes possible to better identify relevant patterns
and structures that may have been overlooked or difficult to perceive. This contributes
to the elucidation of potential research topics, scholarly communities, and other aspects
within a specific field. During the analysis of citation networks, it allows for a better
identification of potentially overlooked or hard-to-perceive patterns and structures. This
enhanced recognition enables researchers to uncover relevant relationships and structures
that may have gone unnoticed using traditional analysis methods.

7. Conclusions and Future Work

In this paper, we propose a multi-view graph clustering model, which optimizes the
representation from local and global perspectives within a unified framework to develop a
more clustering-suitable representation. The proposed algorithm’s effectiveness is validated
through experiments on real-world multi-view graph data. A potential limitation is the
high computational cost on large-scale nodes. One of our hypotheses is that in the contrast
loss function, we can greatly reduce the time complexity by selecting representative anchor
points instead of all nodes to participate in the training. The methods of choosing a
representative anchor point will become the focus of our future work.
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