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Abstract: The singlet, triplet, and quintet electronic states of the FeC4H2+
2 system are theoretically

explored using quantum chemical methods, and 39 isomers are identified in the singlet electronic state
and 4 isomers in both triplet and quintet electronic states. A molecule with a planar tetracoordinate
iron (ptFe) is found on the potential energy surface of singlet and triplet electronic states. The bonding
features of ptFe in the singlet electronic state are analyzed with natural bond orbital (NBO) analysis,
adaptive natural density partitioning (AdNDP), and molecular orbital analysis. The resultant data
delineate that the ptFe is stabilized through electron delocalization in the ptFe system.
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1. Introduction

The study of transition metal clusters, especially first-row transition metal clusters,
has sparked the interest of several research groups over the years due to the clusters’
unique structural, electronic, magnetic, and catalytic properties [1–5]. Iron (Fe) is one
of the universe’s most prevalent heavy and refractory elements. Iron–carbon clusters
have provided an in-depth understanding of geometrical properties, electronic structures,
and magnetism among the transition metal clusters because of iron’s position between
early and late transition metals due to experimental measurements [6–8] and theoretical
calculations [9–11]. Experimental studies on the iron–carbon clusters include mass spec-
trometry, infrared isolation matrix spectrometry, anion photoelectron spectroscopy, and
gas-phase ion chromatography [7,8,12–16]. FeCn (n ≤ 8) [17–20] and FenC (n ≤ 13) [21–23]
iron–carbon clusters have been theoretically examined in the past, and some of them have
been reported experimentally [24]. The clusters of iron, carbon, and hydrogen have also
been the subject of similar studies. In 1987, for the first time, neutral FeCHn (n = 0–3)
systems were produced and characterized in the gas phase by Schwarz et al. using
neutralization–reionization mass spectrometry (NRMS) [25]. Fan et al. have investigated
FeCn and FeCnH (n = 2) clusters via anion photoelectron spectroscopy [26]. The cation of the
FeCH2 cluster was also investigated experimentally via photofragment spectroscopy [27].
In 2003, Boesl et al. identified the FeC4H2 neutral complex experimentally using mass selec-
tive photo-detachment photoelectron spectroscopy [28]. In 2013, Chandra and coworkers
conducted studies on the molecular and spectroscopic properties of iron-containing ring
molecules, including theoretical studies on cyclic compounds like FeC2, FeC3, FeC3H2,
FeC2H2, FeC2H4, and FeC3H4, which are of astrophysical interest [29]. Transition metal
clusters have gained potential applications in various fields since the discovery of met-
allocarbohedrene in 1992 [30]. The list extends from materials to the emerging field of

Atoms 2024, 12, 11. https://doi.org/10.3390/atoms12020011 https://www.mdpi.com/journal/atoms

https://doi.org/10.3390/atoms12020011
https://doi.org/10.3390/atoms12020011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atoms
https://www.mdpi.com
https://orcid.org/0000-0002-7359-6277
https://orcid.org/0000-0002-8314-8611
https://orcid.org/0000-0002-7505-077X
https://orcid.org/0000-0003-0920-4547
https://doi.org/10.3390/atoms12020011
https://www.mdpi.com/journal/atoms
https://www.mdpi.com/article/10.3390/atoms12020011?type=check_update&version=1


Atoms 2024, 12, 11 2 of 13

nanotechnology and also exhibits remarkable applications in organic chemistry [16,31–34].
A prominent instance is the challenging activation of methane by iron carbide cluster
ions [5,35]. Another interesting application of these compounds is their catalytic activity in
oxygen reduction, COx (x = 1, 2) reduction, and also in Fischer–Tropsch synthesis [36–39].
Energy and hydrogen storage are further applications of these compounds [40–43]. The
prospective applications of these iron–carbon clusters extend beyond material science; other
significant areas include surface chemistry, astrochemistry, and combustion chemistry.

On the other hand, there have been extensive studies on aberrant molecules that devi-
ate from the accepted notions in chemistry ever since H. J. Monkhorst proposed the concept
of planar tetracoordinate carbon (ptC) in 1968 [44]. In 1970, Hoffman and co-workers
proposed ways to stabilize the ptC [45], which in turn spurred unrelenting experimental
and computational investigations into “planar hypercoordinate” chemistry [46–54]. In 1976,
Schleyer and coworkers identified ptC as local minima in lithium-substituted cyclopropane
and cyclopropene computationally and marked the beginning of the theoretical [45,55–62]
and experimental [63–65] investigations in this area. A lot of attention has been paid to
this field recently as a result of the tremendous theoretical and experimental progress
made in the pursuit of a stable compound using planar hypercoordinate compounds. The
exploration of planar tetracoordinate chemistry has also extended to the hetero atoms and
also to the transition metals. In 2003, Frenking and co-workers predicted, theoretically,
a novel type of a transition metal-centered aromatic compound in which planar penta-
coordinate iron was first introduced [66]. In the same year, Tanaka et al.’s experimental
and theoretical studies on Au5Zn+ revealed the lowest energy isomer as a planar tetraco-
ordinate Zn, which is stabilized via σ aromaticity [67,68]. Later, in 2004, the same group
further identified planar motifs in gold clusters doped with transition metals, including
planar tetracoordinate iron [69]. In 2006, Lievens, Nguyen, and co-workers explored the
flat structural motifs in Ag5X0/–/+(X = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni), where planar tetra
and pentacoordinate iron were reported [70,71]. In 2005, Wang and co-workers discovered
planar hexacoordinate species in transition metal-doped gold clusters, M@Au6 (M = Ti, V,
Cr) [72]. This research trend was expanded to include other transition metals from Sc to
Ni, and planar hexacoordinate molecules were discovered in these gold clusters by Zhang
et al. [73]. Planar heptacoordinate Sc was identified as the global minimum in the Cu7Sc
cluster in 2008 by Nguyen and co-workers [74]. Li, Schleyer, and co-workers investigated
unconventional planar motifs with hepta-, octa-, nona-, and decacoordinate first-row tran-
sition metals enclosed by boron rings with many neutral and charged molecules including
planar octa- and nonacoordinate iron as global minima [75,76]. Later, in 2012, Romanescu
et al. experimentally reported both the planar octa- and nonacoordinate in FeB−8 and FeB−9
clusters [77]. Zhang et al. attempted to design graphene-like materials containing planar
hypercoordinate transition metal atoms by constructing FeB6 monolayers [78]. Zhao and
co-workers recently developed a stable FeSi2 monolayer with planar hexacoordinate Fe
atoms [79]. Thimmakondu and co-workers studied the interaction of planar pentacoordi-
nate carbon within a ferrocene derivative [80]. Planar pentacoordinate Zn group elements
supported by lithium clusters were found to be global minima by Guha and co-workers [81].
Very recently, planar hexacoordinate transition metals in star structures were identified as
global minima [82]. In this direction, the present work aimed to find various geometries of
FeC4H2+

2 as they are astronomically relevant molecules. Since the four-carbon cumulene
carbene, butatrienylidene (C4H2), has already been detected in the interstellar medium
(ISM) [83], this study explored the species that might potentially mix with transition metals
like iron. It is noted here that, in total, eight cumulene carbene molecules of the type
CnH2 (n = 3 to 10) are well-known in the laboratory [84–88], and among them, four lower
homologues (n = 3 to 6) have already been identified in the ISM [83,89–91]. Despite being
the most abundant metal in the universe, iron is less common in the ISM, and hitherto,
many have strived to find the missing iron in the interstellar medium [92]. Very recently,
for the first time, FeC radical was detected in the envelope of IRC+10216 [93].
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In the present work, the isomers of FeC4H2+
2 in their singlet, triplet, and quintet elec-

tronic states are explored, with an emphasis on planar tetracoordinate iron (ptFe) in the
singlet electronic state, and the bonding features of the ptFe structure are also analyzed.
This study explores the isomers of FeC4H2+

2 , where a ptFe is serendipitously identified
and is a local minimum. It is noteworthy that iron is in a +2 oxidation state, which is
a more commonly occurring oxidation state, and therefore, the FeC4H2+

2 system is taken
into account here. Iron (II) is integral to various fields of chemistry, including redox reac-
tions, coordination chemistry, and biological systems [94–97]. For brevity, the interaction of
counter ions that can neutralize the system was not considered in the current study.

2. Computational Calculation Methodology

The geometries of all isomers of FeC4H2+
2 were generated by chemical intuition.

Quantum chemical calculations on the singlet electronic state of the system were carried
out using the Density Functional Theory (DFT) approach. The possible structures were
optimized using the ωB97X–D hybrid functional method that uses a version of Grimme’s
D2 dispersion model. The Restricted Open-Shell Hartree–Fock (ROHF) method was utilized
for the triplet and quintet electronic states optimization [98]. The effective core potential
(ECP), Stuttgart/Dresden, SDD was used for iron metal, and the large 6–311++G (2d, 2p)
basis set for carbon and hydrogen atoms for the investigated system [99–102]. Relativistic
effects were significant for molecules containing heavy metals and transition metals; hence,
the ECP was considered for the iron system. ECP was used to replace the core with
analytical functions that more effectively and precisely represent the combined nuclear-
electronic core to the remaining electrons [103]. To confirm whether the stationary point
obtained on the potential energy surface (PES) is a minimum or a transition state, or an
nth order saddle point, harmonic vibrational frequencies were computed for all the energy-
minimized geometries at the same level. All the computational calculations were carried
out with the Gaussian suite of programs [104]. Natural bond orbital (NBO) analysis was
carried out at the same level of theory. NBO analysis provides information on the charge
distribution of the atoms in the molecules and also the Wiberg bond index (WBI) values
that are the electronic parameters related to the electron density between atoms. NBO
3.1 implemented in Gaussian 16 was utilized for this purpose [105,106]. Adaptive natural
density partitioning (AdNDP) analysis was utilized to further investigate the bonding
characteristics [107,108]. A topological analysis of the ptFe isomer was carried out using
the Multiwfn program [109,110] with the wavefunction file generated by the Gaussian
program [104].

3. Results and Discussions

The potential energy surface (PES) of FeC4H2+
2 in the singlet, triplet, and quintet

electronic states was explored. The ten energetically low-lying isomers of the singlet elec-
tronic state of the FeC4H2+

2 system are shown in Figure 1 with their relative energies, point
groups, number of imaginary frequencies, and dipole moments. All other optimized iso-
mers of FeC4H2+

2 in the singlet electronic state are provided in the Supplementary Material.
For brevity, the total electronic energies, zero-point vibrational energy (ZPVE) correc-
tions, ZPVE-corrected total energies (E+ZPVE), absolute dipole moments, relative energies
without (∆E) and with ZPVE corrections (∆E + ZPVE), and the number of imaginary
frequencies (NImag) are provided in Table S1 in the Supplementary Material. In the un-
restricted UωB97X–D approach (results are provided in the Supporting Information), the
optimization of the quintet and triplet electronic states shows significant and non-trivial
spin contamination. Therefore, we made an effort to optimize the geometries in the triplet
and quintet electronic states with the ROHF wavefunction to prevent spin contamination.
Nevertheless, in the triplet and quintet electronic states without spin contamination, the
number of optimal geometries was lowered to four. The optimized geometries of the triplet
and quintet electronic states with ROHF are shown in Figure 2. Isomers 1s, 1t, and 1q are
the global minima of the singlet, triplet, and quintet electronic states, respectively. 1s has
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a linear structure, and the structure like iron is directly attached to the cumulene carbene.
As cumulene carbene has already been detected in the interstellar medium (ISM) [83], the
global minimum of singlet electronic state 1s suggests that the presence of iron atoms in
the ISM might be in the form of these iron hydrogenated carbides. The isovalent pentate-
traenylidene, an isomer of C5H2, has already been a familiar molecule in the laboratory as
well as in the ISM [84,90]. As 1s is a global minimum, it has a higher chance of being viable
in the laboratory. It is also polar with a dipole moment value of 1.25 Debye indicating
feasible detection in the ISM. 4s contains planar tetracoordinate iron (ptFe), which should be
considered an accidental surprise in the PES of the singlet electronic state. 1t also contains
ptFe, which has been identified as a global minimum in the PES of the triplet electronic
state. 1q has a cyclic structure that is a local minimum in the singlet electronic state, and
a similar geometry has been identified as a local minimum (2t) in the triplet electronic state.
The main focus of the present work was on isomer 4s, which contains ptFe in the singlet
electronic state. It lies ~28.15 kcal mol−1 above its lowest energy isomer, 1s. The point
group of 4s is C2v, and its dipole moment value is 1.16 Debye. To probe into the ptFe, the
chemical bonding characteristic features were investigated in detail.
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6–311++G (2d, 2p) basis sets.
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Figure 2. The isomers of FeC4H2+
2 in their corresponding (a) triplet and (b) quintet electronic states

with the ZPVE-corrected relative energies (in kcal mol−1), point groups, dipole moments (in Debye),
and the number of imaginary frequencies (NImag) obtained using the ROHF method with SDD and
6–311++G (2d, 2p) basis sets.

3.1. Bonding, Wiberg Bond Indices, and Molecular Orbital Analysis

The bonding scenario of 4s exhibiting ptFe was analyzed. The different views, bond
lengths, and WBI values of 4s are shown in Figure 3. The Fe–C bond lengths in the ptFe
are 2.01 and 2.17 Å, which are in close agreement with the bond lengths already reported
in iron–carbon-based molecules [69,71,111–113]. The carbon–carbon bond lengths in 4s
are also similar to the reported iron–carbon-based molecules [23,112], and also, it has
electron delocalization along the carbon chain. The electronic characteristics associated
with the overlap of the electron populations between two atoms are measured using the
WBI. Here, the WBI values of ptFe indicate its chemical bonding characteristics. For 4s, the
WBI values for C2–Fe and C3–Fe are 0.34, and C1–Fe and C4–Fe are 0.54, indicating the
existence of covalent interaction between iron and carbon atoms. These values are in good
agreement with the values reported in iron–carbon- and boron-based clusters [75,76]. The
carbon–carbon WBI values range from 1.30 to 2.32, reflecting the bonding features arising
from the delocalization of electrons. The natural bond orbital (NBO) analysis provides
insight into the natural atomic charges (NAC) of the system. The NAC on 4s are depicted
in Figure S3 in the Supplementary Material. According to the NAC, the metal center in
the ptFe shows a large positive value of 1.257. The NAC on the carbon atoms are low,
indicating a large charge transfer between iron and the carbon atoms. The polarity of the
system varies because of the differences in electronegativities between carbon and iron.
Electrostatic attraction results from this, which makes the ptFe more stable.

To extract more information on bonding, a molecular orbital analysis is carried out.
The molecular orbitals of 4s are shown in Figure 4. HOMO, HOMO–2, and HOMO–5
are π delocalization orbitals, whereas HOMO–1, HOMO–3, HOMO–4, and HOMO–6
are σ delocalization orbitals. HOMO–6 clearly shows the covalent interaction between
iron and carbon atoms from the overlap of the orbitals. The LUMO to LUMO+6 orbitals
are also depicted in Figure 4. The HOMO-LUMO gap is 7.883 eV. Along with σ and π

delocalizations, this large energy gap also plays an important role in maintaining the
stability of the ptFe.
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3.2. Adaptive Natural Density Partitioning (AdNDP) Analysis

The AdNDP analysis wass employed to comprehend the nature of bonding in the ptFe
isomer. This method is an extension of NBO and a powerful approach for the analysis of
electron density. The chemical bonding in molecules with non-classical bonding patterns
may be described succinctly and simply using this technique. In using this method, the
charge density is divided into components with the highest possible degree of localized
electron pairs, such as n-center two-electron (nc–2e) bonds, which include core electrons,
lone pairs (LPs), and multicentered two-electron bonds like 2c–2e. AdNDP is an excellent
implementation to search for delocalized n-center two-electron bonds (n < 2) due to the
extension of the Lewis description.

The AdNDP bonding patterns of 4s with occupation numbers (ONs) are depicted in
Figure 5. The four 3c–2e σ bonds in 4s have ON values of 1.99 |e| and 2.00|e|, which
ascertain the electron density localized between the planar tetracoordinate center and their
adjacent atoms. The presence of 3c–2e, 4c–2e, and 5c–2e π bonds confirms the presence of
alternate delocalized π bonds in the ptFe, which aid in the stabilization of the molecule.
The stability of the ptFe is additionally supported by the presence of 5c–2e and 7c–2e
σ bonds.
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3.3. Topological Analysis: Electron Localization Function and Laplacian of Electron Density

A topological analysis was carried out to shed light on the bonding characteristics of
ptFe. The electron localization function (ELF) and Laplacian of electron density (∆2ρ(r))
were used for the investigation of the topologies of the molecules, which depict the local-
ization of electron pairs and can be used to visualize delocalized bonds. The color-filled
map of the ELF and the contour map of the Laplacian of electron density (∆2ρ(r)) for 4s are
shown in Figure 6. The interaction between the d-orbitals of iron and adjacent atoms can
be observed from the ELF plots. From the contour plot, it is clear that the carbon chain has
localized electron density, demonstrating high electron localization that fosters the stability
of the ptFe. In 4s, the electron density for peripheral carbon atoms is higher, resulting in
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a higher WBI value of 0.54 when compared to the inner carbon atom, which has a value of
0.34. The plots generated show the interaction between the iron atom and the surrounding
carbon atoms and also the delocalization of electron densities within the molecule.
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3.4. IR and Raman Spectra

The IR (infrared) and Raman spectra for 4s computed in silico are provided in the
Supplementary Material in Figure S4, which assist further experimental observations. The
observed vibrational frequencies in the stimulated spectra are due to the C=C, Fe–C, and
C–H bonds. The absorptions for allenic C=C asymmetric and symmetric stretching occur
around 1956 cm−1 and 2119 cm−1, respectively. The symmetric and asymmetric stretching
of C–H is around 3240 cm−1. The Fe–C asymmetric stretching is at 598 cm−1, whereas in the
Raman spectra, the Fe–C mode is observed at 499 cm−1. The IR and Raman spectra were
generated with the Gaussian program [101]. The computationally predicted IR and Raman
spectra would be useful for the detection of the 4s structure in the experimental laboratory.

4. Conclusions

The isomers of the FeC4H2+
2 system in the singlet electronic state were investigated

first with the DFT method, whereas triplet and quintet electronic states were explored using
the ROHF method. Planar tetracoordinate iron (ptFe) was found on the PES while exploring
the isomers of the FeC4H2+

2 system. A thorough bonding analysis was performed on the
4s ptFe isomer. Different methods such as the AdNDP, WBI, NBO, and ELF were used to
obtain insight into the structural characteristics. The delocalized bonds that stabilize the
ptFe in the singlet electronic state are well supported by the AdNDP, NBO, and WBI. The
WBI values in 4s indicate the covalent characteristics of the Fe–C bond in the ptFe. The
electron density around carbon and iron in the color-filled ELF plot depicts the stability of
the ptFe. The topological analysis through the ELF and the Laplacian of electron density
(∆2ρ(r)) confirms the interaction between ptFe and the carbon atoms surrounding them. The
stable nature of the ptFe is also attained through favorable molecular orbital interactions.
The computed IR and Raman spectra of the ptFe could be useful for experimentalists
for identification in the laboratory in the future. The results of the present work provide
new directions to theoretical and experimental studies on flat transition metal–carbon
hydride chemistry.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/atoms12020011/s1. The optimized geometries of FeC4H2+

2 in
the singlet electronic state are shown in Figure S1; the AdNDP bonding patterns of 4s in the singlet
electronic state with occupation numbers (ON) are shown in Figure S2; NBO charges (in |e|) on
4s obtained using the ωB97X–D functional with SDD and 6–311++G (2d, 2p) basis sets are shown
in Figure S3; the IR vibrational spectrum and Raman spectrum of 4s obtained using the ωB97X–D
functional with SDD and 6–311++G (2d, 2p) basis sets are shown in Figure S4; the isomers of FeC4H2+

2
in the triplet and quintet electronic states with ZPVE-corrected relative energies (in kcal mol−1),
dipole moments (in Debye), and the number of imaginary frequencies (NImag) obtained using the
(U)ωB97X–D functional with SDD and 6–311++G (2d, 2p) basis sets in Figures S5 and S6, respectively,
total energy (in a.u), zero-point correction (in a.u), ZPVE-corrected total energy (E+ZPVE; in a.u),
relative energy (∆E + ZPVE; in kcal mol–1), dipole moment (in Debye), and the number of imaginary
frequencies (NImag) of FeC4H2+

2 in the singlet electronic state calculated at the ωB97X–D functional
with SDD and 6–311++G (2d, 2p) basis sets are listed in Table S1, and triplet and quintet electronic
states calculated using ROHF with SDD and 6–311++G (2d, 2p) basis sets are listed in Tables S2 and S3,
respectively; the Cartesian coordinates of all the isomers of FeC4H2+

2 in the singlet, triplet, and quintet
electronic states are listed in Tables S4, S5, and S6, respectively; and the total energy (in a.u), point
group, zero-point correction (in a.u), ZPVE-corrected total energy (E + ZPVE; in a.u), relative energy
(∆E + ZPVE; in kcal mol−1), dipole moment (in Debye), the number of imaginary frequencies (NImag),
the expectation value of the total spin, <S2>, and calculated %error for the spin contamination of
FeC4H2+

2 in their corresponding triplet and quintet electronic states calculated using (U)ωB97X–D
functional with SDD and 6-311++G (2d, 2p) basis sets are listed in Tables S7 and S8, respectively.
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