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Abstract: Elucidating protein–ligand interaction is crucial for studying the function of proteins and
compounds in an organism and critical for drug discovery and design. The problem of protein–
ligand interaction is traditionally tackled by molecular docking and simulation, which is based on
physical forces and statistical potentials and cannot effectively leverage cryo-EM data and existing
protein structural information in the protein–ligand modeling process. In this work, we developed a
deep learning bioinformatics pipeline (DeepProLigand) to predict protein–ligand interactions from
cryo-EM density maps of proteins and ligands. DeepProLigand first uses a deep learning method to
predict the structure of proteins from cryo-EM maps, which is averaged with a reference (template)
structure of the proteins to produce a combined structure to add ligands. The ligands are then
identified and added into the structure to generate a protein–ligand complex structure, which is
further refined. The method based on the deep learning prediction and template-based modeling
was blindly tested in the 2021 EMDataResource Ligand Challenge and was ranked first in fitting
ligands to cryo-EM density maps. These results demonstrate that the deep learning bioinformatics
approach is a promising direction for modeling protein–ligand interactions on cryo-EM data using
prior structural information.

Keywords: ligand challenge; cryo-EM; protein–ligand interaction; bioinformatics; machine learning;
deep learning

1. Introduction

Proteins are a building block of life and carry out many vital biological functions.
Whether acting as an enzyme to accelerate the chemical reactions, or as regulatory molecules
binding to other molecules to activate their functions, the detailed characterization of
proteins and their interaction with their binding partners (e.g., the natural substrates
or drugs as ligands) is of great importance. Protein–ligand interactions are necessary
requirements for signal transduction, immune responses, and gene regulation in living
organisms. The study of protein–ligand interactions is important in understanding the
mechanisms of biological regulation and provides a theoretical basis for the design and
discovery of new drugs. A fundamental objective of computational structural biology is to
understand and model such molecular interactions of living systems in sufficient detail
so that the behavior of the system can be predicted or modified as desired. In order to
characterize the thermodynamic and kinetic behavior of components and their interactions
of living organisms, an image of interacting molecules, such as protein–ligand complexes, at
near atomic resolution is required to analyze and understand the physical and geometrical
constrains of the molecules.

Cryo-EM, an acronym for the cryogenic electron microscopy technique [1], is a revolu-
tionary technology that enables the determination of a 3D structure of macro-molecular
complexes at atomic resolution. With the development of various techniques in the cryo-EM
realm to generate high resolution maps, as seen in Figure 1, EMDataResource [2] has seen
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a surge in the deposition of cryo-EM derived protein density maps which elucidate the
protein and ligand interactions in the molecules. The EMDataResource 2021 Ligand Model
Challenge [3] was hosted to rigorously benchmark the current methods for generating
models using cryo-EM density maps to improve the prediction and validation of protein
and ligand interactions, and to identify the metrics which are most suitable for comparing
the fit of atomic coordinate models into the cryo-EM maps.

One of the most popular approaches to modeling the protein–ligand complexes is the
molecular docking [4–9], which uses physics- or statistical potential-based molecular simu-
lations to generate protein–ligand complex models and a scoring function for estimation
of their binding affinities to rank them. With the recent advancement in the field of deep
learning, another most prominent approach to modeling protein–ligand complexes is deep
learning-based methods. Deep learning-based methods predict protein–ligand binding
sites [10–13] using various neural network architectures such as convolution neural net-
works (CNN), long short-term memory networks (LSTM), and residual networks (ResNet).
These methods primarily use three databases: BioLiP [14], ATPBind [15] and Sc-PDB [16]
to train and validate their deep learning models before making binding-site predictions.
Similarly, deep learning architectures, such as CNNs, graph neural networks, and attention
mechanisms, are used for the prediction of protein–ligand binding affinity [17–29]. These
methods mainly make use of two databases: PDBbind [30] and the CASF databases [31]
for binding affinity predictions. More advanced methods such as Equibind [32]—an SE(3)-
equivariant geometric deep learning model for direct-shot prediction of receptor binding
location and ligand’s bound pose—and DIFFDOCK [33]—a diffusion generative model tai-
lored to the task of molecular docking—have been developed recently. However, even with
significant research efforts, despite some success, the protein–ligand interaction prediction
problem still remains unsolved because existing methods cannot leverage vast structural
data effectively.

Figure 1. The growth of cryo-EM density maps and cryo-EM-derived protein structures. The
statistics were obtained from EMDataResource [34], a unified data resource for 3-Dimension electron
microscopy (3DEM) on 20 November 2022.

Inspired by the success of AlphaFold [35], which uses a novel deep learning architec-
ture to predict the protein structures using amino acid sequence data as an input, as well as
the various deep learning-based protein–ligand modeling techniques, we adapted the deep
learning-based approach for our work. In this work, we combined the deep learning-based
protein structure prediction tool DeepTracer with template-based protein–ligand interaction
prediction in order to determine the structures of protein–ligand complexes for the 2021
Ligand Model Challenge that was held from 1 February to 1 April 2021. Based on the official
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results provided by the assessors of the challenge, our method performed best in fitting
ligands to cryo-EM maps (measured across all targets), demonstrating the unique value of
the novel deep learning bioinformatics approach for modeling protein–ligand interaction.

2. Materials and Methods

We attempted to solve the problem of protein–ligand interaction by using a set of
bioinformatics methods, incorporating cryo-EM data and known structural information
such as reference protein structures. In particular, we leveraged the recent advance of
applying deep learning to directly predict the structure of proteins from high-resolution
cryo-EM density maps; a succinct review of the methods can be found in Ref. [36]. To
predict the bound conformation (3D atomic structure) of a protein–ligand complex, we
utilized an existing deep learning-based tool as a key component of our model building
pipeline (DeepProLigand). DeepProLigand predicts the 3D coordinates of protein structures
using only a cryo-EM density map as an input. This protein structure model is a starting
point for the downstream ligand positioning and model refinement tasks. The workflow
illustrated in Figure 2 demonstrates our approach to generating the structure of a protein
complex by incorporating a fully automatic deep learning-based method as its primary
building block. The modeling pipeline of Figure 2 has three key steps described as follows:

Figure 2. The workflow of DeepProLigand generating protein complex structure from cryo-EM
map and reference structure. The cryo-EM map (EMD-22898) illustrated in the workflow is of a
SARS-CoV-2 ORF3a ion channel in lipid nanodiscs [37].

2.1. Protein Complex Reconstruction from cryo-EM Density Maps and Reference Structures

Using DeepTracer [38], we first predicted the 3D backbone coordinates of the protein
complex directly from a cryo-EM density map. DeepTracer uses a 3D U-Net architecture
which is modified from the original 2D U-Net [39] architecture developed for biomedical
image segmentation. The output from the DeepTracer block is a predicted 3D backbone
coordinate structure that has the carbon, carbon alpha, nitrogen and oxygen atoms in the
Protein Data Bank Format (PDB), which is standardized by wwPDB [40]. The predicted
structure reflects the conformation of the protein in the ligand binding mode. Because the
reference structure of the protein (prior structure without cryo-EM information) is also
provided by 2021 Ligand Model Challenge organizers, we used the structural alignment to
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combine them to generate a posterior structure, conceptually similar to combining the prior
probability and likelihood to generate a posterior probability in the Bayesian reasoning.
Specifically, in order to combine the reference structure and the predicted structure together
in terms of geometrical alignment, we utilized the UCSF Chimera’s [41] matchmaker
function to superimpose both structures together. Once the structures were superimposed,
we saved the superimposed structure relative to reference structure into a new PDB file.
The new PDB file then contained the atoms of both reference and predicted structures in
the same geometrical space, allowing us to average the coordinates of the corresponding
backbone atoms and utilize the reference structure’s residue, and chain labeling for all the
shared components between the two structures. The side chains were added on top of the
combined backbone structures using the SCWRL4 [42] tool. Finally, a full-atom combined
structure, consisting of multiple chains, was produced for the downstream processing. It
is worth noting that our approach of generating protein complex structures was different
from the traditional approach of fitting a reference structure into a cryo-EM density map.

Algorithm 1 depicts the pseudo code of averaging the backbone atoms’ coordinates
of reference and predicted structures. We started by initializing an empty PDB file named
“average structure” that followed the guidelines of wwPDB [40]. For each residue of the
reference structure, if the distance between the reference structure’s carbon alpha atom and
any carbon alpha atom of predicted backbone structure in the 3D geometrical space was
less than a threshold value, then all the backbone atoms’ coordinates of the residue in the
particular reference structure were averaged with the predicted structure’s corresponding
residue and saved in the average structure PDB file; otherwise, the coordinates of the
residue in reference structure were simply saved in the average structure PDB file. We
refer to the arithmetic mean, the sum of collection of numbers divided by the count of
numbers, as “average” throughout the paper. The default distance threshold value we used
is 1 Angstrom (Å); however, the threshold value for each chain can be modified as desired.

distance =
√(

xr − xp
)2

+
(
yr − yp

)2
+
(
zr − zp

)2, (1)

threshold = 1 Angstrom. (2)

Here, let xr, yr, and zr be the coordinates for each carbon alpha residue of the reference
structure and xp, yp, and zp be the coordinates for each carbon alpha residue of the predicted
structure. With this notation, we followed Algorithm 1 and generated new coordinates xavg,
yavg, and xavg which are the average coordinates of both reference and predicted structures.
After computing the distance using Equation (1), we used a threshold value as shown in
Equation (2) for Target 202 and Target 203 of the 2021 EMDataResource Ligand Challenge.
For Target 201 of the challenge, since most of the chains were turned into coils, we used a
threshold value of 0.3 Angstrom (Å) for chain C and 0.5 Angstrom (Å) for all other chains.
The averaged coordinate structure was saved into a standard PDB file format. Tables 1–3
show the number of residues averaged per chain for each target. Target T201 has 73.55%
residues averaged, target T202 has 86.60% residues averaged, and finally target T203 has
57.70% residues averaged.

After the backbone atoms were computed using Algorithm 1, we utilized SCWRL4 [42]
to add the side-chain conformation into the protein structure. The deep learning-based
method utilized to predict the backbone atoms had a high impact on determining the
side-chains conformation as well, because high side chain accuracy is often achieved when
the backbone prediction is accurate, as also demonstrated by AlphaFold [35].
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Algorithm 1 Average predicted structure and reference structure.

Require: threshold . threshold can be modified per chain
1: compute distance using Equation (1)
2: initialize: xavg = 0, yavg = 0, and zavg = 0
3: if distance < threshold then
4: xavg ⇐ (xr + xp)/2
5: yavg ⇐ (yr + yp)/2
6: zavg ⇐ (zr + zp)/2
7: else
8: xavg ⇐ xr
9: yavg ⇐ yr

10: zavg ⇐ zr
11: end if

Table 1. Number of residues averaged for target T201: EMD 7770.

Target T201 : EMD 7770

Chain ID Total Residues Averaged Residues % of Residues
Averaged

Chain A 1021 845 82.8
Chain B 1021 845 82.8
Chain C 1021 461 45.2
Chain D 1021 852 83.4

Average % across chains 73.55

Table 2. Number of residues averaged for target T202: EMD 30210.

Target T202 : EMD 30210

Chain ID Total Residues Averaged Residues % of Residues
Averaged

Chain A 834 762 91.4
Chain B 114 105 92.1
Chain C 63 48 76.2

Average % across chains 86.6

Table 3. Number of residues averaged for target T203: EMD 22898.

Target T203 : EMD 22898

Chain ID Total Residues Averaged Residues % of Residues
Averaged

Chain A 193 184 95.3
Chain B 193 0 0
Chain C 31 20 64.5
Chain D 31 22 71.0

Average % across chains 57.7

2.2. Template-Based Prediction of Protein-Ligand Interaction

After the protein structure that can accommodate ligands was generated using
Algorithm 1, we utilized PyRosetta [43] to identify ligands and add them into the pre-
dicted structure by using the reference structure as a template, as depicted in Algorithm 2.
The reference structure contains the ligands’ atomic coordinates. Since PyRosetta is a
residue based tool, when a pose is created, all the atoms in a structure including ligand
atoms are indexed by residue indices. Following Algorithm 2, we let res be each residue in
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the reference structure that we checked for whether it was a ligand. PyRosetta’s is_ligand
function works by comparing the ligand to a chemical component dictionary and returns
a bool value (i.e., either True for ligand or False for non ligand) for each residue.

Algorithm 2 Identify ligands and include them into average structure.

Require: pyrosetta
1: initialize pyrosetta
2: pose_re f = pose_ f rom_pdb(re f erence structure)
3: if pose_re f .residue(res_id).is_ligand() == True then
4: with open(”average_structure.pdb”, ”a”) as f ile :
5: f ile.write(residue)
6: else
7: do nothing
8: end if

2.3. Refinement of Protein-Ligand Complex Model

After the prediction of the protein–ligand complex structure using the approach
outlined above, we further refined the predicted complex structure using Rosetta FastRe-
lax. Relax does not perform extensive refinement and only searches the local low-energy
backbone and side-chain conformations near the starting conformations by implement-
ing rounds of packing and minimizing, with repulsive weight in the scoring function
gradually increasing from a low value to a normal value. The scoring function we used
was ref2015_cst.wts, which is a default score function, repeated five times. Finally, after
the refinement of the protein complex, we used UCSF Chimera’s Fit in Map function to
perform a rigid body optimization of the refined model. The 3D structure was rotated and
aligned so that it fit to the density map. This refinement step was optional. During the
blind experiment of the 2021 EMDataResource Ligand Challenge, we submitted both an
unrefined model and a refined model for each target.

2.4. Target cryo-EM Density Maps of 2021 Ligand Challenge

We blindly tested the protein–ligand modeling pipeline DeepProLigand on three
targets that were released as 2021 EMDataResource Ligand Challenge targets from February
to April 2021. The next section elaborates the three targets and the experimental setting
used for each target.

2.4.1. Target 201: Escherichia coli Beta-Galactosidase

The β-Galactosidase [44] target with atomic resolution of 1.9 Angstrom (Å) contains
protein Beta-galactosidase, magnesium ion, sodium ion, water and 2-phenylethyl 1-thio-
beta-D-galactopyranoside (PTQ) as a ligand. The EMDB ID of the target in EMDataRe-
source is EMD-7770. We predicted the 3D structure of the complex using the workflow
of DeepProLigand, as highlighted in Figure 2 and, during averaging of the structure, we
initialized a 0.3 Angstrom (Å) distance threshold for chain C and a 0.5 Angstrom (Å) dis-
tance threshold for all other chains of the complex by re-initializing the threshold value of
Equation (2). The reason for threshold of 0.3 Å in chain C was because most of the chains
were turned into coils/turns with a threshold of 0.5 Å. The ligand PTQ was appended using
Algorithm 2. Figure 3 shows the map–model overlay of cryo-EM density map EMD-7770
and our reconstructed protein structure model.
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Figure 3. Target 201 (EMD-7770) map-model overlay at the recommended contour 0.52 (3.3 σ) with
T0201EM0004_1 (ours).

2.4.2. Target 202: SARS-CoV-2 RNA-Dependent RNA Polymerase

The nsp12-nsp7-nsp8 complex bound to the template-primer RNA and triphosphate
form of Remdesivir(RTP) [45] target with an atomic resolution of 2.5 Angstrom (Å) con-
tains RNA-directed RNA polymerase, Non-Structural Protein 8, Non-Structural Protein
7, Primer, Templete, ZINC ION, PYROPHOSPHATE 2-, MAGNESIUM ION, water, and
[(2 R,3 S,4 R,5 R)-5-(4-azanylpyrrolo[2,1-f][1,2,4]triazin-7-y)-5-cyano-3,4-bis(oxidanyl)oxolan-
2-yl]methyl dihydrogen phosphate as a ligand. The EMDB ID of the target in EMDataRe-
source is EMD-30210. We predicted the 3D structure of the complex using the workflow
of DeepProLigand as highlighted in Figure 2 and, during averaging of the structure, we
used a 1 Angstrom (Å) distance threshold for all chains of the complex. The ligand F86
(remdesivir, covalent inhibitor) was appended using Algorithm 2. Figure 4 shows the
map–model overlay of cryo-EM density map EM-30210 and our reconstructed protein
structure model.

Figure 4. Target 202 (EMD-30210) map-model overlay at the recommended contour 0.058 (4.3 σ) with
T0202EM004_1 (ours).
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2.4.3. Target 203: SARS-CoV-2 Protein 3a in Lipid Nanodiscs

The SARS-CoV-2 3a ion channel in lipid nanodiscs [37] target with atomic resolution of
2.08 Angstrom (Å) contains ORF3a protein, Apolipoprotein A-I, water and 1,2-Dioleoyl-sn-
glycero-3-phosphoethanolamine as a ligand. The EMDB ID of the target in EMDataResource
is EMD-22898. We predicted the 3D structure of the complex using the workflow of
DeepProLigand as highlighted in Figure 2 and, during averaging of the structure, we
used a 1 Angstrom (Å) distance threshold for all chains of the complex. The ligand PEE
was appended using Algorithm 2. Figure 5 shows the map–model overlay of cryo-EM
density map EMD-22898 and our reconstructed protein structure model. The source code,
data, and instructions to reproduce the results are available in the GitHub repository:
https://github.com/jianlin-cheng/DeepProLigand, accessed on 8 January 2023.

Figure 5. Target 203 (EMD-22898) map-model overlay at the recommended contour 0.7 (10.3 σ) with
T0203EM004_1 (ours).

3. Results

The analysis of the models in this section is based on the official results provided by
the organizers of the 2021 Ligand Model Challenge. The fit to a map for a ligand was
assessed by the Q-score [46] and the Z-scores. The Q-score measures how similar map
values around an atom are to a Gaussian-like function which we would see if the atom
were well resolved. The Q-score was calculated as a correlation between two vectors: u,
which contained map values at points around the atom, and v, which contained values
obtained from the reference Gaussian.

We used the Q-score to compare the map-to-model fit for all the models that were
submitted to the challenge. Table 4 shows the Q-score of the ligand for all the models
submitted for Target 201; our model is highlighted in bold for scrutiny. Figure 6 shows the
ligand (PTQ)’s binding pose and orientation in our best predicted model, T0201EM004_1.
Ligand PTQ bound to all four chains of Target 201, resulting in four binding sites for the
ligand. We visualized three binding locations for the ligand with its binding pose and
orientations in Figure 6. Table 5 shows the Q-score of the ligand for Target 202 and, similar
to Target 201, our model is highlighted in bold for scrutiny. Figure 7 shows ligand (F86)’s
binding pose and orientation in our best predicted model, T0201EM004_1. Ligand F86
bound to only one location in Target 202. We visualized the binding location for the ligand
with its binding pose and orientations in Figure 7.

https://github.com/jianlin-cheng/DeepProLigand
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Table 4. Evaluation of Target 201: Escherichia coli beta-galactosidase on Q-score for all the models
submitted in the 2021 Ligand Model Challenge

Team Name PTQ (Ligand)

T0201EM014_1 0.82
T0201EM005_2 0.81
T0201EM012_1 0.81
T0201EM006_1 0.79
T0201EM009_1 0.78
T0201EM015_1 0.77
T0201EM005_1 0.73
T0201EM002_2 0.72
T0201EM004_1 0.71
T0201EM003_1 0.71
T0201EM003_2 0.71
T0201EM010_1 0.69
T0201EM011_1 0.64
T0201EM001_2 0.64
T0201EM013_1 0.63
T0201EM001_3 0.62
T0201EM002_3 0.60
T0201EM003_3 0.58
T0201EM002_1 0.55
T0201EM001_1 0.33
T0201EM007_1 0.31
T0201EM008_1 -

Note: Table is sorted in descending order using ligand: PTQ score. “-” means, we were unable to calculate the
score of the model. Our best model is highlighted in bold.

Table 6 shows the Q-score of the ligand for Target 203. Similar to Target 201 and 202,
our model is highlighted in bold for scrutiny in Table 6. Figure 8 shows the ligand (PEE)’s
binding pose and orientation in our best predicted model, T0201EM004_1. Ligand PEE
bound to two locations in Target 203. We have visualized the binding locations for the
ligand with its binding pose and orientation in Figure 8.

Table 5. Evaluation of Target 202: SARS-CoV-2 RNA-dependent RNA polymerase on Q-score for all
the models submitted to the 2021 Ligand Model Challenge.

Team Name F86 (Ligand)

T0202EM004_1 0.74
T0202EM009_1 0.71
T0202EM006_1 0.69
T0202EM005_1 0.68
T0202EM012_1 0.68
T0202EM002_2 0.68
T0202EM003_2 0.68
T0202EM010_1 0.67
T0202EM003_1 0.67
T0202EM008_1 0.63
T0202EM001_1 0.60
T0202EM001_2 0.59
T0202EM013_1 0.59
T0202EM007_1 0.57
T0202EM011_1 0.56
T0202EM002_1 0.52

Note: Table is sorted in descending order using ligand: F86 score. Our best model is highlighted in bold.
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A

B

C

Figure 6. Target 201. (A) T0201EM004_1 (ours) docked by Target 201 (EMD-7770) and visualized with
electrostatic potential surface generated in UCSF Chimera. (B) Ligand PTQ, image extracted from
Protein Data Bank (PDB). (C) Protein–ligand interactions in T0201EM004_1 (ours) model. Chains
are colored differently (chain A: blue, chain B: pink, chain C: green and chain D: golden). The ligand
is labeled with its atom names as well as the ligand name (PTQ). For chain D: golden and chain C:
green, we have labeled the chain residue names for understanding protein–ligand interaction better.

Figure 9 shows cumulative Z-scores on Q-scores of 17 groups participating in the 2021
Ligand Model Challenge. Our DeepProLigand predictor (EM004) performs best overall
on all three targets. Specifically, our protein–ligand model was ranked first for Target
202, second for Target 203, and in the middle for Target 201 as shown in the Z-scores on
Q-scores in Figure 9. The Q-scores of our best model for the three targets are shown in
Table 7. Even though there are too few targets to draw a definite conclusion, the good
results indicate that the deep learning structure prediction in conjunction with the template
reference structure is able to build a good protein structure framework to accommodate
ligands, and the template-based protein–ligand prediction can assemble the ligands with
the protein structure well for some targets. Incorporating a deep learning approach in
modeling enables us to predict the protein structure directly from the cryo-EM map within
minutes, making the approach highly useful in terms of both prediction accuracy and time.
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A

B

C

Figure 7. Target 202. (A) T0202EM0004_1 (ours) docked by Target 202 (EMD-30210) and visualized
with electrostatic potential surface generated in UCSF Chimera. (B) Ligand F86, image extracted from
Protein Data Bank (PDB). (C) Protein–ligand interactions in T0202EM004_1 (ours) model. Chains are
colored differently (chain A: blue, chain B: orange, chain C: green, chain P: yellow, and chain T: teal).
The ligand is labeled with its atom names as well as the ligand name (F86).

We also noticed the limitation of our approach in terms of the geometric quality of
the atoms in the predicted protein structure, however. Particularly, there were some atom–
atom clashes in the models, which may be caused by the violations of some geometric
constraints of atom–atom distances in the protein structure predicted by the deep learning,
as well as in the averaging of the coordinates of the predicted structure and the reference
structure. The violations of geometric and stereochemical restraints were not fixed by
the current refinement protocol in the prediction pipeline. The refinement protocol even
introduced some new clashes into the model. AlphaFold demonstrated that the well-trained
sophisticated deep learning architecture can accurately capture the geometric restraints
of atoms and bonds in protein structures by predicting high-quality protein structures of
atomic resolution that are highly similar to natural protein structures; this means more
advanced deep learning architectures can be developed to predict high-quality protein
structures compatible with the geometric and stereochemical restraints of proteins from
cryo-EM density maps and reference structures.
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A

B

C

Figure 8. Target 203. (A) T0203EM0004_1 (ours) docked by Target 203 (EMD-22898) and visualized
with electrostatic potential surface generated in UCSF Chimera. (B) Ligand PEE, image extracted from
Protein Data Bank (PDB). (C) Protein–ligand interactions in T0203EM0004_1 (our) model. Chains are
colored differently (chain A: blue, chain B: pink, chain C: green, and chain D: golden). The ligand are
labeled with their atom names as well as the ligand’s name (PEE).

Table 6. Evaluation of Target 203: SARS-CoV-2 ORF3a putative ion channel in nanodisc on Q-score
for all the models submitted in the 2021 Ligand Model Challenge.

Team Name PEE (Ligand)

T0203EM0016_1 0.77
T0203EM004_1 0.76
T0203EM0012_1 0.75
T0203EM005_1 0.74
T0203EM0010_1 0.73
T0203EM003_1 0.73
T0203EM003_2 0.70
T0203EM0011_1 0.72
T0203EM002_2 0.72
T0203EM009_1 0.71
T0203EM002_1 0.70
T0203EM006_1 0.70
T0203EM002_3 0.69
T0203EM0014_1 0.67
T0203EM001_2 0.66
T0203EM001_3 0.63
T0203EM008_1 0.63
T0203EM001_1 0.60
T0203EM007_1 0.51

Note: Table is sorted in descending order using ligand: PEE score. Our best model is highlighted in bold.
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Table 7. Q-score of our best model (EM004_1) for three targets.

Target Name Ligand

Target 201 0.71 (PTQ)
Target 202 0.74 (F86)
Target 203 0.76 (PEE)

Note: Among two models submitted for each target in the challenge, our best model’s id is EM004_1 across all the
targets. EM004_1 model is the non refined model.

Target 201 Target 202 Target 203

Figure 9. Z-scores on Q-scores for ligand of all the models submitted to 2021 Ligand Model Challenge.
The pointed arrow represents our model.

4. Conclusions and Future Work

In this work, we demonstrate that the deep learning prediction of protein structures
from cryo-EM maps can generate good protein structures for constructing protein–ligand
complexes and the template-based protein–ligand interaction prediction can fit ligands
well into the predicted protein structures according to the outstanding performance of
our protein–ligand modeling pipeline. It is also worth noting that our method was fully
automatic and did not involve any manual tweaking of the models to improve the scores.
As discussed before, the current protein–ligand prediction pipeline cannot resolve some
violations of some geometric and stereochemical restraints of atoms in protein structures.
We plan to soon develop advanced end-to-end deep learning architectures, similar to
some components in AlphaFold, to better predict better protein structures from cryo-EM
maps and reference structures. Moreover, we plan to design 3D-equivariant deep learning
architectures like the SE(3)-equivariant Transformer network [47–50] to tackle the problem
of geometric constraints which are not addressed by current methods. Finally, an end-
to-end direct deep learning prediction of the structure of protein–ligand complexes from
cryo-EM density maps, reference structures and ligand information to fully automate all
the steps of the entire pipeline in this work will be pursued. We believe the application of
a deep learning approach to the prediction of 3D structures of protein–ligand complexes
leveraging cryo-EM and other related data is a promising avenue with which to accelerate
the advancement of the study of protein–ligand interaction [51,52]. With the proliferation of
cryo-EM maps being deposited in the EMDataResource database, the use of deep learning-
based methods can help to determine the structure of the protein–ligand complexes rapidly
and ultimately help to expedite the drug discovery process.
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Appendix A. Sequence Based Modeling: An Approach for Predicting Protein Structure

DeepProLigand uses DeepTracer [38] to predict the protein structure as its main
component because it uses both the cryoEM density map and the amino acid sequence.
We conducted another study to predict the protein structure using AlphaFold [35]. While
AlphaFold predicts the atomic coordinates of most proteins with remarkable accuracy, in
this study, AlphaFold struggled to predict the atomic coordinates that fit locally into the
density map per residue. Figures A1 and A2 shows the comparison of structures predicted
by AlphaFold and DeepProLigand with the PDB deposited structure.

(a) (b) (c)

Figure A1. The target T201 is of EMD: 7770. (a) AlphaFold Predicted Structure. (b) DeepProLigand
Predicted Structure. (c) PDB Deposited Structure with PDB ID: 6CVM.

https://github.com/jianlin-cheng/DeepProLigand
https://github.com/jianlin-cheng/DeepProLigand
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(a) (b) (c)

Figure A2. The target T203 is of EMD: 22898. (a) AlphaFold Predicted Structure. (b) DeepProLigand
Predicted Structure. (c) PDB Deposited Structure with PDB ID: 7KJR.
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