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Abstract: Continuous and significant progress in sequencing technologies and bioinformatics
pipelines has revolutionized our comprehension of microbial communities, especially for human
microbiomes. However, most studies have focused on studying the taxonomic composition of the
microbiomes and we are still not able to characterize dysbiosis and unveil the underlying ecological
consequences. This study explores the emergent organization of functional abundances and corre-
lations of gut microbiomes in health and disease. Leveraging metagenomic sequences, taxonomic
and functional tables are constructed, enabling comparative analysis. First, we show that emergent
taxonomic and functional patterns are not useful to characterize dysbiosis. Then, through differential
abundance analyses applied to functions, we reveal distinct functional compositions in healthy versus
unhealthy microbiomes. In addition, we inquire into the functional correlation structure, revealing
significant differences between the healthy and unhealthy groups, which may significantly contribute
to understanding dysbiosis. Our study demonstrates that scrutinizing the functional organization
in the microbiome provides novel insights into the underlying state of the microbiome. The shared
data structure underlying the functional and taxonomic compositions allows for a comprehensive
macroecological examination. Our findings not only shed light on dysbiosis, but also underscore the
importance of studying functional interrelationships for a nuanced understanding of the dynamics
of the microbial community. This research proposes a novel approach, bridging the gap between
microbial ecology and functional analyses, promising a deeper understanding of the intricate world
of the gut microbiota and its implications for human health.

Keywords: metagenomics; dysbiosis; gut microbiomes; functional redundancy; emergent patterns;
differential abundance analysis

1. Introduction

In the realm of microbial ecology, our understanding of microbial communities has un-
dergone a revolutionary transformation due to remarkable strides in sequencing techniques
and bioinformatics pipelines [1–3]. These advances have opened an era where we can
delve into the intricate tapestry of microbial community composition with unprecedented
precision. Through methodologies like metabarcoding [4], we are now able to decipher
taxonomic composition by sequencing distinct DNA segments, while metagenomic data
enable us to quantify gene abundances within these intricate communities [5]. The novel di-
mension of metatranscriptomic data further allows for the quantification of gene expression
levels, thereby enhancing our understanding of functional dynamics of the community [6].
Currently, elucidation of environmental chemistry is made possible through metabolomic
data, enabling the reconstruction of the chemical environment in which these microbial
communities thrive [7].

This robust expansion of our methodological arsenal has become the driving force
behind research in microbial ecology, synergistically converging with computational bi-
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ology to yield profound insights [8–10]. In this data-rich landscape, the focus of research
is primarily on establishing qualitative associations between environmental factors and
the composition of the microbial community. Typically pursued within a model-free
framework, data analysis seeks to unravel patterns and relationships, often with limited
theoretical underpinning. However, among this empirical wave, certain overarching trends
and hypotheses emerge, transcending various ecosystems.

The variability inherent in community composition across temporal and spatial
scales emerges as another hallmark, underscoring the dynamic nature of microbial as-
semblages [11,12].

Despite this variability, recent scientific investigations have focused on the statistical
properties of abundance and diversity within microbial communities, pioneering the
introduction of macroecology for microbiomes [13–15]. This approach characterizes these
communities in terms of overarching macroscopic patterns, transcending the microcosmic
variations observed at the taxonomic level. The essence of transitioning from microscopic
variation, capturing the presence and abundance of specific taxa, to macroscopic patterns
lies in the potential to unveil robust regularities that echo across diverse communities. In
fact, some studies have advocated for this novel macroecological lens, underpinning the
conceptual shift towards community characterization, also at the functional level [16–18].

However, it is unclear how much statistical characterization in sample taxonomy can illumi-
nate and highlight the different ecological processes and mechanisms discriminating, for example,
a diseased microbiome from a healthy one [19]. In particular, while the nuanced composition of
microbial communities is inherently sculpted by ecological forces, it remains debatable whether
the impact of these very forces is imprinted onto macroecological patterns.

This debate has older origins, as several works have highlighted how different ecolog-
ical processes can lead to the same Species Abundance Distribution (SAD), a paradigmatic
pattern studied since the latter half of the last century. Although the SAD has been used to
support Neutral Theory, the veracity of this relationship is far from unequivocal [20–22].
In particular, it has been shown that, although healthy and unhealthy gut microbiomes
display differences in species composition and abundance [23,24], their SADs have the
same shape [25], and thus do not carry any signature of dysbiosis, defined as an ’imbalance’
in the gut microbiota community associated with disease.

Intriguingly, the stability of the functional composition, where gene groups are used
as proxies, is on the one hand much higher than the taxonomic one [6,11], but at the same
time strongly characterizes the type of microbial community.

Remarkably, functional and taxonomic compositions are founded on a shared un-
derlying data structure, affording a unique avenue to leverage analogous strategies for
characterizing the statistical landscape of these intricate assemblages. This parallel method-
ology, though methodological in essence, offers the promise of extending its scope be-
yond functional presence and abundance to encompass a macroecological scrutiny of
functional correlations.

In this work, we want to make the first step in deciphering the statistical attributes of
correlations among functional abundances, in particular by exploring if they carry signa-
tures of dysbiosis. To achieve this goal, as shown in Figure 1, we will create taxonomic and
functional tables from metagenomics sequences of healthy and unhealthy gut microbiomes,
and we will investigate emergent functional macroecological patterns in both groups. We
will extend differential abundance analysis to functions and gain insight into differences
in functional compositions between healthy and unhealthy gut microbiomes. Eventually,
we will show how different functions/functional categories interact among them and how
studying such interactions is an effective way to characterize differences in functional
organization between healthy and unhealthy microbiomes.
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Figure 1. Visual representation of how functional tables Φ f s are generated from a Genomic Content
Network G f t and a Taxonomic Table Tts (where f , s and t are indexes, respectively, of the functions set,
the samples set and the taxa set). In this figure, we pictorially represent functions with geometrical
shapes, taxa with colored circles, and samples with indexed capital “X” symbols (blue when sampled
from an healthy subject and red when sampled form an unhealthy one). While functional and
taxonomic tables are represented as matrices, the GCN is represented as a network. The product
symbol “×” represents standard matrix multiplication. In addition to this, the functional table is
normalized to obtain a compositional dataset.

2. Materials and Methods

Our study is based on two different types of data. On the one hand, we have analyzed
the metagenomic data of gut microbiomes obtained from two main studies [26,27], which
collected stool samples from a series of control and clinical patients. On the other hand, we
have exploited the Genomic Content Network (GCN) [28], obtained thanks to an annotated
dataset [29], encoding information about the functional content of a certain set of taxa.

These two fundamental elements are processed and composed to produce a functional
representation of each gut microbial community, as described below.

2.1. Taxonomic Dataset

Following Pasqualini et al. [25], we have obtained a metagenomic dataset with curated
metadata, built from shotgun profiling of a set of 218 stool samples collected from clinical
trials. Of these, 67 come from healthy individuals and 151 from patients affected by gas-
trointestinal tract diseases (i.e., Crohn’s disease, ulcerative colitis and inflammatory bowel
syndrome). We address the first subset as healthy (H) and the second as unhealthy (U).

Based on pre-processed samples, we performed taxonomic profiling with the Kaiju [30]
sequence alignment tool. We built the Kaiju index by collecting all UHGG proteomes and
taxonomic files (nodes.dmp, names.dmp https://ftp.ebi.ac.uk/pub/databases/metagenomics/
mgnify_genomes/human-gut/v2.0.1/kraken2_db_uhgg_v2.0.1/taxonomy/) [29] (accessed on
10 October 2022).

Proceeding in this way, we obtained a table having as column labels the IDs of the
samples, and as row labels the IDs of the reference taxa set. Each entry in the table contains
the number of reads from a specific sample that is assigned to a specific taxon.

From this intermediate result, we built a proper taxonomic dataset (TD). The TD is
obtained by a three-step pipeline. First, we normalize the read counts assigned to each
species with the genome length of such species, and further normalize each column to
one to obtain compositional data [31]. Second, we set to zero all entries smaller than a
certain threshold η0, to reduce the presence of false positives. Third, we renormalize the
columns in order to restore the compositionality of the dataset. In this way, we obtained a
table (right table in Figure 1) in which each column consists of the relative abundance of
microbial cells present within the sample (projected over the reference set of taxa).

We now discuss the three above steps in detail:

1. In order to obtain from a read count a cell count, we divided each number of reads by
the genome length of the taxa to which it was assigned (each row is divided by the
same genome length). Assuming that the probability of obtaining a read from a given
genetic sequence is proportional to its length L (in the number of bases), by dividing

https://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-gut/v2.0.1/kraken2_db_uhgg_v2.0.1/taxonomy/
https://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-gut/v2.0.1/kraken2_db_uhgg_v2.0.1/taxonomy/
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the read counts by the genome length, we obtained a value that is proportional to the
number of individual cells of taxa that was present in the sample [32]. In formulas,
calling Tts the non-normalized dataset, we computed the normalized one, Tts, as

Tts =

Tts
Lt

∑t′
Tt′s
Lt′

(1)

where s is an index over the set of samples, t and t′ are indexes over the set of taxa
and Lt is the genome length of the taxon t.

2. The threshold was then applied to remove false positives [3]. Its value η0 was chosen
as the logarithmic flex point of the curve of the average local (α) diversity of Tts, as a
function of the threshold values [25]. Mathematically,

η0 = argmin
η

d⟨α(η)⟩
d log(η)

, (2)

where ⟨α(η)⟩ is the average alpha diversity, calculated with the threshold η (specified
below) over the relative abundances of the species (obtained from the previous step).
The average was carried over the different samples. In other words, to compute
⟨α(η)⟩, for each sample, we counted the number of species whose compositional
value was larger than η, and averaged this quantity over the different samples. After
computing the threshold value η0, we set all entries in the previous table with values
smaller than η0 to zero.

3. Finally, in order to restore the compositionality of the data (which was breached by
the imposition of the threshold), we renormalized each column to one.

In this way, we obtained the taxonomic data set Tts, which assigns the corresponding
relative species abundance vector on the reference set of taxa to each sample.

2.2. Genomic Content Networks

A Genomic Content Network (GCN) [28] is a bipartite network where one set of nodes
is made up by a catalog of genomes and the other by a chosen set of functions. The weight
of a link in the network represents the number of times that a given function appears in the
corresponding genome.

A Genomic Content Network (GCN) was built using a functionally annotated cat-
alog of (metagenome-assembled) genomes [28]. Depending on the research question
and bioinformatics expertise, several functional annotations can be chosen. The specific
notion of the function used in this work is based on the eggNOG (evolutionary geneal-
ogy of genes: non-supervised orthologous groups) annotation [33], where each orthol-
ogous group is considered a function. Compared to other widely adopted annotations
(such as PFAM [34] and KEGG [35]), eggNOG offers better coverage of UHGG (version
2.0.1 https://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-gut/
v2.0.1/) [29] (accessed on 10 October 2022), thus closely reflecting the functional repertoire
of the considered genomes. Furthermore, these annotations employ 21 COG categories
https://www.ncbi.nlm.nih.gov/research/cog/ (accessed on 10 October 2022) provided
by the UHGG MAGs annotation [29] and available in the eggNOG database [33]. Such
categories represent a coarse-grained functional level of gene clusters, allowing a more
direct interpretation of the outcomes, as shown in the discussion section.

2.3. Functional Dataset

The functional dataset (FD) is obtained by matrix multiplication of the GCN with the
TD, as shown in Figure 1.

In formula,
Φ f s = ∑

t∈taxa
G f tTts (3)

https://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-gut/v2.0.1/
https://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-gut/v2.0.1/
https://www.ncbi.nlm.nih.gov/research/cog/
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where f , t and s are indexes of functions, taxa and samples, respectively, Φ f s is the table of
the FD, G f t is the adjacency matrix of the GCN and Tts is the table of the TD.

Note that, in order for this multiplication to be meaningful, the GCN and TD need
to share the same taxonomic annotation. To achieve this, we used the GTDB annotation
provided by the UHGG authors.

Each column of the TD can be interpreted as a vector in taxonomic space (relative
species abundance vector). The GCN can thus be seen as a linear operator that connects
the taxonomic space to the functional space and transforms, for each microbial community,
relative species abundances into functional profiles, which are then normalized to obtain
compositional data.

It may be argued that the same quantity can be obtained by directly aligning metage-
nomic sequences to a functional database. This is in principle correct and feasible, as the
UHGG catalogue [29] contains a protein repository as well. However, such a protein catalog
has many unannotated clusters, which makes a biological interpretation very difficult and
induces inconsistencies between the taxonomy and the function classifications. Using the
GCN, on the other hand, in addition to greatly speeding up the functional classification
of samples, ensures that functional and taxonomic abundances are consistently linked,
facilitating biological interpretation.

In this way, we obtained the functional dataset Φ f s, which assigns to each sample the
corresponding relative functional abundance vector over the reference set of functions.

3. Results

Having generated the taxonomic and functional tables for both H and U groups, we
evaluated whether specific signatures could be identified to characterize the dysbiosis.
In this work, we focused on the “functional” profiles, showing only in some cases, for
comparison, the taxonomic ones. In fact, taxonomic profiles have been already studied
in several works, and recently on the same dataset in [25]. Confirming previous analyses,
we found that looking at emergent patterns of taxonomic composition is not an enlight-
ening way to find signatures of dysbiosis. We think, in fact, that due to a very strong
functional redundancy, the point is not which microbes are present, but what their function
is. Along this direction, we investigated the functional properties of the gut microbiome.
We used the term “function”, although it is more correct to say “potential function”, as
we were not looking at the metatranscriptome dataset, but only at the metagenomic data,
and thus we could only reconstruct the possible functions/proteins that the different mi-
crobes can potentially express. In general, however, our approach can be applied also to
metatranscriptome datasets.

We started by inspecting macro-ecological functional patterns as shown in Figure 2.
In Table 1, we present the main ecological patterns we investigated, their abbreviations

and their definitions. Importantly, when the component of the system is an ecological
species, then the pattern has a T prefix (Taxonomy), while when dealing with functions, it
is indicated by an F prefix. All the ecological patterns are extracted separately for the H
and U subsets. The first pattern we analyzed is the Functional Mean (relative) Abundance
Distribution (F-MAD), which is the average relative abundance of a given function across
H (green) or U (red) samples. We then computed the Functional Occurrence–Abundance
profile (F-OA), giving us insight into the relation of the mean relative abundance of a
function and its occurrence on the different H or U samples. As Figure 2B shows, functions
that have an average relative abundance larger than 10−5 are present in almost all the
samples. The Functional Species (relative) Abundance Distribution (F-SAD) instead is
shown in Figure 2C. It describes the relative abundance of the different functions in a given
H or U sample and typically displays a log-normal shape, similar to the SAD when looking
at species instead of functions. The F-SAD of each sample was rescaled to have a zero
mean and unit variance (in log units). Finally, Figure 2D shows the Functional Average
Fluctuation Distribution (F-AFD), which gives the fluctuations of each function among H
or U samples. No rescaling was performed in this case on the single-function distributions.
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The F-AFDs were computed independently with respect to the fluctuations over the H and
U subsets, so that from each function we collected two AFDs.

Table 1. Description of the macroecological patterns. All of the following definitions can be applied
both to the taxonomic and the functional table, and in general to any component system.

Macroecological Pattern Abbreviation Definition

Abundance Fluctuation Distribution AFD Distribution of the abundances of a given
component (i) among different samples.

Species Abundance Distribution SAD Distribution of the abundances of the
components within a given sample.

Mean Abundance Distribution MAD Distribution of the mean abundances
(among samples) of the components.

Occurrence O Fraction of samples in which a given
component (i) is present.
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Figure 2. Main macro-ecological functional patterns: (A) Functional Mean Abundance Distribution (F-
MAD). No significant difference between the healthy and the unhealthy patients over the abundant
functions. (B) Functional Occurrence–Abundance profile (F-OA). The lines and their surrounding
area represent the average ± σ± of the values falling into the corresponding bin. (C) Functional
Species Abundance Distribution (F-SAD). The F-SAD of each sample was rescaled to have zero mean
and unit variance (in log units). The line represents the average among F-SADs obtained over different
samples, while the shadowed area indicated the standard deviation (computed separately for the H
and U subsets of SADs). (D) Functional Average Fluctuation Distribution (F-AFD). No rescaling was
performed in this case on the single distributions. The F-AFDs are computed for the H and U subsets
independently. The figure shows the averages among different F-AFDs and the standard deviation
of the H and U subsets of AFDs. For both the F-SAD and F-ADF, we do not observe any relevant
difference between the two classes (H and U). All the histograms are obtained as rolling windows,
with a constant bin width in the logarithmic space.

From Figure 2, is quite evident that just comparing functional patterns did not lead to
any clear signatures of different structures in H and U microbiomes. In particular, focusing
on the more abundant functions, we did not find differences between H and U microbiomes
in the F-MAD, F-OA or F-AFD. The F-SAD of U individuals had, on average, a larger
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number of both rare and abundant species, but these differences were not statistically
significant if considering intra-group variability (shadowed regions). This “negative” result
also holds if we look at the emergent macro-ecological patterns of species taxa (see [25]).
Therefore, “first order” emergent macro-ecological and functional patterns in microbiomes
in H and U groups are the same and do not characterize the “state” of the gut microbiome.

Nevertheless, we investigated possible differences in the abundance of single func-
tions or taxa in H and U gut microbiomes (Figure 3). This approach is well established
when looking at taxa and it is known as a Differential Abundances Analysis (DAA). A
multitude of DAA tools have been introduced specifically tailored to address sampling
and compositional effects [36], and they play a crucial role in singling out microbial species
characterizing dysbiosis.

In the upper sub-figures Figure 3A,B each point corresponds to a specific component.
The x and y projections correspond, respectively, to the H and U expressions of such
components, and the expression degree of a component is defined simply as its mean
abundance (over the H or U subsets). In the lower sub-figures Figure 3C,D, we build a
histogram of the differential logarithmic expressions of the components between the U and
H sets.

In formulas, if we call MA(H)
i the mean abundance of the i component over the

H subset and MA(U)
i the mean abundance of the i component over the U subset, the

logarithmic differential expression of component i, δi, is defined simply as

δi ≡ log10(MA(U)
i )− log10(MA(H)

i ). (4)
These quantities were then collected into a histogram. The components that fall into

the right part of the histogram are the ones that have a tendency to be enriched in going
from H to U. The components that fall into the left part, instead, are the ones that tend to
be depleted.

To be more quantitative, we compared such differential abundances with proper null
models. The null model consisted of 150 independent realizations in which we randomized
the H/U attributes of the samples, keeping intact the cardinality of the two sets. This null
model allows us to contrast between the condition in which we confront two random sets
and the condition in which we confront the H and U sets. An anomaly with respect to
this null model is therefore to be attributed to the specificity of the choice of H and U as
subsets. The null model is represented in Figure 3 as the (point by point) average ± σ± of
the values obtained in the different realizations, where σ+ is the root mean square of the
positive fluctuations (only from above average values), and σ− is the root mean square of
the negative fluctuations (only from below average values). We therefore expect random
realizations to fall within the highlighted area.

We found that for taxonomic DAA, in spite of the presence of tail enrichment, we could
not identify a set of particular species that are responsible for such an effect (see Figure 3C). On
the other hand, for functional DAA (FDAA), we could identify a group of functions whose
abundances differ significantly from the null model (see bumps in Figure 3D). In other words, in
taxonomic DAA, we had a specificity issue, and thus we could not exploit DAA to understand
the ecological processes behind the dysbiosis. For functions, instead, we could recognize some
functional categories characterizing the enrichment or depletion.

Thus, to further test such a hypothesis, we explored two different computational
approaches for detecting the main functional groups responsible for dysbiosis. In both cases,
we constructed the “discriminant direction” vector in functional space. With discriminant
direction we intend, loosely speaking, the notion of a direction (in functional space) along
which one passes from the H to the U condition. We implemented this concept in two
specific ways, which we refer to as the differential mean abundance analysis method
(MA method) [36] and Support Vector Machine method (SVM method) [37].
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Figure 3. Differential abundance analysis of taxa/functions between the H and U sets. (A,B) For each
taxon/function, we plot the mean abundance, as computed over the H and U sets, respectively,
over the x and y axis. The dashed line indicates when H and U subsets have the same abundance.
The taxa/functions above the line thus tend to be over-represented in U patients, while the ones
below tend to be under-represented. (C,D) Histogram of logarithmic differences between the mean
abundances of the taxa/functions over the U and H sets. The gray region represents the null model
(average ± σ±) obtained by randomly redistributing the H/U labels over the samples. Both the
taxonomic and functional plots display an enrichment of the tails. In particular, in the functional plot,
we observe the emergence of secondary peaks.

The MA method defines the discriminant direction as the difference between the F-MA
of the U functions and the F-MA of the H functions.

ξi ≡ MA(U)
i − MA(H)

i .

The discriminant direction ξi is therefore a vector in a (high-dimensional) func-
tional space.

The SVM method instead defines the discriminant direction ξi as the tangent vector to
the optimum dividing hyperplane between the H/U-labelled data in functional space, as
defined by a standard SVM procedure [37] (choosing the orientation that leads from the
H-classified to the U-classified subspace).

We further project the ξi vectors over the COG functional groups [38], which constitute
a low-dimensional set of general functional categories which can be directly interpreted.
In this way, we obtain the enrichment/depletion profiles shown in Figure 4.

The null model is defined again as a set of 150 repetitions of independent random
redistributions of the H/U attributes between the samples. Over each realization, we re-
peated the same analysis (computation of ξi, projections over categories and normalization),
summarizing the results as the average ± σ.

Consistently, in both approaches (MA and SVM methods), we may recognize that
some functional categories deviate significantly from the null model. In particular, we
recognized three under-represented functional groups (D—Cell cycle control and mito-
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sis, J—Translation and O—Post translational modification, protein turnover, Chaperone
functions) and two over-represented functional groups (G—carbohydrate metabolism and
transport and P—inorganic ion transport and metabolism) in U with respect to H samples.

A B C D E F G H I J K L M N O P Q S T U V Z
COG functional categories

0.04

0.02

0.00

0.02
Pr

oj
ec

tio
n

A
MA method

A B C D E F G H I J K L M N O P Q S T U V Z
COG functional categories

0.4

0.2

0.0

0.2

Pr
oj

ec
tio

n

B
SVM method

null model
projection

Figure 4. Discriminant direction within the functional space (ideally leading from the H region to the
U region) projected on COG functional groups. (A) MA method. The discriminant direction vector
is defined as the difference between the F-MA vector of the unhealthy and the F-MA vector of the
healthy. (B) Support vector machine (SVM) method. The discriminant direction in the functional
space is defined by the tangent vector of the optimal dividing plane between the H and the U, as
defined by a standard support vector machine procedure. The two procedures produce almost
identical results, showing a significant enrichment in categories G and P, and a significant depletion
in categories D, J and O.

In the last part of this work, we studied the correlations between functions/functional
categories in H and U samples.

We performed a comparative analysis of the correlation structure of the system along
two “axes”: the taxonomic/functional difference, and the H/U difference. So, on one
hand, we observe how the taxonomic correlation structure differs from the functional one,
and on the other hand, we determine how the H or U conditions impact the correlation
structure (both in taxonomic and functional settings). Significantly, we also investigated
the connection between correlation and abundance, and how this connection differed in
the taxonomic and functional settings. Are couples of components (either two taxa or two
functions) with big values of mean abundance more likely to be correlated?

To answer this question, we computed the 2D histograms displayed in Figure 5A,D.
Such histograms were produced using the values of the correlation matrix and the values
of the couple abundance matrix (defined by the couple products between the mean abun-
dances (MAs) of the two components). In the formulas, Cij is the Pearson’s correlation
coefficient between components i and j; Aij = MAi · MAj is the product of the mean
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abundances components i and j. We can therefore associate a value Cij and a value Aij with
each couple (i, j), and we compute a bi-dimensional histogram of such values. In this part
of the analysis, we did not distinguish between H and U. We found that the most abundant
functions were commonly strongly correlated or anti-correlated, highlighting a correlation
structure that was instead absent in the taxa space.
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Figure 5. Correlation structure, comparison of H and U subsets from a taxonomic and functional point
of view: (A,D) 2D histogram. To each couple of taxa/functions we associate (i) the corresponding
entry of the taxa–taxa/function–function correlation matrix and (ii) the product of the mean abun-
dances of the two taxa/functions. We then construct a 2D histogram of such quantities as realized
by iterating over all the couples of taxa/functions. From a taxonomic point of view, we observe an
almost complete independence between the two quantities. From a functional point of view, we
observe a strong connection. (B,E) Histograms of the values of the taxa–taxa/function–function
correlation matrix. The green/red values pertain to the correlation within H/U subsets. The dashed
lines are realized as standard histograms. The solid lines are realized as weighted histograms; the
weight is the product of the mean abundances of each couple of taxa/functions. We observe that the
weighted histograms reveal a much stronger correlation structure with respect to the standard ones;
in both cases, the H subset displays a stronger correlation structure with respect to the U subset. Such
a difference is much stronger in the functional representation of the system. (C,F) Decay profile of the
eigenvalues of correlation and covariance matrices, both for H and U subsets. We observe that the H
profiles decay faster than the U profiles and the covariance profiles decay faster than the correlation
profiles. In the functional representation, these effects are once again much stronger.

The correlation profiles in Figure 5B,E were then computed by histogramming the
values of Cij in two ways. The standard (even) histogram is computed by counting each
value with the same weight (one). We may also assign a different weight to each value,
so that some values are more important than others in the overall counting. In this case,
we talk about a weighted histogram. We produced the histograms of the correlation matrix
values Cij in both even and weighted ways, choosing the values Aij as weights. A weighted
histogram is a way to give proportionally more importance to the couples which contain
more abundant components. We thus looked at the obtained correlation profiles in both
taxa and functions and in both H and U microbiomes. In all cases, we found that H samples
were characterized by a larger number of taxa/functions that were strongly correlated or
anti-correlated. For the functional correlations, we could observe that such functions were
also on average the most represented (see Figure 5D), i.e., highly abundant functions were
those displaying higher correlations. Therefore, by weighting the correlation function by
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the species average abundances, we were able to further highlight the difference between
H and U samples in their functional correlation structure.

Such differences were clearly reflected in the correlation and covariance matrix eigen-
value decay curve for H and U samples in both the taxa and functional spaces, as shown
in Figure 5C,F. Recall that each eigenvalue measures the variance of the dataset along the
direction of the corresponding eigenvector in a unit system in which each direction in the
original basis set is rescaled to have unit variance. The covariance matrix instead does not
contain such a rescaling, and the eigenvalues measure the variance along the direction of
the eigenvectors in the original units of the dataset. Loosely speaking, we can thus consider
the correlation matrix to define a notion of effective dimensionality according to relative
fluctuations, while the covariance matrix defines it according to absolute fluctuations. These
results allows us to recognize how different factors impact the effective dimension of the
data by comparing the decay rate of the eigenvalue spectrum in the different cases. By com-
paring the U results with the H results, we can observe how the H condition is associated
with a smaller effective dimensionality; by comparing the correlation matrix profiles with
the covariance matrix profiles, we can observe how considering the difference in scales
of the abundances leads to a smaller effective dimensionality. Finally, by comparing the
results in Figure 5C,F (drawn on the same scale), we can observe how the previous effects
are strongly amplified from a functional prospective.

In other words, significant differences between H and U microbiomes emerge when
looking at patterns of correlations from a functional prospective.

4. Discussion and Conclusions

In this work, we have studied the emergent functional organization in both healthy
and unhealthy gut microbiomes. In particular, we have investigated if and which functional
unbalance can characterize dysbiosis.

First, we have shown that global emergent functional patterns, inspired by macro-
ecological laws in ecology [15], do not characterize the particular state of gut microbiomes,
and thus cannot be directly exploited to find specific signatures of dysbiosis. On the other
hand, by employing a functional abundance analysis and a support vector machine algo-
rithm, we have found distinct signals of functional categories that are unbalanced between
healthy and unhealthy gut microbiomes. Furthermore, an analysis of the correlation struc-
ture of taxa and functions showed the existence of a strong relation between functional
correlation and functional abundance, revealing the existence of a core of strongly corre-
lated functions, which has no analogous feature in the taxonomic perspective, and that the
correlations within such core are significantly disrupted in dysbiosis.

Our results consistently demonstrated significant alterations in the abundance of
functional categories in unhealthy gut microbiomes (when compared to their healthy
counterparts), particularly within the COG functional categories D (cell cycle control, cell
division and chromosome partitioning), J (translation, ribosomal structure and biogene-
sis), O (post-translational modification, protein turnover, chaperones), G (carbohydrate
metabolism and transport) and P (inorganic ion transport and metabolism).

The under-representation of functions related to cell cycle control, cell division and
chromosome partitioning (D) in unhealthy gut microbiomes indicates that microbial cells
may replicate in an abnormal way in the diseased hosts. This abnormal growth may con-
tribute to the community composition unbalance observed in dysbiosis. Of course, the
causes of such altered cell division processes remain elusive and may depend on different
factors (gut inflammation, changes in the environment and thus bacterial–host interactions,
or changes between species interaction, e.g., from cross-feeding). Similarly, the under-
representation of translation-related functions (J) in unhealthy gut microbiomes may be of
biological significance. A reduced abundance of translation-related functions may imply a
decrease in protein production, which could impact various physiological processes in the
host. This observation may be associated with the metabolic alterations commonly seen
in gastrointestinal diseases, which often manifest as malabsorption and nutritional defi-
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ciencies [39]. Post-translational modifications, protein turnover and chaperone functions
(O) are intricately linked to protein stability and functions. The under-representation of O
functions in unhealthy gut microbiomes suggests that the microbiota may exhibit a reduced
capacity to ensure proper protein folding, stability and turnover. This could lead to an
accumulation of misfolded or dysfunctional proteins, potentially contributing to cellular
stress and inflammation.

The over-representation of carbohydrate metabolism and transport functions (G) and
inorganic ion transport and metabolism functions (P) in unhealthy gut microbiomes may
be interpreted as possibly associated with the metabolic adaptations of gut microbiota
in response to disease states. Over-representation of carbohydrate metabolism functions
may indicate an increased utilization of available carbohydrates, possibly as an energy
source. This may be linked to the characteristic shifts in dietary preferences and nutrient
availability seen in patients with gastrointestinal diseases [40].

The over-expression of inorganic ion transport and metabolism functions (P), particu-
larly related to iron (Fe) and copper (Cu), is noteworthy in the context of gastrointestinal
diseases. Indeed, correlations between IBD and host iron deficiency and alterations in Fe
metabolism are commonly observed [41]. Research on the impact of iron supplementa-
tion on gut microbiota has yielded diverse results, making generalizations difficult. The
chemical form of iron used can also influence the bacterial composition, and the effects
of iron supplementation do not always directly oppose those of iron deficiency. Heme
iron is more readily absorbed by both bacteria and humans compared to non-heme iron,
as it is influenced by the composition of the food matrix and the physico-chemical condi-
tions in the digestive tract. Non-heme iron in many food matrices is bound to inhibitors
like polyphenols, fibers or phytates. Bacterial enzymes can break down these inhibitors,
improving iron absorption [42]. The over-representation of P functions may thus reflect
the adaptive response of the microbiota to address the unbalance due to loss in functions
correlated with cell cycle control and increased demand for iron, possibly due to chronic
inflammation or blood loss in the gastrointestinal tract.

We therefore think that the observed under-expression of cell cycle control (D), trans-
lation (J) and protein modification functions (O) may contribute to tissue damage and
dysfunction, while the over-expression of carbohydrates (G) and ion (P) metabolism func-
tions may represent metabolic adaptations to disease-related challenges.

Still, one needs to consider that the over/under-representation of functional categories
may be affected by significant bioinformatic noise in the attribution of the functions to the
categories. In order to assess the stability of our results, we performed the same analysis
with the updated functional annotations directly provided by the COGs website [38,43]
(instead of the previously used annotations provided by UHGGv2.0.1). The results are
generally quite consistent, but report a reduced discrepancy in the P category, while
other previously non-anomalous or non-present categories show a relevant discrepancy (L
replication, recombination and repair; X mobilome: prophages, transposons). This may
indicate the need to distinguish between strong signals (such as those observed for the
alterations of G and J) and weak signals (such as those observed for the alterations of the
other categories).

Eventually, in the analysis of the correlation structure of the functional abundances
among different patients, we found evidence of a core of abundant and correlated functions.
This may be interpreted as a way of representing (with a soft constraint) the allowed
functional configurations of a healthy microbiota. Remarkably, in the unhealthy subset,
we observed a much weaker (core) correlation structure, as almost all the correlations
higher than 0.9 and lower than −0.9 were suppressed. This indicates that the microbiota of
unhealthy patients are subjected to a weaker constraint on the functional organization, or
are subjected to many inhomogeneous organizing principles. This means that in dysbiosis,
the coordination (or anti-coordination) of functions is somehow disrupted, even when the
general macroecological patterns are conserved. A weakening of the correlation structure
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may also be observed in the taxonomic framework; here, however, this tendency is masked
by the high degree of functional redundancy.

In particular, we have also found that if we project such functions onto the space
of COG functional categories and study the correlations between functional categories,
unhealthy microbiomes, differently from the healthy ones, do not display any relevant
negative correlation, typically associated with stabilizing negative feedback loops.

In summary, our study provides valuable insights into the functional changes in gut
microbiomes associated with gastrointestinal diseases. We have shown the usefulness
of functional differential abundance analyses and the study of correlation patterns in
highlighting such changes, and particularly that dysbiosis is associated with a loss of
correlation between the core functions. A natural and important direction is to combine
such an analysis with a similar one, but using meta-transcriptomic datasets. This would
allow for an effective study of the actual expression of functions for the specific class of
microbiomes, together with the potential activity, as measured through metagenomics.
These findings underscore the intricate relationship between gut microbiota and host health
in the context of gastrointestinal diseases and emphasize the potential utility of multi-
omics techniques (and related statistical analyses) in investigations of dysbiosis and related
disease mechanisms, as well as in the definition of potential biomarkers for the detection
of diseases.
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